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Abstract

Social networks are streaming, and diverse including a wide range of edges so that they are continuously
evolved over time and are formed by the activities such as tweets and emails among the users; each activity,
adds an edge to the network graph. Despite their popularity, the dynamically and large size of most social
networks make it difficult or impossible to study the entire networks. This paper proposes a sampling algorithm
that is equipped with an evaluator unit for analyzing the edges and a set of simple fixed structure learning
automata. The evaluator unit evaluates each edge and then decides whether the edge and the corresponding
node should be added to the sample set. In the proposed algorithm, each main activity graph node is equipped
with a simple learning automaton. The developed algorithm is compared with the best current sampling
algorithm reported in the Kolmogorov-Smirnov test, and the normalized L1 and L2 distances in real networks
and synthetic networks are presented as a sequence of edges. The experimental results obtained show the
superiority of the proposed algorithm.
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1. Introduction

With a history of over seventy years, social
network analysis is an interdisciplinary subject
used in various sciences such as sociology,
economics, communication sciences, psychology,
physics, and computers. At the present time, the
social networks are another means of
communication in regular social life patterns that
are evident from the popularity of the social
networks such as Facebook [1]. Therefore, the
analysis of these networks is increasingly
important for fraud detection [2], discovering
interactive patterns among individuals, studying
structural characteristics, evolution of networks
over time. Despite their popularity and
inclusiveness, the continuing dynamics and large
size of most social networks makes it difficult or
even impossible to study the networks.

For this reason, it is necessary to sample a small
version of sub-graphs from the original network to
be used for analyzing a larger network. Sampling

algorithms should select sample sub-graphs that
have similar properties to the original graphs. In
[3], several algorithms have been proposed for
checking the quality of sampling algorithms and a
set of empirical rules for increasing sample
measurements, for estimating the original graph
[4]; nine different sampling techniques were
evaluated in retrieving the underlying structural
features of the social networks; they looked at four
of the most favorite features, including the degree,
clustering coefficient, betweenness centrality, and
closeness centrality. The authors in [5, 6] have
investigated the statistical properties of the samples
taken from scale-free networks with three sampling
algorithms: node, edge, and random walk
sampling. By sampling social networks, most
works [7-12] assume the network graph as a
moderate size and static structure, and only focus
on producing the samples that are suitable for graph
attributes. However, these assumptions are not very
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suitable for many real-world networks. For
example, social activity networks include
communications between users (such as wall posts,
tweets, and emails), while any activity between two
users results in an addition of an edge to the
network graph. For this reason, these networks are
streaming and have plenty of edges.

A streaming graph is considered to be a stream of
edges that continuously evolves over time and is
clearly too large to fit in the memory [13]. The
traditional sampling algorithms cannot be used for
streaming graphs. When the main network has too
many edges in the main memory, sampling can
only be done continuously (one edge at a time), due
to the random access to the disk incur large input /
output costs. In the static domain, a topology-based
sampling method requires a random exploration of
the neighboring nodes. (In case of sequential
access, it requires many passes over the edge
stream.). The node sampling method also requires
a random access to the node set of the network
graph. Therefore, none of these methods are
suitable for sampling such a large-scale network. In
addition, in some cases, it is necessary to analyze a
dynamic network over time for many reasons, such
as reviewing social structures over time and
discovering interactive patterns among individuals.
In these cases, the static sampling algorithms are
not suited because they are never able to update the
sampled sub-graph using edges that occur over
time. Therefore, several snapshots at different
points of time should be taken from the main
network and for each snapshot; the sampling
process must be fully restarted so that the sample is
updated from that point of time.

As a result, sampling algorithms that can consider
the complexity of the streaming domain are
necessary. There is a lot of research works on the
graph streams, [14-20]., Only a small amount of
research works [13, 21-23] focuses on sampling
representative sub-graphs from the streaming
graphs. All of these streaming sampling algorithms
run in a single pass over the stream, and take into
consideration both the stream evolution and the
massive size of the networks. An algorithm called
partially-induced edge sampling (PIES) [13] has
been tested on several real data sets, and its
superiority has been shown over other algorithms.
Although learning automata has been successful in
many dynamic environments, in the field of graph
sampling, another algorithm called fixed structure
learning automata-based sampling algorithm
(FLAS) [8], has been one of the most successful
algorithms, and to our knowledge, it is the best
streaming sampling method reported so far.

128

1.2. Motivation

For analysis of social networks, various parameters
and indicators are designed and used. The degree
of interaction of each node with other nodes, the
difference or similarity of the geographical
distribution of the nodes and their digital
distribution, the depth and severity of the effect of
each node's behavior on other nodes, the position
of each node in the center, or the extent of its
distance from the network center, the one-way or
two-way interaction of the node with other nodes,
the variety of information and communication
between the nodes, and the entropy in the social
network, are hundreds of parameters and criteria
that are considered in the analysis of social
networks. While analyzing the performance of two
well-known algorithms, we will review their
weaknesses. The PIES algorithm has two major
disadvantages: (1) independent sampling from
each streaming edges. Thus, the sampled sub-
graphs are less likely to preserve connectivity and
clustering of the original graph. Using the concept
of a partial graph induction (sampling some edges
occurring in sample nodes) can strengthen the
algorithm to improve some of the main
connections, (2) the incident nodes of the sampled
edges are replaced with random selected nodes in
the sample set. Therefore, nodes with more activity
can be replaced despite the existence of some less
activities or even isolated nodes in the sample.
Despite the PIES's drawbacks, it can act well for
sparse graphs and the performance of the algorithm
decreases while the graph becomes denser and
more clustered. This is while online social
networks tend to depict high levels of clustering,
and it also has been observed that the density of
these networks increases over time.

The FLAS algorithm, also aims to overcome the
PIES drawbacks and produce sample sub-graphs
with high quality for dense and highly clustered
graphs. Its major disadvantages are: (1) excessive
focus on degree of centrality and neglecting other
features in the main graph, (2) inability to
implement the concept of a partial graph induction.
Our proposed algorithm intent to develop a
streaming sampling algorithm based on an pre-
processing process embedded in an evaluator unit
and utilize a simple fix structure learning automata,
meanwhile maintaining the advantages of PIES and
FLAS (such as running in a single pass over the
stream and considering the stream evolution), can
overcome their drawbacks and produce sample
sub-graphs with a high quality and higher rate of
preserving main graph attributes for dense and
highly clustered graphs.
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1.3. Our contribution

Our contributions in this paper are as follows:

We propose a learning automata-based streaming
sampling algorithm that is integrated with an
evaluation unit, called Evaluator Fixed Automata
Sampling (EFAS), which runs in a single pass over
the edge stream and maintains a dynamic sample,
while the original graph is streaming. Each node of
the original activity graph is equipped with a fixed
structure learning automata and the fact that
whether its corresponding node should to be added
to the sample sub-graph or not is dependent on the
output of the unit evaluator. We propose an
evaluation unit that evaluates the edges based on
the programmable parameters. The importance of
sampling from each edge depends on the output of
the evaluator unit. Using the evaluation unit as a
pre-processing phase and then making use of the
learning automata, help our proposed algorithm
EFAS to overcome the drawbacks of the PIES [13]
and FLAS [8] algorithms (as the best streaming
sampling method reported so far) and produce
more connected sample sub-graphs with higher
rates of preserving a main graph attribute.

We conduct various experiments on the real-world
and synthetic networks. It is shown that our
proposed EFAS algorithm is better in terms of the
guality of the sampled sub-graphs, and competitive
in retaining attributes as compared to the FLAS and
PIES algorithms. The quality of the developed
algorithm is tested in terms of the Kolmogorov-
Smirnov (KS) test for degree, clustering
coefficient, k—core, and path length distributions
and also in terms of normalized L1 and L2
distances, respectively, for eigenvalues and
network values.

The results of experiments show, that EFAS
obtains an improvement of 9% for degree
distribution, 16% for clustering coefficient
distribution, 18% for k—core distribution, 5% for
path length distribution, 29% for the eigenvalues,
and 26% of network values as compared to FLAS
for an input graph G (V, E) (where V is the set of
nodes and E is the set of edges)., As before, FLAS
obtains an improvement of about 66% for degree
distribution, 69% for clustering coefficient
distribution, 64% for k—core distribution, 48% for
path length distribution, 78% for the eigenvalues,
and 76% of network values as compared to PIES.

2. Streaming graph sampling

The notion of having a static graph with a size that
can be stored in memory is often not consistent
with the reality. In fact, today we are dealing with
an activity network such as Facebook wall, Twitter
posts, and Email communications. The users
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interact repeatedly over time, the network graph is
dynamic, and the stream of edges is considered to
be continuously time-varying and include too many
edges. Therefore, in this situation, the traditional
sampling techniques are not appropriate. Due to the
importance of studying such large-scale dynamic
networks, the researchers use sampling techniques
for sampling representative sub-graphs of these
streaming graphs. Authors in [23] have utilized a
min-wise hash functions to sample almost
uniformly from the set of all edges that have been
at any time in the stream graph. The sampled edges
were used later to maintain the cascaded
summaries of the stream. The authors in [21] have
proposed a reservoir sampling method based on
min-wise hash sampling of the edges in order to
maintain the structural summaries of the
underlying graph. These structural summaries are
designed to create dynamic and efficient models
for detecting outlier in graph streams. The authors
in [22] have developed a time-based sampling
technique for sampling from activity graphs
presented as a sequence of edges ordered over time.
This method randomly selects a timestamp on the
activity timeline of the graph and samples the
nodes incident on edges that have occurred in a
time window starting from that timestamp. The
algorithm repeats this process in a streaming
fashion until the required fraction of nodes is
collected. Finally, the sample set includes the
selected nodes and any future edges that involve
these nodes. Others have compared their method
with the traditional sampling algorithms such as
node sampling and Forest Fire is sampling. The
authors in [13] have dealt with the graph sampling
problem by outlining a spectrum of computational
models for sampling algorithms, ranging from the
simplest model based on the assumption of static
graphs to the more challenging model of sampling
from graph streams. They have proposed several
sampling algorithms based on the concept of graph
induction generalized across the spectrum from
static to streaming. In static domain, they proposed
a sampling algorithm called induced edge sampling
(ES-i), which was a combination of edge-based
node sampling method and the graph induction.
The authors proved the better performance of their
proposed algorithm ES-i by comparing it with the
traditional sampling algorithms. In streaming
domain, the authors in [13] have addressed the
massive size of edges (that is too large to fit in
memory) and continuously evolving edge stream
over time, and adapted static sampling algorithms
for streaming graphs. They presented streaming
variations of node, edge, and topology-based
sampling, as well as a streaming variation in the
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algorithm ES-I, referred to as the partial-induced
edge sampling (PIES), which all run in a single
pass over the stream of edges. As reported in [13],
PIES preserves more accurately the underlying
properties of the testing datasets compared to the
other streaming algorithms. This algorithm is
biased to high-degree nodes and provides a
dynamic sample, while the original graph is
streaming. The algorithm receives as input a
streaming graph presented as an arbitrarily ordered
sequence of edges and adds the first m edges

incident to N, nodes to the sample set. Then, it

scans the rest of the stream and randomly samples
edges such that any streaming edge is sampled, if
at least one of two nodes incident to that edge does
not belong to the sample set, and otherwise, that
edge is sampled with the probability y=1. For any
sampled edge, the incident nodes replace the
former sampled nodes chosen uniformly at
random. As noted in [13], PIES achieves a better
result for graphs that are sparse and less clustered.
PIES has two major disadvantages: (1) independent
sampling from each streaming edges, (2) the
incident nodes of sampled edges are replaced with
randomly selected nodes in the sample set.
Therefore, it may that nodes with more activity are
replaced despite the existence of some less activity
or even isolated nodes in the sample. In the
streaming domain, Ghavipour et al. [8] have
referred to a streaming sample algorithm for the
social activity networks using fixed structure
learning automata (FLAS), which runs in a single
pass and overcomes the PIES drawbacks and
produces sample sub-graphs with high quality for
dense and highly clustered graphs. However, its
major disadvantages are (1) excessive focus on
degree centrality and neglecting other features in
the main graph, (2) inability to implement the
concept of a partial graph induction.

3. Learning automata

Learning automata (LA) [38, 39] is a reinforcement
learning approach. The automaton has a finite set
of actions, and it is limited to select one of them at
each step. That action as the input to the
environment and the environment react to a
reinforcement signal with a probability. Based on
these interactions between the environment and
learning automata, the learning automaton slightly
learns the optimal action, which leads to a
minimum penalty probability.

The random environment is called a non-stationary
environment, if the penalty probabilities vary over
time, and it is said to be stationary, if the penalty
probabilities are constant. The interaction between
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a learning automaton and its random environment
is shown in figure 1.

The learning automata is used in many
applications, such as graph sampling [7, 8], fuzzy
membership function optimization [40], and vertex
coloring [41]. LA can be divided into two basic
groups: if its transition and output function changes
over time, a learning automaton is called a variable
structure learning automaton (VVSLA); otherwise, it
is a fixed structure learning automaton (FSLA). An

FSLA is a quintuple (o, B,¢4,F,G), , where:

.} is the set of the actions that

the automaton chooses from.

B = {0, 1} is the automaton‘s set of inputs, where,
if p =1, it receives a penalty, and receives a reward
otherwise;

¢={d.0,,....4y | indicates its set of states,
where N is called the depth of memory of the
automaton;

F :¢x [ — ¢ illustrates the transition of the state
of the automaton on receiving an input from the
environment. £ can be stochastic.

G:¢g—>a is the output function of the
automaton. The action taken by the automaton is
determined according to its current state. This
means that the automaton selects action ¢; if it is

a={a,a,,...a

in any of the states {¢(i s D2 B }

The state ¢( is considered to be the most

i—1)N +1
internal state, and @, is considered to be the

boundary state of action ¢«; , indicating that the

automaton has the most and the least certainty in
performing the action «; , respectively.

The action chosen by the automaton is applied to
the environment, which leads to emit a
reinforcement signal . On the basis of the received
signal f3, the state of the automaton is updated, and
then a new action is chosen according to the
functions £ and (, respectively. There exist
different types of FSLA based on the state
transition function F and the output functionG . J

Loy, G,y , and Krinsky are famous types of

FSLA. All of the mentioned automatons can work
on a variety of issues, depending on their
performance, and using them, different observers
with different behaviors can be implemented.

FLAS [8] uses the G, , automaton with the best
setting of the parameters obtained from a group of

experiments (i.e. y = 0.9 and N = 4). However,
since in our proposed algorithm, only the past
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behavior of the system will be of great importance
for the current issue, there is no need for more
complex automata, and so we will use the J
automaton in the proposed algorithm with the same
settings obtained in the FLAS algorithm.

The ability of learning in a learning automaton is
determined by comparison with a pure-chance
automaton. If there is no prior information from the
environment, there is also no basis on which
actions can be selected. In such a case, the
automaton at random chooses its actions, i.e. by
pure chance. The pure-chance automaton is a
standard tool for comparison of learning
automatons behavior, such that any automaton that
is said to learn is expected to do at least better than
a pure-chance automaton. A comparison can be

made in terms of the average penalty M (t)

received by an automaton M (t) for a pure-chance
automaton is a constant value and is denoted by
M (0). For a learning automaton to do better than
a pure chance automaton, the expected value of its
average penalty E [M (t )] must be less than

M (0) at least asymptotically as t — oo.

Definition 1. A learning automaton is expedient
only if:

limE[M (t)]<M (0) (1)

tow

that means the average penalty received by an
automaton decreases over time as a result of the
increase in learning.

3.1. J automata
The J automaton, which we denote by J (K ,N )

, has KN states (i.e. : @,¢,,...,0 ) and K

actions and attempts to incorporate the past
behavior of the system in its decision rule for

choosing the sequence of actions.
Bt

Random Environment

~J

alt)
Figure 1. Learning automata and its relationship with
environment.

Learning Automata
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The states with numbers (k —1)N +1 through

KN correspond to action K . The state transition
graph of these automata for a favorable condition
and an unfavorable condition is shown in figure 2.
As mentioned earlier, the state transition function
F can be considered as a stochastic function. In
such a case, on receiving a signal from the
environment, the transition of the automaton
among its states is not deterministic. For instance,
when an action results in a reward, the automaton
may move one state towards the boundary state
with the probability y1 € [0, 1), and moves one
state towards its most internal state with the
probability 1—y1, and reverse this procedure using
probabilities y2 and 1 — y2 when an action results
in a penalty. In some situations where rewarding a
favorable action may be preferable more than
penalizing an unfavorable action, one can set y1 =
0 and y2 € [0, 1). These settings result in state
transitions of J automaton becoming deterministic
when the automaton receives a reward (f = 0), as
shown in figure 2. However, in the case of
punishment, the J automaton will transit among
its states stochastically, as shown in figure 3.
Considering yl = 0, the automaton will be
expedient for all values of y2 in interval [0, 1).

O@: [ Dy Pre1 Dun

Unfavorable Condition

g=1

&1 &2 O

P D1 P
Favorable Condition
B=0
Figure 2. The state transition graph for J automaton.

N
S )

L Y2 Y2 Yz y
-v ,
¢ Qo QO Oy QCS@
1-1 1-1, 1-v;
pg=1
Figure 3. The state transition graph for J in case of
punishment.

4. Proposed streaming sampling algorithm

In this section, a fixed structure learning automata-
based sampling algorithm, called EFAS is
presented for sampling from the streaming graphs.

The inputs are an activity graph G (V ,E)
presented as a sequence of edges in an arbitrary
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order, as well as the sample size N, and the output
of the algorithm is a representative sample
G, (V,.E;) (W |=n,)that will match the

properties of the graph G. Figure 4 describes a
global flow diagram of the proposed algorithm.
Here, we describe the EFAS algorithm on the basis
of the state transitions of the J automaton with the
stochastic transition function, as depicted in figures
2, 3. The J automaton behaves deterministically
when it is rewarded and stochastically when it
receives a penalty, i.e. Yyl =0 and y2 € [0, 1). Since
v1 is set to zero, in the rest of the paper, we ignore
it and refer to y2 as y.

Evsluater Unit
= qualify for sampling?

Add to Subgraph

l

s graph

treaming? e

Figure 4. A global flow diagram of the proposed
algorithm.

The schematic diagram and pseudo-code of the
sampling algorithm EFAS are given, respectively,
in figures 5, 6. EFAS consists of two parts. At first,
an initial sample graph is created by successively
adding the edges one by one from the beginning of

the stream to E and their incident nodes to V
until the required number of nodes is sampled (
M, |=n,). When anode V is visited for the first

time, it is equipped with a fixed structure learning
automaton LA, . Initially, the states of learning

automata corresponding to the nodes in V ; are set
to the boundary state of its current action a; (Vv
V, eV :thecurrentstate of LA, issetto ¢, i.e.

#* =¢). In fact, the automation will increase its
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depth as soon as it receives the appropriate
response from the environment, and thus learning
is done over time.

At the second part, the algorithm consecutively
processes the remaining edges of the stream and
keeps on updating the sample as long as the graph
is streaming. The decision whether to sample a
streaming edge or not is taken based on a pre-
processing result that embedded in the evaluator
unit. The evaluator unit calculates the value of the
edge depending on the automata located in its
corresponding nodes;, the process of placement of

new nodes inV_ , depends on factors such as the
higher value of the new edge., In this case, the new
edge will be added to the set E, and the new
nodes corresponding to it will also be replaced by
nodes of the V  set. Note that deleting a node from

the set V will always be penalized with the
probability y2€[0,1), in which case all the edges of
that node will also be deleted from the E set; on

the other insertion in the set, V , will also have a

definite reward. The placement operation is if the
value of the edge seen is greater than the minimum

of the edges of the E set. Most importantly in our

proposed algorithm in comparison with FLAS, by
observing each edge, learning will not be made
solely by the history of the corresponding nodes of
that edge, but the evaluator unit will evaluate the
significance of the edge and the corresponding
nodes.

4.1. Evaluation unit

4.1.1. Node evaluation

In this section, we evaluate the nodes based on the
factor the depth of learning the automata reside in;
in this way, each node will be able to find a higher
value in its internal state.

@y g =N )

Peurrent

where a; is the coefficient of importance of this
weight and N e, OF the current state of the
automata.



A streaming graph G and sample size M

v

P Sample a streaming edge

v

Assign to node a ] automaton residing in boundary state

'

Add it to subgraph status after each edge observation is rewarded (i.e.
¢ k=0¢"k+1). Each node must store its neighbor's node ID

IVs|€ns

No

sraph G streaming?

Yes
h 4

I Get a streaming edge I

No..)/ReturnSubgrapr/

is edge’s value base of
*Node Evaluation

*Structural Evaluation
*Neighborhood valuation
hetter of other edges in the subgraph

€N

At first . Two nodes from V_s whose corresponding automata’s states
are closest to their boundary states along with all the edges incident to those
nodes will be penalize and removed (i.e. p*"k=¢p"k-1).
then insert new edge to subgraph

Figure 5. The schematic diagram of FLAS algorithm when L2N-2 automaton is used.
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ALGORITHM EFAS Evaluator Fixed Automata Sampling
Inpat : Original graph G(V,E) , Sample sizen, Qutput : Sampled sub graph G,(V,, E;)

First Phase
V= 0. E,= 0. Visited =0, y =1
While |V,| < n, do
e,= Streaming Edge (v;,v;)
E;=E; U {ey}

for each node vy, incident to ey, do
if vy €V, then
Vo=V U {we)

Assign an J automaton (LA ) to vy, , X =¢p,

else
end
LAy, .visited = LAy visited U Vjyy
end
y=1
End
Second Phase
while graph is streaming do
e,= Streaming Edge (v;,v;)
min= minimum edge in E;
For each node vy incident to e, do
QX =X +1 // reward
If Evaluator (‘e,)> min then
Es = Es U {ey}

X =X +1 : /reward

for each node vy, incident to e, do

it v, €V, then
=V, U {9}
If LA, .visited NV, then E,

= E, U {( LAy.visited, (LA, .visited NV))}

Choose sampled node whose comresponding min ,penalize & delete it with all its
Incident edges and single node affer that fiom V; with y € [0,1);

end
end
else

penalize node whose corresponding e, with y € [0,1);

end

Figure 6. The pseudo-code of EFAS algorithm.

4.1.2. Neighborhood evaluation

In this section, node is evaluated and weighed in
terms of its neighborhoods structure. In that case,
the neighborhood with more valuable nodes will
give a higher weight.

Oneigne =%, (N Neighbor, ) 3)

where «, is the coefficient of importance of this
weight.
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4.1.3. Structural evaluation

In this section, and for simplicity, imagine an edge
with two nodes A and B. The node is evaluated in
terms of the sub-graph structure that has been
evaluated so far. In this way, it is examined whether
the neighboring set of A (other than node B) has
any share with the neighbors of Node B. If there is
a common node (nodes), they will find a higher
weight.

¢ =ty ({N Neighbors } (N Neighbor ) Neighbors|) ~ (4)
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where «; is the coefficient of importance of this
weight.

4.2. Describing EFAS algorithm
4.2.1. Initialing phase

When a node V, is visited for the first time, it is
equipped with a fixed structure learning automaton
(the J automaton) LA, . Initially, the states of
learning automata corresponding to the nodes in
V, are set to the boundary state of its action. This
status after each edge observation is rewarded (i.e.
¢* = ¢* +1). Each node must store its neighbor's

node ID. The state of the action of learning
automaton indicates the strength of membership of
the corresponding node.

The initial sample graph is created by successively
adding the edges one by one from the beginning of

the stream to E and their incident nodes to V
until the required number of nodes is sampled. (i.e.
V.|=n.)

Each time the algorithm is confronted with an edge
(an activity)e, :(vi WV ) if its nodes are both in

the V', set, both corresponding automatons LA,
and LA are rewarded (i.e. ¢ =¢* +1), and the
edge €, isadded to E, .

4.2.2. Updating phase

At this stage, after meeting the new edge, the
evaluator unit determines the importance of the
edge for sampling.

If the need for sampling is to be verified , in order

to preserve the constraint (i.e. |V;| = n;), two nodes

from V, whose corresponding automata’s states

are closest to their boundary states along with all
the edges incident to those nodes will be removed.
The state of each one of the learning automata of
the removed nodes receives penalty and then
changes to its boundary state. The isolated nodes in
the sub-graph will also be deleted in the same way.

If the need for sampling an edge e, :(vi WV ) is
not verified, both corresponding automatons LA,
and LA, receives penalty and moves one state
towards the most boundary state with the
probability y[0,1)¢* =¢" —1. In each stage,

when an edge e, :(vi WV ) is added to the sub-
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graph, if each Vv, or v ; has a history to a node in

V, set, that edge will be added to the sub-graph.

(Using partial graph induction can help the
algorithm to recover only some of the original
connectivity.)

Using the fixed structure learning automata in our
proposed algorithm in comparison with variable
structure learning automata (VSLA), we obtain
some advantages. The first advantage is that using
EFAS reduces the computational cost of our
algorithm. EFAS keeps an account of the number
of rewards and penalties received for each action.
It continues performing whatever action it was
earlier using as long as it is rewarded, and increase
or decrease from one state to another with the result
of the unit evaluator; the depth of learning is
dependent on the death of memory N. However,
VSLA chooses its action randomly based on the
action probability vector kept over the action set.
Therefore, it is probable that the automaton
switches to another action even though it has
received reward for doing the current action until
the selection probability of an action converges to
one. As a result, the sample sub-graph will incur
many changes, and the complexity of our algorithm
will increase. As the second advantage, different
behavioral variations of an observer can be
modeled by assigning an EFAS to each node of the
graph. EFAS plays the role of an observer, which
keeps track of the history of the activities of its
node with other nodes in order to decide whether it
is time to be included or omitted from the sample.
Depending on the type of EFAS, different
observers with different behaviors can be

implemented. For example, when L, , is used,

we expect a conservative behavior from the
observer, whereas when G, , and J are used, we

expect an optimistic behavior from the observer.
However, because in our proposed algorithm, only
the past behavior of the system will be of great
importance for the current issue, there is no need
for more complex automata, and so we will use the
J automaton in the proposed algorithm. This
possibility of modeling different behavioral
variations does not exist when using VSLA. To In
order to evaluate the performance of the proposed
EFAS algorithm, several experiments are
conducted on the real-world networks, described in
table 1.

4.3. Discussion

In this section, we will discuss the advantages of
the proposed algorithm against the two algorithms
FLAS and PIES. Similar to the FLAS algorithm
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developed in [8], the proposed EFAS algorithm
scans the edge stream in a single pass, has a
selection bias to high activity nodes, uses the
concept of graph induction, and retains a dynamic
sample while the graph G is streaming. The main
difference between EFAS and the algorithm FLAS
is in the way that the edges are sampled and their
incident nodes are added to the sample set. In other
words, the most prominent feature of EFAS is in
the evaluation unit in a pre-processing role, so that
it performs recognition and weighting of the edges
for sampling. In EFAS, unlike FLAS, the value of
an edge, does not relate solely to the observation
history of the edge that leads to biased towards high
degree nodes. In EFAS, there are three types of
evaluations for weighting, and therefore, there is
more probability to accurately retain the properties
of the original graph. EFAS attempts to overcome
their drawbacks using a simpler fixed structure
learning  automaton, which  reduces the
computational burden, and using the evaluator unit
that will evaluate the significance of the edge and
the corresponding nodes. In EFAS, the addition of
an edge to the sample and then selection of nodes

of V' to be replaced by the nodes incident on that

edge are done on the basis of the decisions made by
the evaluator unit and learning automata. In fact,
the learning automaton of each node somehow
keeps track of the history of the activities of its
node with other nodes and evaluator unit, then use
for it, and two other structural features evaluate the
significance of the edge. Once an edge is
encountered, the evaluator unit decides whether the
edge and (or) the incident nodes to be added to the
sample or not. Therefore, the probability of being
sampled of an edge depends on other edges that
have already been observed from the edge’s
incident nodes, and any edge incident on the nodes
with a high activity has a higher probability to be
sampled than the edges incident on the nodes with
a low activity. In other words, node itself, node
neighborhood, and node structure have important
roles in evaluating unit decision. In addition, for a
sampled edge, the learning automata corresponding

to the nodes inV { determine which sampled nodes
must be replaced by the incident nodes to the edge.

5. Experimental evaluation

In this section, we assess the efficiency of the
proposed EFAS algorithm on several real-world
networks. We utilize social networks from Flickr
[31], a collaboration network from CondMAT, and
a citation network from ArXiv HepPH [32].

5.1. Network statistics

The performance of a sampling algorithm is
measured by determining how well the sub-graphs
sampled by it match properties of the original
graph. The statistics that we consider in our
experiments are: degree, clustering coefficient k—
core, and path length distributions, eigenvalues,
and network values. We present a formal definition
of these properties below:

Degree distribution The degree of a node in graph
G is the number of connections or edges the node

has to other nodes. The degree distribution P (d )
is then considered to be the fraction of nodes in the
network with degree d>0. Thus, if there are N
nodes in the network with degree d, we have:

P(d):%

Clustering coefficient distribution The clustering
coefficient for a node is defined as the proportion
of links between the nodes within its neighborhood
to the number of links that could possibly exist
between them. The clustering coefficient

distribution P (c) is then calculated as:

6
P(c)=ct ,0<c<l ©

2

where N, illustrates the number of nodes in graph

®)

G with clustering coefficient ¢ ,andV ' is the set
of nodes with a degree greater than 1.

Table 1. Characteristics of datasets used

Dataset Nodes Edges

Density Avg. Path  Global Clustering

Flickr 820878 66252280
HepPH 34546 420877
CondMAT 23133 93439

6.5 0.116
4.33 0.146
5.35 0.264
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Table 2. The results of statistical test for different types of algorithms in terms of KS distance for degree distribution.

Test Results

Dataset

Mean KS Distance Difference. Sign. Mean KS Distance Difference. Sign.
(KS EFAS-KS PIES ) (KS EFAS-KS FLAS)
Flickr -0.1381 2.4367E-81 -0.1 4.8765E-61
HepPH -0.5099 3.8966E-21 -0.0722 2.7211E-26
CondMAT -0.3951 6.7916E-57 -0. 0355 3.5643E-41

Table 3. The results of statistical test for different types of algorithms in terms of KS distance for clustering coefficient
distribution.

Test Results

pataset (K“geEE:SS_ID(iSSt;?Eg) Difference. Sign. (Kl\ge]gg Ifss—llziss'[g;‘,fs) Difference. Sign.

Flickr -0.0585 3.1426E-63 -0.007 3.8396E-21

HepPH -0.4581 1.7532E-10 -0.0124 2.8739E-9
CondMAT -0.3301 2.8231E-57 -0. 0752 4.1654E-21

Table 4. The results of statistical test for different types of algorithms in terms of KS distance for path length distribution.

Test Results

Dataset : -
Mean KS Distance - - Mean KS Distance : :
(KS EFAS—KS PIES ) Sign. Difference (KS EFAS—KS FLAS) Sign. Difference
Flickr -0.3011 2.6574E-23 -0.1945 7.7345E-14
HepPH -0.3241 1.2598E-8 -0.1552 4.6299E-5
CondMAT -0.2933 4.9272E-17 -0. 1189 1.7123E-11
Table 5. KS distance for all datasets, at sampling fraction 0.2.
EFAS PIES FLAS
Dataset K K K
Deg Clus Core Path Deg Clus Core Path Deg Clus Core Path

Flickr 0.044 0.101 0.110 0.001 0.182 0.159 0.214 0.302 0.144 0.108 0.172 0.196

5 3 5 8 6 8 5 9 5 7 1 3

HeoPH 0009 0016 0204 0023 0519 0474 0664 0347 0081 0028 0169  0.178
P 1 4 1 4 0 5 1 5 3 8 7 6

CondMA 0036 0097 0061 0013 038l 0427 048 0306 0072 0172 008  0.32
T 5 4 9 4 6 5 9 7 0 6 8 3

Au 0030 0071 0125 .., 0361 0353 0453 0319 0099 0103 0142 0169
9 0 7 5 : 0 9 8 0 2 3 5 0
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Figure 7. Average KS distance and average L1, L2 distance across 3 datasets.
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K—core distribution The k—core of graph G is
defined as the largest sub-graph of G in which all
nodes have degree at least k . A node has coreness
k if it belongs to the k —core but not to

(k +1)—core . The k —core Distribution P (k)

is computed as the fraction of nodes having a
coreness kK >0:

P(k):%

where n, denotes the number of nodes in graph G
with coreness k.

U]

Path length distribution The shortest path length
denotes the fewest number of hops required to
reach from a node to another node. The path length

distribution P (h) is considered to be the fraction

of pairs of nodes in graph G with the shortest path
length h>0:

(8)

P(h):ﬁ

where N, is the number of pairs with shortest path
length h.

Eigenvalues The eigenvalue A of the adjacency
matrix A of graph G is computed as

Av =1y ©)
Where v is the eigenvector of A associated with
the eigenvalue A. Eigenvalues are known as the
basis of spectral graph analysis [13]. In the
experiments, the largest 25 eigenvalues of a graph
G are considered.

Network values Network values denotes the
distribution of the eigenvector components
corresponding to the largest eigenvalue of the
adjacency matrix A of graph G [13]. In the
experiments, the largest 100 network values of a
graph G are considered.

Table 6. L1/L2 distance for all datasets, at sampling fraction 0.2.

EFAS PIES FLAS
Dataset
Eigen Val Net Val Eigen Val Net Val Eigen Val Net Val
Flickr 0.0221 0.0421 0.5496 0.1923 0.0071 0.0013
HepPH 0.1061 0.0976 0.7151 0.3383 0.2147 0.1203
CondMAT 0.1371 0.0101 0.6743 0.3172 0.1605 0.0768
Avg. 0.0884 0.0499 0.6463 0.2826 0.1274 0.0661

5.2. Evaluation measures

In order to assess the distance between the statistic
in the original graph and that in the sampled sub-
graph, we use the following distance measures in
this paper:

Kolmogorov-Smirnov (KS) statistic The KS
statistic is commonly used for measuring the
agreement between two cumulative distribution
functions (CDFs) [46]. This statistic can be
computed as the maximum vertical distance
between two distributions:

ks :mxax‘F(x)—F’(x ) (10)

where x is the range of the random variables, F and
F denote two CDFs, and 0 <KS < 1. In this paper,
we use the KS- statistic for computing the distance
between the true distribution of the original graph
and the estimated distribution from the sampled
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sub-graph for the degree, clustering coefficient, k—
core, and path length distributions.

Normalized L. distance The normalized L,
distance (i.e. normalized manhattan distance)

computes the distance between two positive m-
dimensional real vectors [12].

! m Z|
i=1 i

p

where p and p” are, respectively, the true vector and
the estimated vector. In our experiment, we use the

normalized L, distance to measure the distance

between two vectors of eigenvalues from the
original and the sampled graphs.

Normalized L, distance The normalized L,

distance (i.e. normalized euclidean distance)
measures the distance between two vectors when
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the components of these vectors are fractions [13].
This distance measure is computed as:

Lz:p;p

(12)

In this paper, the normalized L, distance is utilized

for computing the distance between two vectors of
network values related to the original and the
sampled graphs.

5.3. Experimental results

Although all the mentioned automatons depending
on their performance can work on a variety of
issues, since in our proposed algorithm, only the
past behavior of the system will be of great
importance for the current issue, there is no need
for more complex automata, and so we will use the

J automaton in the proposed algorithm with the
same settings obtained in the FLAS algorithm (i.e.
vy = 09 and N = 4). The proposed algorithm,
considering the best setting for the parameters, is
compared with the FLAS and PIES algorithms. In
the experiments, the sampling fraction f varies
from 0.1 to 0.3 with an increment of 0.025. For
each sampling fraction, we report the average
results of 30 independent runs. In each run, we
utilize a random permutation of the edge stream as
the input to the algorithm to make the results
independent from any stream ordering. It is ensured
that the different variations in the proposed
algorithm and the FLAS and PIES algorithms use
the same streaming orders.

Table 7. The maximum number of cores for sampling fraction 0.2 versus the actual value for each set.

Dataset Real Max. core No.

Flickr 406

HepPH 30
CondMAT 25

EFSA  FLAS PIES
232 221 162
21 20 5
19 16 6

5.3.1. Experiment 1

In the first experiment, the proposed EFAS
algorithm is compared with the FLAS and PIES
algorithms according to the KS distance for degree
clustering and path length distribution. We perform
the test with a 95% confidence interval and report
the results for the sampling fraction of 0.2 in tables
2, 3, and 4. Based on the results in these tables,
EFAS has a significant performance compared to
PIES and FLAS.

5.3.2. Experiment 2

Investigate the ability of preserving the graph,
statistics is one of the most important experiments
for an algorithm in this field. Thus we assume the
statistics such as the degree, clustering coefficient,
k—core, path length distributions and report the
average KS distance over three data sets for
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different sampling fractions, and plot the average
L1 and L2 distances, respectively, for eigenvalues
and for network values in figure 7. From these
figures and the results in tables 5 and 6, we can see
the superiority of the EFAS algorithm over the
other algorithms for all the statistics. Finally, by
computing the maximum core numbers (the
maximum value of k in the k— core distribution) for
sub-graphs sampled by EFAS and comparing those
with the real maximum core number for each
dataset, we investigate the ability of the EFAS
algorithm to maintain the local density in the
sampled sub-graphs with other algorithms. As
shown in table 7, the sub-graphs that are sampled
by EFAS have a maximum number of cores very
close to the original graphs, while in FLAS and
PIES, such a phenomenon does not happen.
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5.3.3. Experiment 3

In most graph statistics, both algorithms EFAS and
FLAS have a near-closing performance. However,
we can see the impact of using the evaluator unit
on the relative improvement of EFAS to FLAS. In
this experiment, plot the distributions of six graph,
statistics for each of the three datasets. Note that for
the degree and k-core distributions, CCDF
(complementary cumulative distribution function)
is plotted, and for clustering coefficient and path
length distributions, we plot CDF. While EFAS
preserves the k—core distribution in almost all the
datasets, FLAS and PIES have different functions
either underestimated or overestimated in different
distributions. As shown in figures 8, 9, and 10,
EFAS preserves the degree distribution more
accurately than PIES and a little bit better than
FLAS. The PIES algorithm underestimates the
degree distribution for all datasets, except for
Flickr and clustering coefficient distribution for all
datasets. The FLAS algorithm captures the
clustering coefficient statistic for HepPH, and
underestimates it for CondMAT for the k—core
distribution. FLAS generally provides better results
compared to the PIES algorithm. PIES
overestimate the core structures in Flickr and
underestimate them in the other datasets. FLAS
captures the path length distribution for all the
tested graphs. However, PIES underestimates this
statistic for Flickr and overestimates it for
CondMAT and HepPH. Both EFAS and FLAS,
while, having a far better performance than PIES,
are able to accurately estimate the eigenvalues, and
especially, the network values for all test graphs.

5.3.4. Experiment V11

In Another experiment, we want to investigate the
number of isolated nodes, connected components,
and nodes 100 degrees higher (100 higher hubs) in
the sub-graphs that are sampled by the proposed
EFAS algorithm. Table 8 shows the results of the
probability of the isolated nodes as well as the ratio
of the top 100 hubs that are collected by sample
sub-graphs for three algorithms. We also compare
the number of connected components in the sub-
graphs that were sample by three algorithms in
sampling 0.2 with their actual number for each
dataset in table 9. In these tables, it can be seen that,
sub-graphs sampled by EFAS have, the less
isolated nodes and include the more ratio of the
highest degree nodes as compared to FLAS and
PIES. In EFAS, the evaluator unit has paid special
attention to the history of streaming edges, and
high activity nodes have a high probability of
counting in the sample sub-graphs, and for this
reason, EFAS generates more connected sub-
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graphs than FLAS. As reported in table 9, sub-
graphs that have been sampled by EFAS have
fewer connected components than those sampled
by FLAS and PIES, and so the graph will have
more connections.

5.3.5. Experiment VIII

The purpose of this experiment is to evaluate the
performance of EFAS, FLAS, and PIES over time,
and compare the performance of these three while
the main graph is in streaming. In the first step, an
initial sub-graph is sampled from the main graph.
Then, with a sampling fraction of 0.2, it is
examined how the quality of the sample sub-graph
changes after examining the proportions of the
edges remaining from the current. The tested ratio
varies from 0 to 30 percent. For each ratio, we
report the mean KS distance in the data sets for the
statistics degree, clustering, and path length
distribution in figure 11. It is worth mentioning,
that the ratio 0 is related to the initial sub-graph,
which has not been checked for any remaining
edges of the stream. It is clear that, the increase in
the ratio of the revised edges reduces the mean KS
distance for all the three algorithms. However this
decline is faster for EFAS, so in the same
proportion, EFAS always provides much better
results than FLAS and PIES. In the following, we
also examine the EFAS by setting a stop condition,
where the sample update continues until all the
learning automata of the node in Vs are in their
most internal state. In table 10, the average ratio of
the edges to be reviewed, and the mean KS distance
for the three graphs, statistics with EFAS with and
without the use of stopping conditions are reported.
Based on the results obtained, EFAS meets the stop
condition in the whole dataset after an average
review of 58% of the remaining edges of the
current stream and the results close to when there
is no stop condition considered in EFAS. Hence, in
order to reduce the computational cost, we can use
the EFAS sampling algorithm with stopping
conditions and observe the results close to EFAS
without stopping conditions.

5.3.6. Experiment IX

Downward bias in the degree distribution is one of
the challenges in sub-graphs sampled from scale-
free networks; in this experiment, we validate how
the evaluator unit can offset that. We create two
synthetic networks, called S-W1, and S-W2 as
small networks that are based on the Watts-
Stroggatz model [33], and two latter networks,
called S-F1 and S-F2 are scale-free networks based
on the Barabasi-Albert model [33]. Table 11
provides information about these synthetic
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networks. One of the advantages of our proposed
algorithm is to consider the high degree bias in the
evaluator unit and use it more in order to preserve
more accurately the degree distribution of the
scale-free networks. For a sampling fraction of 0.2,
we plot the degree distribution for each synthetic
network (Figure 12). We can see the effect of using

that in the degree distribution. Although it is more
difficult to achieve degree distribution in small-
world networks, EFAS also has a better
performance in these networks. As expected, EFAS
is always better than FLAS and PIES due to the use
of the evaluator unit, especially in scale-free
networks.

Table 8. The probability of isolated nodes and the proportion of hubs.

Isolated Node

Hub (Top 100)

Dataset
EFAS FLAS PIES EFAS FLAS PIES
Flickr 0.062 0.1301 0.1623 0.77 0.59 0.20
HepPH 0.005 0.0424 0.0970 0.91 0.72 0.68
CondMAT 0.0015 0.1074 0.1514 0.84 0.82 0.55
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Figure 11. The mean KS distance in all data sets for different edges, in the sampling fraction of 0.2.
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Figure 12. Impact of high degree bias in sampled degree distribution for different types of synthetic networks in sampling

Table 9. The number of connected components for the sampling fraction of 0.2 compared to its actual value for each dataset.

Dataset Real Connected Components EFAS FLAS PIES

Flickr 1 782 919 21668
HepPH 61 14 27 316
CondMAT 567 113 127 340

Table 10. Average reviewing proportion and KS distance across all datasets for EFAS, in the sampling fraction of 0.2

EFSA % Remaining Edges Deg. Clust. Path
Without stop condition 100 0.0300 0.0717  0.012
With stop condition 58 0.1267  0.1056  0.1498
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Table 11. Characteristics and parameters of synthetic networks

Graph  Nodes  Edges Density ~ Parameters
S-w1 30000 90000 2E-4 K=6, P=0.2
S-W2 20000 100000 5E-4 K=10, P=0.2
S-F1 30000 149987  3.3E-4 m0=10, m=5
S-F2 20000 99985 4.9E-4 m0=6, m=5

6. Conclusion

In this paper, we addressed the problem of
sampling from activity networks in which the
stream of edges continuously evolves over time.
We proposed EFAS, a new streaming sampling
algorithm based on a simpler fixed structure
learning automata, which overcomes the PIES’s
drawbacks and an evaluator unit that evaluates
nodes based on a variety of aspects that overcomes
the FLAS’s drawback, while maintaining its
advantages. As a result, EFAS not only provides
good results on sparse, less clustered graphs, but
also can produce high quality sub-graphs for dense
and highly clustered graphs.
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