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Abstract 

Community structure is vital to discover the important structures and potential properties of complex networks. 

In the recent years, the increasing quality of local community detection approaches has become a hot spot in 

the study of complex networks due to the advantages of linear time complexity and applicable for large-scale 

networks. However, there are many shortcomings in these methods such as instability, low accuracy, and 

randomness. The G-CN algorithm is one of the local methods that uses the same label propagation as the LPA 

method but unlike LPA, only the labels of boundary nodes are updated at each iteration that reduces its 

execution time. However, it has a resolution limit and a low accuracy problem. In order to overcome these 

problems, this paper proposes an improved community detection method called SD-GCN, which uses a hybrid 

node scoring and synchronous label updating of boundary nodes along with disabling random label updating 

in initial updates. In the first phase, it updates the label of boundary nodes in a synchronous manner using the 

obtained score based on the degree centrality and common neighbor measures. In addition, we define a new 

method for merging communities in a second phase, which is faster than the modularity-based methods. 

Extensive set of experiments are conducted to evaluate the performance of SD-GCN on small- and large-scale 

real-world networks and artificial networks. These experiments verify a significant improvement in the 

accuracy and stability of community detection approaches in parallel with a shorter execution time in a linear 

time complexity. 
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1. Introduction 

A wide range of complex systems can be 

represented by networks such as many biological 

networks, i.e. protein-protein interaction network, 

power grids, transportation systems, and social 

network. These networks consist of nodes and links 

[1, 2]. Typically, these networks are represented by 

a complex relational graph. In social networks, a 

node is an entity such as people, organizations, and 

companies. A link is defined as a type of 

relationship among nodes. By analyzing the social 

networks, an important structural property can be 

seen that is called the community structure [3]. The 

communities are groups of nodes where the 

connections inside a group are dense but between 

which they are sparser [4]. Many important 

structural features of a social network can be 

extracted based on the structure of communities. 

Community detection is a process to recognize 

such groups of nodes in a network. Many studies 

have been conducted to extract communities within 

a network; however, most of them are not 

applicable to large networks due to high orders of 

time complexity. 

As the size of complex networks grows, the need 

for algorithms with a low time complexity becomes 

more important. The community detection 

algorithms are generally divided into three 

categories: global, semi-local, and local. Global 

methods require the access to the whole network 

that need a high computational time and is 

fundamentally impossible for a large network [5]. 

Therefore, the local and semi-local community 

detection algorithms offer a practical alternative 

[6]. Various local methods have been proposed that 

use the topological properties of the network to 

detect the community structures in a local manner. 
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Label Propagation Algorithm (LPA) is one of the 

basic and fast community detection methods for 

large-scale networks on account of its near-linear 

time complexity [7]. This method starts with 

assigning an initial label to each node. This label 

will be replaced by the most frequent label of 

neighbors within every iteration. A random label is 

selected when frequencies are equal. The iterations 

are continued until a consistent state is achieved. 

Finally, the nodes that share the same label are 

considered as a community. LPA is simple and acts 

as a base for many other approaches. 

Another approach for large networks is called the 

G-CN method [8]. Similar to LPA, this method is 

also based on label propagation but, in contrast to 

LPA, it updates only boundary nodes in every 

iteration based on the number of common 

neighbors, not the frequency of labels. This leads 

to a fast running time and a performance better than 

LPA [8]. However, this method suffers from the 

instability in producing the final due to randomly 

updating nodes’ label. Another problem with G-

CN is its weak performance in detecting an 

appropriate number of communities. G-CN detects 

the small and local communities [9]. 

In order to overcome these problems, we present 

SD-GCN, which applies a two-phased approach for 

community detection. The first phase tries to 

improve the results of G-CN using a new updating 

strategy and without increasing the linear order of 

complexity. It requires a fewer number of the label 

updates, which leads to the stability of results and 

shortening the execution time. In the second phase, 

a new measure is used to integrate the communities 

in a suitable manner. In the proposed algorithm, we 

present a synchronized and informed updating 

method during the initial updates.  

After providing a brief overview, we introduce 

some related works in Section 2. In Section 3, we 

present our proposed algorithm in more detail. 

Thereafter, the experimental results on the 

synthetic and real world networks are shown. 

Lastly, the final section offers the concluding 

remarks and further directions. 

 

2. Related works 

In the recent years, community detection in 

complex networks, principally in social networks 

has been the subject for wide research studies. 

There are many different groups of methods for 

community detection such as clustering-based 

methods [10,11], modularity-based methods [12, 

13], spectral clustering algorithm [14], dynamic 

algorithm [15, 16], label propagation [7,17,18], and 

similarity-based methods [17,19,20]. For example, 

modularity-based methods try to optimize the 

modularity measure during the identifying and 

expanding communities. For instance, Newman 

has proposed a greedy optimization method for a 

modularity maximization problem [13]. In this 

method, each node is supposed to be a different 

community with one member. Then the pair of 

communities with the largest increase (or smallest 

decrease) in modularity merges repeatedly until all 

the nodes are merged together in a sole community. 

In label propagation-based algorithms, each node 

has an initial label. Afterwards, in each iteration, 

the label of each node is updated based on the most 

frequent label of its neighbors. 

On the other hand, the community detection 

algorithms can be divided into the overlapping and 

non-overlapping algorithms. In the non-

overlapping community detection approaches, a 

node is only assigned to an individual community 

[21]. In addition, the community detection 

algorithms can be used in local and global manners. 

In local methods, only the information about a node 

and its neighbors is used to discover a community. 

However, the global methods require a 

comprehensive information about all nodes or links 

for assigning a node to a community [4,22]. This 

method has a better performance but requires a 

high time complexity that makes them infeasible in 

large-scale networks. Therefore, in this paper, we 

only focus on the local or semi-local methods due 

to their fast detection. Many different local 

algorithms have been proposed in the recent years. 

As instance, the LPA−CNP  algorithm [23] 

developed a new strategy for label updating of LPA 

by considering the effect of neighbors that are more 

than one  hop away. In the COPRA algorithm, a 

global parameter is used to allow each node to carry 

multiple labels [24]. Thus each node could belong 

to multiple communities, and therefore, COPRA 

can find an overlapping community structure. The 

CK−LPA algorithm [25] is a new development of 

LPA based on the core expanding procedure that 

weights each link based on a local similarity before 

expanding. During expanding and label updating, 

this weight is used in tie break states. The LPA−S 

algorithm uses a synchronous label propagation 

strategy by the probability of each surrounding 

label to update labels. The network weighting 

strategy has been claimed to be useful in [26] by 

adding a pre-processing step and edge weights 

according to their centrality by performing multiple 

random walks on the network. In this method, the 

centrality of an edge reflects its contribution to 

spreading messages over the network. Recently, an 

integer linear programming-based model [27] has 

been proposed to detect the community structure 

and also identify the most influential nodes within 
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each community. Another recent approach [28] has 

proposed a new variant of the variable 

Neighborhood Decomposition Search (VNDS) 

heuristic for solving global optimization problems 

and applies it in detecting communities in large 

networks using modularity maximization. 

The G-CN algorithm uses the label propagation 

method and only updates labels of boundary nodes 

[8]. For label selection, a maximum number of 

common neighbors is considered. In fact, G-CN 

uses a local similarity measure based on the 

common neighbors to calculate a score for 

identifying the community of boundary nodes [8]. 

DCNR is an extended version of G-CN that 

combines common neighbors and node degree 

local measures to improve the performance of G-

CN [9]. However, DCNR has some problems in 

updating labels and merging process. In this paper 

we propose the SD-GCN algorithm that is based on 

DCNR and presented in two phases. Because of the 

considerable improvement in the first phase, the 

next phase in this algorithm is of low importance. 

In the proposed method, label updating is in the 

synchronize strategy and avoids random updating 

in the initial steps of the algorithm. 

 

3. Proposed algorithm  

The proposed algorithm is a new development of 

the DCNR and G-CN algorithms that is called SD-

GCN. SD-GCN has been designed to overcome the 

shortcoming of the G-CN method. The label 

propagation-based algorithms are mostly iterative 

and update all labels in each iteration. However, G-

CN only updates the labels of boundary nodes 

during an iteration in an asynchronous manner. 

Boundary nodes are located in the border of 

communities, and therefore, are recognizable from 

the internal nodes. The internal node is a node that 

has the same label with all its neighbors, and the 

boundary node is a node that is not an internal node. 

G-CN categorizes the neighbors of a node based on 

their labels, and assigns a utility score to each 

community in the neighborhood. The label of the 

node will be the same as the community with the 

maximum utility score. Utility score is the number 

of common nodes with the neighboring 

communities. In contrast, LPA assigns the label 

based on the most frequent label in the 

neighborhood nodes.  

G-CN has a linear order of execution time like 

LPA, and therefore, is suitable for large networks. 

Besides having better results, G-CN is faster than 

LPA thanks to updating only the boundary nodes. 

In SD-GCN, both the common neighbor measure 

and degree centrality are used to compute the utility 

score. Along with other modifications to standard 

G-CN, our approach leads to significantly 

improved and stable results with a shorter 

execution time. SD-GCN consists of two main 

phases, as follow. 

 

3.1. First phase of SD-GCN 

This phase is similar to G-CN with a difference in 

the computing utility score. Here, the score is based 

on the number of common neighbors with 

communities and the degree of neighbor nodes. 

Considering the degree centrality as a local feature, 

SD-GCN achieves a clear improvement in the 

results. Assume G(V, E) is an undirected, 

unweighted, and acyclic graph, where V and E are 

the node and edge sets accordingly. V = {v1, v2, ..., 

vn} and  E = {(vi, vj)| vi, vj  V}, where m = |E| is 

the number of edges and n = |V| is the number of 

nodes. Therefore, the common neighbors of the 

nodes I and j can be computed as follows:  

 i i jB j N N   (1) 

where, 
iN  and 

jN  are the neighbors of the nodes I 

and j, respectively. 

The degree centrality of a node is the number of 

relations of a node with other nodes. 

  number of neighbors of i iDeg V V  (2) 

In order to update the label of a node, its common 

neighbors are categorized based on their labels. 

Then a utility score is computed for each neighbor 

community using Equation (3). This score is 

similar to G-CN and equal to the sum of common 

neighbors. 

   ij k
S k B j


  (3) 

In computing the utility score, sometimes we 

encounter similar scores, and we need to select 

randomly one of the communities. For instance, in 

the Zachary karate club (Figure 1), based on 

Equation 3, the label of the node 10 is selected 

randomly due to the mentioned problem. A wrong 

label selection, consequently causes assigning 

wrong labels to the neighbors. In the worst random 

case, the nodes 25 and 26 will be considered as a 

separate community since they have only node 32 

as the common neighbor. 

 

 

 

 

 

 

 

 

Figure 1. Zachary Club Karate network. 
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In order to overcome this challenge, we compute 

the utility score for community K in the 

neighboring of node j by Equation (4): 

     ( )i j

j k j k

E
S k B j Deg V

N  

     (4) 

where, the score is based on the total number of 

common neighbors along with the other local 

feature, which is the sum of the node degrees 

within community K. Also N is the total number of 

graph nodes. Clearly, the value resulting from 

aggregating the number of common neighbors is 

relatively small in comparison with the sum of the 

node degrees in the second part of the equation. In 

order to balance the effects of both part of the 

equation, we multiply E/N by   ,S k  where E/N is 

the average degree for graph nodes.  

The label of a node is determined based on the label 

of a community that has the maximum utility score. 

The new approach for utility computation has 

improved results, while requiring a fewer label 

updates that leads to a more stable result. On the 

other hand, decreasing the number of random 

updates causes a faster formation of communities 

with a shorter execution time. Our approach 

utilizes only local features including the number of 

common neighbors and the degree node centrality. 

Therefore, the time complexity of the first phase is 

O(n). Furthermore, thanks to updating, only the 

boundary nodes, our method is faster than LPA. 

SD-GCN starts with the label initialization of all 

nodes done. Then the boundary nodes are 

determined and placed in set B. In an iterative 

process, the label of each boundary node in set B 

will be updated, and consequently, its non-

boundary neighbors will be checked. If any 

neighbor becomes a boundary node, it will be 

placed in B. The algorithm stops when there is no 

boundary node in set B. Our experiments reveal 

that the asynchronous label updating in G-CN can 

be replaced by an asynchronous method to improve 

the results. In the asynchronous label updating, the 

labels of the previous iteration are considered, 

whereas in the synchronous behavior, the updated 

label has an effect on the computations of the 

current iteration. The consequent nodes in set B are 

the likely neighbors of each other because during 

the label change of a node, its neighbors are added 

to B if they become a boundary node. Therefore, if 

the synchronous method is applied, every change 

in a node immediately has an effect on the 

consequent neighbor computations. Hence, the 

synchronous approach is more suitable for 

updating the boundary nodes. Our experiments 

verify this idea by exhibiting considerable 

improvements along with decreasing the random 

update in comparison with the asynchronous 

manner, although our approach tries to avoid a 

random update during the initial update steps. By 

disabling random updates, we achieve a 

considerable improvement and stable results. This 

also leads to a shorter execution time because of a 

faster community formation. 

To sum up the first phase, we improved G-CN by 

utilizing the degree centrality, changing the 

approach to synchronous and avoiding random 

update during the initial update. A flowchart of the 

first phase is presented in figure 2. 

The algorithm starts with an initial update, which 

initializes all nodes with individual labels. Then all 

labels of nodes are updated. After that, the 

boundary nodes are determined and placed in set B. 

If there is no label updating, all nodes are added to 

set B. As discussed above, the algorithm continues 

by selecting one node from B and updating its 

label. If there is a change in the label of node, all its 

neighbors will be checked again, and if they 

become a boundary node, they are inserted in set B. 

The iterations are terminated when there is no more 

node in set B. 

 
Figure 2. Flowchart of phase 1 in the proposed SD-GCN 

method. 

Start with graph 
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Algorithm 1 is the first phase of the proposed 

method. Function initial_update updates the labels 

of all nodes in one iteration, and thus some nodes 

may become an internal node, and this function 

avoids considering all nodes as a boundary node, 

and the number of nodes in B (boundary nodes set) 

will be decreased. 

 

3.2. Second phase: Merging communities 

Although the result of the first phase has 

considerable improvements in comparison with G-

CN, it is also extended to overcome the problem of 

solving small communities. There are many small 

communities in the G-CN algorithm, and the 

number of generated communities are more than 

the actual ones in the ground truth. Therefore, in 

this phase, some of them will be merged to tackle 

this challenge. We propose a new density-based 

method for merging communities in contrast to the 

other approaches that try to utilize modularity 

optimization for merging community because 

modularity optimization has a more waste 

considerable execution time than our merging 

method.  

Density is computed as follows: 

 
 

number of edges
Density

1 / 2
k

n n



 (5) 

The number of required edges for integration is 

presented in Equation 6.  

 1 2

2

px

z

qy

D D Dn
f m

Dn


    (6) 

where,  1 2

2

D D  is the average density of two 

communities, mz is the minimum edge number, Dp 

and Dq are the maximum and minimum density 

values, respectively, and nx and ny are the minimum 

and maximum numbers of degrees of the two 

communities. If we assume that n1 and n2 are the 

numbers of nodes in the c1 and c2 communities, 

D1 and D2 are their densities, and m1 and m2 are 

the numbers of the edges of the c1 and c2 

communities, respectively.   

  1 2min ,zm m m  (7) 

 

 
1 2

1 2

max ,

,

p

q

D D D

D min D D

 




 
 

(8) 

 

 
1 2

1 2

,

,

x

y

n min n n

n max n n

 




 
 

(9) 

The expected number of edges between the two 

communities is denoted by f and the current 

number of edges is presented by z. Therefore, we 

have: 

1 2z = number of edges between c  and c  (10) 

 1 2,d c c f z   (11) 

Based on Equation 6, the difference between the 

numbers of nodes in the two communities leads to 

a decrease in the required number of edges for 

merging, whereas the difference in density between 

the two communities leads to increasing the f value, 

which prevents integrating a dense community 

with a sparse one. The modularity optimization-

based methods struggle with the resolution limit 

challenge because modularity of two communities 

with extremely different sizes may lead to 

integrating them. The second phase of the proposed 

approach solves this problem. Furthermore, the 

monster community is another challenge of local 

algorithms like LPA and its variants, in which 

really individual communities combine with each 

other and form a monster community. This 

problem particularly happens for small 

communities. The SD-GCN method does not have 

these challenges. 

However, it has a problem for some small and 

sparse communities that is negligible in most of the 

time.  

The steps of the second phase are as follow: 

1- Difference between the current number of 

edges and the required number edged for 

integration (based on Equation 11, this 

difference is called d) is computed for any pair 

of communities and the lowest difference is 

determined. 

2- Two communities with the minimum d are 

merged; refresh the list with the updated d 

values taking into account the new generated 

community. 

3- If the list of d values is empty, the algorithm 

is finished; otherwise, go to step 2. 

 
Figure 3. Flowchart of phase 2 in the SD-GCN method. 
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Algorithm 1. First phase of the proposed method 

1 # V: set of nodes 

2 i# L[i]: label of V  

3  # B: set of boundary nodes 

4  # Best_Community (Vi): Finds the best community for node Vi  according to  Equation (4). 

5 # Initial_Update: Calls the  Best_Community  function for all nodes for label initialization  

6 Input : Adjacency list of G(V,E) as  undirect and unweighted graph 

7 Output : L (labels of nodes)  

8 { 

9             Disable random update    

10             Initial_update() 

11             Initialize_B() #Initialize the set of boundary nodes for first 

12             Enable random update 

13            While B !=  

14 = randomly selected node from B iv                        

15                        remove I from B 

16  i): update label of viL[i] = best community(v                       

17 is changed then iIf  label of v                       

18 and push them to B if became a boundary node iCheck neighbors of v                       

19            Return L 

20 } 

Algorithm 2 Second phase of the proposed method 

1 # C: Extracted community structure in first phase 

2 # d(ci, cj): Difference between the current number of edges and required number edged for integrating Ci and Cj,  Equation (11) 

3  jand C iCj): merge community C ,i# Merge(C 

4 Input: Extracted community structure in first phase  

5 Output: Final community structure 

6 { 

7 of communities s) for all pairj, CiCalculate d(C           

8           While true 

9 )j, CiSelect minimum value of d(C                     

10                      If  d < threshold 

11                                Break 

12 ) # two communities with minimum value of d is merged j, CiMerge(C                      

13                      Calculate d between new merged community and other ones 

14           Return C # final community structure (some communities are merged in C ) 

15 } 
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A flowchart of the second phase is presented in 

figure 3. In this flowchart, tr is the threshold value 

and is equal to 0 in our experiments. 

Algorithm 2 is the second phase of SD-GCN. 

 

3.3. Complexity analysis 

3.3.1. First phase 

In this phase, first, the labels of all nodes are 

updated in the Initial_Update() function whose 

time complexity is O(n). Then all the boundary 

nodes are detected and pushed to set B. The number 

of boundary nodes is less than N (total number of 

nodes), and in the community detection process, 

only a few times is possible that a node is added to 

the boundary node set. Thus the time complexity of 

the first phase is O(n).  

In terms of memory usage, all the data structures 

that are used are the adjacency list of nodes, list of 

labels, and boundary node set. Thus the memory 

usage has a linear relation with the total number of 

nodes (N). 

 

3.3.2. Second phase 

The time complexity of the second phase is 

computed as follows. We assume k as the number 

of all the detected communities by phase 1, n as the 

number of all nodes, and E as the number of all 

edges. Difference d is computed in a nested loop. 

which iterates k*k time and each iteration, density 

Therefore, the time complexity calculating the 

required number of edges for integration will be as 

follows: 

 
2

2 2

2

2 2
2

n E k n
T k k n E k n

k k k

 
      

 

 (12) 

 

After any integration, only the updated values for 

the new community and others will be refreshed, 

and recalculating all pairs is not required. The order 

of time complexity in this phase is O(kE). Clearly, 

the complexity of this phase is higher than the first 

phase, and it is recommended to be used only for 

small communities.  

Memory usage for the second phase is very little 

and the community structure from the first phase is 

considered to merge some communities if required.  

 

4. Experiments 

We evaluated SD-GCN over several real-world and 

artificial datasets. The real-world datasets include 

four small- and three large-scale ground truth 

datasets.  

4.1. Datasets 

In this section, we summarize the datasets used in 

our experiments for evaluating the proposed 

method. 

4.1.1. Small real-world datasets with ground 

truth 

We start the evaluations with real-world problems. 

Characteristics of the three utilized small dataset 

are summarized. 

 Zachary karate club network is a very 

popular network referenced in several 

methods [26]. This network includes 34 

nodes and 78 edges that represent 

associations between members of the club 

at a university in the United States. In the 

Zachary's karate club, all nodes are 

included in two communities. 

 Dolphin network is derived from 

Lusseau’s study about the behavior of 62 

bottlenose dolphins living in New 

Zealand’s Doubtful Sound [27]. The 

dolphin network includes 62 nodes and 

159 edges. The nodes represent the 62 

dolphins and each edge represents the 

interaction between the two dolphins. 

 US College Football network shows the 

games’ schedule among Division I of the 

US College Football League during the 

2000 season [3, 28]. This network consists 

of 115 teams (nodes) and 613 edges. Each 

edge connects two teams that play together 

in this league. The college football 

network is divided into 12 communities. 

This database is notated as Football in the 

following tables. 

 Political Books network is composed of 

American politics that compiled by Valdis, 

Krebs during the 2004 presidential 

election. This network involves 105 books 

(nodes) and 441 edges. Each edge connects 

two nodes whose related books are 

purchased together. In this network, all 

nodes are divided into three communities 

[17]. 

 

4.1.2. Large-scale real-world datasets with 

ground truth 

SD-GCN is also evaluated on large real-world 

networks with the ground-truth of their 

communities, provided by SNAP [29]. These 

datasets include Youtube, Amazon, and DBLP. 

Table 1 shows the details about these networks. 

Table 1. Details of large real-world networks. 

Network # of Nodes # of Edges # of Communities 

Youtube 1134890 2987624 8385 
Amazon 334863 925872 75149 

DBLP 317080 1049866 13477 
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4.1.3. real-world networks without ground truth 

For further evaluation, the proposed method is 

tested on some real-world networks. The 

community structure of these networks are not 

available for the algorithm. Table 2 shows the 

details of these networks. 

Table 2. Details of real-world networks without ground 

truth of communities. 

Network # of Nodes # of Edges 

Email 143 623 

Power grid 4941 6594 

Face book 4039 88234 

Twitter 404719 713319 

 

4.1.4. LFR benchmark network 

This network is computer-generated. We evaluate 

our method on six different LFR networks with a 

different number of nodes and parameters. Table 3 

shows the details of the LFR networks. The 

average degree is denoted by k, maxk is the 

maximum degree, minc is the minimum number of 

communities, and maxc is the maximum number of 

communities. The mixing parameter µ is changed 

between 0.1 and 0.9 to produce 54 networks. For 

larger µ values, the community structures become 

less explicit. 

Table 3. Details of LFR artificial networks. 

Name # of nodes K maxk minc maxc 

LFR1 1000 15 20 20 45 

LFR2 1000 10 30 15 40 
LFR3 2000 15 20 10 30 

LFR4 2000 10 25 15 40 

LFR5 5000 10 10 10 30 
LFR6 5000 15 20 20 40 

 

4.2. Evaluation metrics 

4.2.1. Normalized mutual information 

One of the important metrics for evaluating the 

community detection algorithms is the NMI 

measure. The NMI value in the best case is equal 

to 1, where the detected community is exactly the 

actual structure in the ground truth. A zero value 

for NMI is the situation where the algorithm detects 

the whole network as a community. 

We evaluate SD-GCN based on NMI. To commute 

the NMI value, a confusion matrix (N) is 

calculated. The rows in this matrix are the actual 

communities and the columns are the detected 

communities. Each entry Nij is the number of nodes 

in the actual community i that is present in the 

detected community j. Equation 13 presents the 

computation of NMI. 
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(13) 

where A is the actual community structure, B is the 

detected structure, ca and cb are the numbers of the 

actual and detected communities, respectively, n is 

the number of nodes in the network, Ni is the sum 

of the ith row, and Nj is the sum of the jth column in 

the matrix N. 

 

4.2.2. Modularity 

Modularity is a measure that evaluates the quality 

of a community detection approach on a network. 

Calculation of the modularity is carried out by 

Equation 14.  
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 (14) 

where, m represents the number of edges, Aij is an 

adjacency matrix, where Aij = 1 if node i is linked 

to node ;otherwise, Aij = 0. δ(ci, cj) is a piecewise 

function defined as: if ci = cj , then δ(ci, cj) = 1; 

else, δ(ci, cj) =0. 

The maximum value for the modularity is 1. The 

high-quality clustering approaches lead to discover 

better communities and achieve larger modularity 

values. Modularity compares the actual number of 

intracommunity edges with the expected number of 

edges in a random graph with the same degree 

distribution.  

 

4.3. Evaluation results 

The proposed algorithm is implemented in Python 

3. All experiments are evaluated on a laptop with 

Intel core i5 CPU (2 core 2.67 GHz) and 4 

gigabytes of RAM. 

Tables 4 and 5 present the experimental results on 

small and large networks based on the NMI values 

and for our proposed SD-GCN method and other 

compared algorithms such as G-CN , DCNR, LPA , 

LVN [30], and Infomap [31]. 

Based on the results in table 4, the first phase of 

SD-GCN, which runs in O(n), surprisingly 

achieves comparable results with other algorithms 

that run in a higher time complexity. In all small 

networks, our approach outperforms other 

compared algorithms. In large-scale data sets, SD-

GCN has the best performance in the Amazon and 

DBLP datasets. However, in the Youtube dataset, 

DCNR has the best and SD-GCN has the second 

best performance based on the NMI measure. 

Based on the results in table 4, it seems that SD-

GCN has lower modularity values than the other 

approaches; for example, for the Karate and 

Dolphins networks, some methods have higher 

values of modularity. However, it should be noted 

that the best-known modularity based on the 

ground truth of these communities is achieved by 

SD-GCN.  
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Table 4. Experiment results on small real-world networks with ground-truth communities. 

 

Table 5. Experimental results on large real-world networks with ground truth communities. 

 

Table 6. Experimental results on real-world networks without ground-truth communities. 

  

Table 7. Execution time (ms). 

 

Table 8. Number of boundary nodes. 

 

Therefore, the larger modularity values in the table 

are not the evidence of the superiority of the other 

approaches.  

The results in table 5 show that SD-GCN achieves 

an improvement according to both the NMI and the 

modularity measures. Table 6 shows the results of 

the community detection algorithms on some 

networks that do not have ground truth for 

communities. Therefore, the NMI measure cannot 

be calculated for these networks, and the methods 

are evaluated only based on the modularity metric. 

The results show that our method outperforms the 

DCNR and GCN methods for all of datasets. 

Also in the email and Power-Grid networks, the 

modularity values of SD-GCN are higher than the 

others.  

In the Twitter network, the modularity values are 

approximately the same for all methods. 

Table 7 presents the execution time of the 

experiments.  

Datasets SD-GCN DCNR G-CN LPA LVN Infomap 

NMI Q NMI Q NMI Q NMI Q NMI Q NMI Q 

Karateh 1 0.371 1 0.371 0.847 0.378 0.753 0.379 0.59 0.42 0.7 0.401 

Dolphins 1 0.379 0.7 0.392 0.552 0.473 0.74 0.412 0.48 0.53 0.5 0.527 

Football 0.927 0.601 0.89 0.568 0.893 0.524 0.89 0.468 0.88 0.6 0.92 0.6 

Polbooks 0.576 0.475 0.575 0.475 0.551 0.489 0.555 0.554 0.51 0.52 0.49 0.522 

Datasets SD-GCN DCNR G-CN LPA LVN Infomap 

NMI Q NMI Q NMI Q NMI Q NMI Q NMI Q 

Amazon 0.694 0.793 0.468 0.78 0.57 0.747 0.54 0.783 0.11 0.643 0.601 0.232 

DBLP 0.545 0.745 0.349 0.734 0.56 0.713 0.64 0.674 0.13 0.696 0.647 0.714 

Youtube 0.109 - 0.149 - 0.07 - 0.07 - 0.06 - 0.128 - 

Datasets SD-GCN DCNR G-CN LPA Infomap 

Q Q Q Q Q 

Email 0.473 0.47 0.468 0.426 0.461 

Power grid 0.581 0.52 0.492 0.581 0.572 

Facebook 0.643 0.64 0.64 0.691 0.703 

Twitter 0.5 0.488 0.50 0.50 0.496 

Datasets SD-GCN DCNR G-CN LPA Infomap 

T (ms) T (ms) T (ms) T (ms) T(ms) 

Amazon 
107388 108197 210237 578822 809408 

DBLP 
168662 169128 181155 494275 669057 

Youtube 
1614414 1622313 2310019 6075115 3518799 

Network SD-GCN DCNR GCN 

Amazon 321814 323056 669726 

DBLP 297830 298081 309849 

Youtube 1078145 1080742 1440609 
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Figure 4. Experimental results on six LFR artificial networks for the SD-GCN and G-CN algorithms. 
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The test of execution time is only performed on 

large-scale datasets because the SD-GCN, G-CN, 

and DCNR, terminated in less than 1 ms, are 

considered as small datasets. These algorithms are 

also executed in the same condition. The execution 

time is depicted by T. According to table 7, the 

running time of SD-GCN is lower than all the other 

algorithms. G-CN is a recently introduced fast 

algorithm, and DCNR has a lower running time 

compared to G-CN. SD-GCN is faster than these 

algorithms because of a faster convergence of the 

label updating method based on a novel defined 

score.  

Clearly, the lowest running time of the proposed 

approach is related to the number of label updates 

in the boundary nodes. It is clear that SD-GCN has 

the best execution time because of requiring less 

updates for the boundary nodes. 

Table 8 shows the number of updated boundary 

nodes.  Thanks to the lower number of label 

updates, we gain a lower running time. 

For further experiments, we evaluate the proposed 

method over six LFR networks. The set of test is 

performed on LFR networks with 1000, 2000, and 

5000 nodes. Figure 3 presents the experimental 

results over the LFR networks. Analysis of the 

results obtained shows that the proposed SD-GCN 

method has the best performance in µ = [0.1, 0.7]. 

When µ = 0.1, it means that the LFR network has a 

clear community. In this case, our algorithm does 

not have any wrong detection in all networks. 

When µ is greater than 0.5, the structures of the 

communities become increasingly unclear. 

However, the proposed SD-GCN method has a 

better detection than G-CN for µ > 0.5 in all the 

LFR networks, except LFR2. In LFR2, G-CN has 

a better performance for µ > 0.6. However, for µ > 

0.7 in the LFR network, it is not important due to 

their tendency to the random graphs.  

 

5. Conclusion and future work 

In this research work, we proposed a local 

community detection algorithm based on the G-CN 

algorithm called the SD-GCN algorithm. It 

includes two phases. Firstly, SD-GCN scores the 

nodes based on the degree centrality and common 

neighbor measures. Then a synchronized and 

informed updating method during the initial 

updates is used instead of the random labeling 

strategy. Therefore, SD-GCN requires a fewer 

number of the label updates, which leads to the 

stability of the results and shortening the execution 

time. In the second phase, a new measure is used to 

integrate the communities in a suitable manner. It 

can discover communities with a high quality 

regardless of the network size. On the small- and 

large-scale networks with both the clear and subtle 

community structures, SD-GCN outperforms other 

compared algorithms. This is due to the scoring and 

informed label updating method of this algorithm. 
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 یروزرسانو به دهی گرهروش جدید نمره کیبا استفاده از  یاجتماع یهاجامعه در شبکه تشخیص

  یمرز یهاهمزمان برچسب گره

 

 عسگرعلی  بویر و *زاده، اسماعیل نورانیمهدی زارع

 .دانشگاه شهید مدنی آذربایجان، تبریز، ایران، دانشکده فناوری اطلاعات و مهندسی کامپیوترمهندسی کامپیوتر، گروه  

 21/12/2019 پذیرش؛ 09/10/2019 بازنگری؛ 05/08/2019 ارسال

 چکیده:

های اخیر، افزایش کیفیت رویکردهای باشد. در سالهای پیچیده میشبکهتشخیص جوامع یک امر ضروری در کشف ساختارهای مهم و ویژگیهای بالقوه 

شتن پیچیدگی زمانی  شخیص جوامع به خاطر دا شبکهمحلی ت شبکهخطی و قابلیت بکارگیری برای  های های مقیاس بزرگ، در کانون توجه مطالعات 

 G-CN روش. وجود دارد رهیو غ یتصادفر رفتا، نیی، دقت پایثباتیروش ها از جمله ب نیدر ا یاریبس یهای، کاستحال نیبا اپیچیده قرار گرفته است. 

و  شدههای مرزی بروزرسانی فقط برچسب گره  ، در هـر تکـرار،LPA1برخلاف روش  لیکند وها است که از انتشار برچسب استفاده میشیکی از این رو

ساله موجب کاهش زمان اجرای الگوریتم می شکلاتی همچون حد تفکیکشود. این م همچنین از تعداد ، و دقت پایین را دارد. 2پذیریاما این روش نیز م

شترک به سایگان م ستفاده هم سانی ا سودمندی جهت بروزر ستفاده از ، مقاله نیادر  کند.میعنوان نمره  سا هاگره یبیترکدهی نمره کیبا ا  ینو به روزر

سب همزمان گره ها شخیص کی، یمرز یبرچ سنکرون شود ده میینام SD-GCN که روش کندیم شنهادیرا پ افتهیجامعه بهبود  روش ت که از روش 

، برچسب کند. در مرحله اولیاستفاده م هیاول یهایها در بروزرسانبرچسب گره یتصادف یفعال کردن بروزآورریغ زیها و نبرچسب گره یبروزرسان یبرا

 کی، همچنینکند. یم رسانیروزمشترک به هایهیدرجه و همسا تیرا به صورت همگام با استفاده از نمره به دست آمده بر اساس مرکز یمرز یهاگره

 سهیمقا یهاتمیبا الگور شاتیآزما است. ماژولاریتیبر  یمبتن یاز روشها ترعیسر اریکه بس شودمی فیدر مرحله دوم تعر عادغام جوام یبرا دیروش جد

صنوعو  یواقع یایدن یشبکه ها روی شده شان داده  یم شخ تیفیتواند کیم SD-GCNکه  دهدمین سا یجامعه را با تکرار کمتر صیت سبت به   رین

تر از نسبت به دیگر روشهای مقایسه شده در یک مرتبه زمانی خطی و نسبتا سریع را دقت و ثبات نیبهتر این روش، نیها بهبود بخشد. همچنتمیالگور

 باشد.ها دارا میآن

  .5های مرزیهای اجتماعی، گره، شبکه4، تشخیص جامعه3انتشار برچسبهای اجتماعی، شبکه :کلمات کلیدی

 

                                                           
1 Label Propagation Algorithm 
2 Resolution limit 
3 Label propagation 
4 community 
5 Boundary nodes 


