
1 
 

 
Journal of AI and Data Mining  

Vol 8, No 1, 2020, 127-148.                                                                                                                            DOI: 10.22044/JADM.2019.7145.1842 

  

Using an Evaluator Fixed Structure Learning Automata in Sampling of 

Social Networks  

 
S. Roohollahi1, A. Khatibi Bardsiri2* and F. Keynia3 

 
1. Computer Engineering Department, Kerman Branch, Islamic Azad University, Kerman, Iran. 
2. Computer Engineering Department, Kerman Branch, Islamic Azad University, Kerman, Iran. 

3. Department of Energy Management and Optimization, Institute of Science and High Technology and Environmental Sciences; Graduate 

University of Advanced Technology, Kerman, Iran. 
 

Received 06 June 2018; Revised 16 April 2019; Accepted 06 October 2019 

*Corresponding author: a.khatibi@srbiau.ac.ir (AK. Bardsiri). 

 

Abstract 

Social networks are streaming, and diverse including a wide range of edges so that they are continuously 

evolved over time and are formed by the activities such as tweets and emails among the users; each activity, 

adds an edge to the network graph. Despite their popularity, the dynamically and large size of most social 

networks make it difficult or impossible to study the entire networks. This paper proposes a sampling algorithm 

that is equipped with an evaluator unit for analyzing the edges and a set of simple fixed structure learning 

automata. The evaluator unit evaluates each edge and then decides whether the edge and the corresponding 

node should be added to the sample set. In the proposed algorithm, each main activity graph node is equipped 

with a simple learning automaton. The developed algorithm is compared with the best current sampling 

algorithm reported in the Kolmogorov-Smirnov test, and the normalized L1 and L2 distances in real networks 

and synthetic networks are presented as a sequence of edges. The experimental results obtained show the 

superiority of the proposed algorithm. 

 

Keywords: Evaluator Unit, Social networks, Network Sampling, Streaming Sampling, Fix Learning Automata. 

1. Introduction 
With a history of over seventy years, social 

network analysis is an interdisciplinary subject 

used in various sciences such as sociology, 

economics, communication sciences, psychology, 

physics, and computers. At the present time, the 

social networks are another means of 

communication in regular social life patterns that 

are evident from the popularity of the social 

networks such as Facebook [1]. Therefore, the 

analysis of these networks is increasingly 

important for fraud detection [2], discovering 

interactive patterns among individuals, studying 

structural characteristics, evolution of networks 

over time. Despite their popularity and 

inclusiveness, the continuing dynamics and large 

size of most social networks makes it difficult or 

even impossible to study the networks. 

For this reason, it is necessary to sample a small 

version of sub-graphs from the original network to 

be used for analyzing a larger network. Sampling 

algorithms should select sample sub-graphs that 

have similar properties to the original graphs. In 

[3], several algorithms have been proposed for 

checking the quality of sampling algorithms and a 

set of empirical rules for increasing sample 

measurements, for estimating the original graph 

[4]; nine different sampling techniques were 

evaluated in retrieving the underlying structural 

features of the social networks; they looked at four 

of the most favorite features, including the degree, 

clustering coefficient, betweenness centrality, and 

closeness centrality. The authors in [5, 6] have 

investigated the statistical properties of the samples 

taken from scale-free networks with three sampling 

algorithms: node, edge, and random walk 

sampling. By sampling social networks, most 

works [7-12] assume the network graph as a 

moderate size and static structure, and only focus 

on producing the samples that are suitable for graph 

attributes. However, these assumptions are not very 

http://dx.doi.org/10.22044/jadm.2018.6311.1746


Bardsiri et al. / Journal of AI and Data Mining, Vol 8, No 1, 2020. 

 

128 

 

suitable for many real-world networks. For 

example, social activity networks include 

communications between users (such as wall posts, 

tweets, and emails), while any activity between two 

users results in an addition of an edge to the 

network graph. For this reason, these networks are 

streaming and have plenty of edges. 

A streaming graph is considered to be a stream of 

edges that continuously evolves over time and is 

clearly too large to fit in the memory [13]. The 

traditional sampling algorithms cannot be used for 

streaming graphs. When the main network has too 

many edges in the main memory, sampling can 

only be done continuously (one edge at a time), due 

to the random access to the disk incur large input / 

output costs. In the static domain, a topology-based 

sampling method requires a random exploration of 

the neighboring nodes. (In case of sequential 

access, it requires many passes over the edge 

stream.). The node sampling method also requires 

a random access to the node set of the network 

graph. Therefore, none of these methods are 

suitable for sampling such a large-scale network. In 

addition, in some cases, it is necessary to analyze a 

dynamic network over time for many reasons, such 

as reviewing social structures over time and 

discovering interactive patterns among individuals. 

In these cases, the static sampling algorithms are 

not suited because they are never able to update the 

sampled sub-graph using edges that occur over 

time. Therefore, several snapshots at different 

points of time should be taken from the main 

network and for each snapshot; the sampling 

process must be fully restarted so that the sample is 

updated from that point of time. 

As a result, sampling algorithms that can consider 

the complexity of the streaming domain are 

necessary. There is a lot of research works on the 

graph streams, [14-20]., Only a small amount of 

research works [13, 21-23] focuses on sampling 

representative sub-graphs from the streaming 

graphs. All of these streaming sampling algorithms 

run in a single pass over the stream, and take into 

consideration both the stream evolution and the 

massive size of the networks. An algorithm called 

partially-induced edge sampling (PIES) [13] has 

been tested on several real data sets, and its 

superiority has been shown over other algorithms. 

Although learning automata has been successful in 

many dynamic environments, in the field of graph 

sampling, another algorithm called fixed structure 

learning automata-based sampling algorithm 

(FLAS) [8], has been one of the most successful 

algorithms, and to our knowledge, it is the best 

streaming sampling method reported so far. 

1.2. Motivation 

For analysis of social networks, various parameters 

and indicators are designed and used. The degree 

of interaction of each node with other nodes, the 

difference or similarity of the geographical 

distribution of the nodes and their digital 

distribution, the depth and severity of the effect of 

each node's behavior on other nodes, the position 

of each node in the center, or the extent of its 

distance from the network center, the one-way or 

two-way interaction of the node with other nodes, 

the variety of information and communication 

between the nodes, and the entropy in the social 

network, are hundreds of parameters and criteria 

that are considered in the analysis of social 

networks. While analyzing the performance of two 

well-known algorithms, we will review their 

weaknesses. The PIES algorithm has two major 

disadvantages: (1) independent sampling from 

each streaming edges. Thus, the sampled sub-

graphs are less likely to preserve connectivity and 

clustering of the original graph. Using the concept 

of a partial graph induction (sampling some edges 

occurring in sample nodes) can strengthen the 

algorithm to improve some of the main 

connections, (2) the incident nodes of the sampled 

edges are replaced with random selected nodes in 

the sample set. Therefore, nodes with more activity 

can be replaced despite the existence of some less 

activities or even isolated nodes in the sample. 

Despite the PIES's drawbacks, it can act well for 

sparse graphs and the performance of the algorithm 

decreases while the graph becomes denser and 

more clustered. This is while online social 

networks tend to depict high levels of clustering, 

and it also has been observed that the density of 

these networks increases over time. 

The FLAS algorithm, also aims to overcome the 

PIES drawbacks and produce sample sub-graphs 

with high quality for dense and highly clustered 

graphs. Its major disadvantages are: (1) excessive 

focus on degree of centrality and neglecting other 

features in the main graph, (2) inability to 

implement the concept of a partial graph induction.  

Our proposed algorithm intent to develop a 

streaming sampling algorithm based on an pre-

processing process embedded in an evaluator unit 

and utilize a simple fix structure learning automata, 

meanwhile maintaining the advantages of PIES and 

FLAS (such as running in a single pass over the 

stream and considering the stream evolution), can 

overcome their drawbacks and produce sample 

sub-graphs with a high quality and higher rate of 

preserving main graph attributes for dense and 

highly clustered graphs. 



Bardsiri et al. / Journal of AI and Data Mining, Vol 8, No 1, 2020. 

 

129 

 

1.3. Our contribution 

Our contributions in this paper are as follows: 

We propose a learning automata-based streaming 

sampling algorithm that is integrated with an 

evaluation unit, called Evaluator Fixed Automata 

Sampling (EFAS), which runs in a single pass over 

the edge stream and maintains a dynamic sample, 

while the original graph is streaming. Each node of 

the original activity graph is equipped with a fixed 

structure learning automata and the fact that 

whether its corresponding node should to be added 

to the sample sub-graph or not is dependent on the 

output of the unit evaluator. We propose an 

evaluation unit that evaluates the edges based on 

the programmable parameters. The importance of 

sampling from each edge depends on the output of 

the evaluator unit.  Using the evaluation unit as a 

pre-processing phase and then making use of the 

learning automata, help our proposed algorithm 

EFAS to overcome the drawbacks of the PIES [13] 

and FLAS [8] algorithms (as the best streaming 

sampling method reported so far) and produce 

more connected sample sub-graphs with higher 

rates of preserving a main graph attribute.  

We conduct various experiments on the real-world 

and synthetic networks. It is shown that our 

proposed EFAS algorithm is better in terms of the 

quality of the sampled sub-graphs, and competitive 

in retaining attributes as compared to the FLAS and 

PIES algorithms. The quality of the developed 

algorithm is tested in terms of the Kolmogorov-

Smirnov (KS) test for degree, clustering 

coefficient, k–core, and path length distributions 

and also in terms of normalized L1 and L2 

distances, respectively, for eigenvalues and 

network values. 

The results of experiments show, that EFAS 

obtains an improvement of 9% for degree 

distribution, 16% for clustering coefficient 

distribution, 18% for k–core distribution, 5% for 

path length distribution, 29% for the eigenvalues, 

and 26% of network values as compared to FLAS 

for an input graph G (V, E) (where V is the set of 

nodes and E is the set of edges)., As before, FLAS 

obtains an improvement of about 66% for degree 

distribution, 69% for clustering coefficient 

distribution, 64% for k–core distribution, 48% for 

path length distribution, 78% for the eigenvalues, 

and 76% of network values as compared to PIES. 

2. Streaming graph sampling  

The notion of having a static graph with a size that 

can be stored in memory is often not consistent 

with the reality. In fact, today we are dealing with 

an activity network such as Facebook wall, Twitter 

posts, and Email communications. The users 

interact repeatedly over time, the network graph is 

dynamic, and the stream of edges is considered to 

be continuously time-varying and include too many 

edges. Therefore, in this situation, the traditional 

sampling techniques are not appropriate. Due to the 

importance of studying such large-scale dynamic 

networks, the researchers use sampling techniques 

for sampling representative sub-graphs of these 

streaming graphs. Authors in [23] have utilized a 

min-wise hash functions to sample almost 

uniformly from the set of all edges that have been 

at any time in the stream graph. The sampled edges 

were used later to maintain the cascaded 

summaries of the stream. The authors in [21] have 

proposed a reservoir sampling method based on 

min-wise hash sampling of the edges in order to 

maintain the structural summaries of the 

underlying graph. These structural summaries are 

designed to create dynamic and efficient models 

for detecting outlier in graph streams. The authors 

in [22] have developed a time-based sampling 

technique for sampling from activity graphs 

presented as a sequence of edges ordered over time. 

This method randomly selects a timestamp on the 

activity timeline of the graph and samples the 

nodes incident on edges that have occurred in a 

time window starting from that timestamp. The 

algorithm repeats this process in a streaming 

fashion until the required fraction of nodes is 

collected. Finally, the sample set includes the 

selected nodes and any future edges that involve 

these nodes. Others have compared their method 

with the traditional sampling algorithms such as 

node sampling and Forest Fire is sampling. The 

authors in [13] have dealt with the graph sampling 

problem by outlining a spectrum of computational 

models for sampling algorithms, ranging from the 

simplest model based on the assumption of static 

graphs to the more challenging model of sampling 

from graph streams. They have proposed several 

sampling algorithms based on the concept of graph 

induction generalized across the spectrum from 

static to streaming. In static domain, they proposed 

a sampling algorithm called induced edge sampling 

(ES-i), which was a combination of edge-based 

node sampling method and the graph induction. 

The authors proved the better performance of their 

proposed algorithm ES-i by comparing it with the 

traditional sampling algorithms. In streaming 

domain, the authors in [13] have addressed the 

massive size of edges (that is too large to fit in 

memory) and continuously evolving edge stream 

over time, and adapted static sampling algorithms 

for streaming graphs. They presented streaming 

variations of node, edge, and topology-based 

sampling, as well as a streaming variation in the 



Bardsiri et al. / Journal of AI and Data Mining, Vol 8, No 1, 2020. 

 

130 

 

algorithm ES-I, referred to as the partial-induced 

edge sampling (PIES), which all run in a single 

pass over the stream of edges. As reported in [13], 

PIES preserves more accurately the underlying 

properties of the testing datasets compared to the 

other streaming algorithms. This algorithm is 

biased to high-degree nodes and provides a 

dynamic sample, while the original graph is 

streaming. The algorithm receives as input a 

streaming graph presented as an arbitrarily ordered 

sequence of edges and adds the first m edges 

incident to sn  nodes to the sample set. Then, it 

scans the rest of the stream and randomly samples 

edges such that any streaming edge is sampled, if 

at least one of two nodes incident to that edge does 

not belong to the sample set, and otherwise, that 

edge is sampled with the probability γ=1. For any 

sampled edge, the incident nodes replace the 

former sampled nodes chosen uniformly at 

random. As noted in [13], PIES achieves a better 

result for graphs that are sparse and less clustered. 

PIES has two major disadvantages: (1) independent 

sampling from each streaming edges, (2) the 

incident nodes of sampled edges are replaced with 

randomly selected nodes in the sample set. 

Therefore, it may that nodes with more activity are 

replaced despite the existence of some less activity 

or even isolated nodes in the sample. In the 

streaming domain, Ghavipour et al. [8] have 

referred to a streaming sample algorithm for the 

social activity networks using fixed structure 

learning automata (FLAS), which runs in a single 

pass and overcomes the PIES drawbacks and 

produces sample sub-graphs with high quality for 

dense and highly clustered graphs. However, its 

major disadvantages are (1) excessive focus on 

degree centrality and neglecting other features in 

the main graph, (2) inability to implement the 

concept of a partial graph induction. 

3. Learning automata 

Learning automata (LA) [38, 39] is a reinforcement 

learning approach. The automaton has a finite set 

of actions, and it is limited to select one of them at 

each step. That action as the input to the 

environment and the environment react to a 

reinforcement signal with a probability. Based on 

these interactions between the environment and 

learning automata, the learning automaton slightly 

learns the optimal action, which leads to a 

minimum penalty probability. 

The random environment is called a non-stationary 

environment, if the penalty probabilities vary over 

time, and it is said to be stationary, if the penalty 

probabilities are constant. The interaction between 

a learning automaton and its random environment 

is shown in figure 1. 

The learning automata is used in many 

applications, such as graph sampling [7, 8], fuzzy 

membership function optimization [40], and vertex 

coloring [41]. LA can be divided into two basic 

groups: if its transition and output function changes 

over time, a learning automaton is called a variable 

structure learning automaton (VSLA); otherwise, it 

is a fixed structure learning automaton (FSLA). An 

FSLA is a quintuple , , ,F,G ,   , where: 

 1 2, , , r      is the set of the actions that 

the automaton chooses from. 

β = {0, 1} is the automaton‘s set of inputs, where, 

if β = 1, it receives a penalty, and receives a reward 

otherwise; 

 1 2, , , rN      indicates its set of states, 

where N is called the depth of memory of the 

automaton;  

F :         illustrates the transition of the state 

of the automaton on receiving an input from the 

environment. £ can be stochastic.  

G :   is the output function of the 

automaton. The action taken by the automaton is 

determined according to its current state. This 

means that the automaton selects action i  if it is 

in any of the states     1 1 1 2
, , , iNi N i N

  
   

 . 

The state  1 1i N


 
 is considered to be the most 

internal state, and iN  is considered to be the 

boundary state of action i , indicating that the 

automaton has the most and the least certainty in 

performing the action i , respectively.  

The action chosen by the automaton is applied to 

the environment, which leads to emit a 

reinforcement signal β. On the basis of the received 

signal β, the state of the automaton is updated, and 

then a new action is chosen according to the 

functions £ and ζ, respectively. There exist 

different types of FSLA based on the state 

transition function F and the output functionG . J  

,
2 ,2  NL

,
 

2 ,2NG   and Krinsky are famous types of 

FSLA. All of the mentioned automatons can work 

on a variety of issues, depending on their 

performance, and using them, different observers 

with different behaviors can be implemented. 

FLAS [8] uses the 
2 ,2NG  automaton with the best 

setting of the parameters obtained from a group of 

experiments (i.e. γ = 0.9 and N = 4). However, 

since in our proposed algorithm, only the past 



Bardsiri et al. / Journal of AI and Data Mining, Vol 8, No 1, 2020. 

 

131 

 

behavior of the system will be of great importance 

for the current issue, there is no need for more 

complex automata, and so we will use the  J  

automaton in the proposed algorithm with the same 

settings obtained in the FLAS algorithm. 

The ability of learning in a learning automaton is 

determined by comparison with a pure-chance 

automaton. If there is no prior information from the 

environment, there is also no basis on which 

actions can be selected. In such a case, the 

automaton at random chooses its actions, i.e. by 

pure chance. The pure-chance automaton is a 

standard tool for comparison of learning 

automatons behavior, such that any automaton that 

is said to learn is expected to do at least better than 

a pure-chance automaton. A comparison can be 

made in terms of the average penalty  M t  

received by an automaton  M t  for a pure-chance 

automaton is a constant value and is denoted by 

 0M . For a learning automaton to do better than 

a pure chance automaton, the expected value of its 

average penalty  E M t    must be less than 

 0M  at least asymptotically as t → ∞. 

Definition 1. A learning automaton is expedient 

only if: 

    
 

lim 0  
t

E M t M


     
(1) 

that means the average penalty received by an 

automaton decreases over time as a result of the 

increase in learning. 

3.1. J  automata 

The J  automaton, which we denote by  ,J K N

, has KN  states (i.e. : 1 2, , , KN   ) and K  

actions and attempts to incorporate the past 

behavior of the system in its decision rule for 

choosing the sequence of actions. 

 
Figure 1.  Learning automata and its relationship with 

environment. 

The states with numbers  1 1k N   through 

KN  correspond to action K . The state transition 

graph of these automata for a favorable condition 

and an unfavorable condition is shown in figure 2. 

As mentioned earlier, the state transition function  

F  can be considered as a stochastic function. In 

such a case, on receiving a signal from the 

environment, the transition of the automaton 

among its states is not deterministic. For instance, 

when an action results in a reward, the automaton 

may move one state towards the boundary state 

with the probability γ1 ∈ [0, 1), and moves one 

state towards its most internal state with the 

probability 1−γ1, and reverse this procedure using 

probabilities γ2 and 1 − γ2 when an action results 

in a penalty. In some situations where rewarding a 

favorable action may be preferable more than 

penalizing an unfavorable action, one can set γ1 = 

0 and γ2 ∈ [0, 1). These settings result in state 

transitions of J automaton becoming deterministic 

when the automaton receives a reward (β = 0), as 

shown in figure 2. However, in the case of 

punishment, the J  automaton will transit among 

its states stochastically, as shown in figure 3. 

Considering γ1 = 0, the automaton will be 

expedient for all values of γ2 in interval [0, 1). 

 
Figure 2.  The state transition graph for J automaton. 

 

 

 
Figure 3.  The state transition graph for J in case of 

punishment. 

4. Proposed streaming sampling algorithm  

In this section, a fixed structure learning automata-

based sampling algorithm, called EFAS is 

presented for sampling from the streaming graphs. 

The inputs are an activity graph  ,G V E

presented as a sequence of edges in an arbitrary 



Bardsiri et al. / Journal of AI and Data Mining, Vol 8, No 1, 2020. 

 

132 

 

order, as well as the sample size sn , and the output 

of the algorithm is a representative sample 

 ,s s sG V E   s sV n that will match the 

properties of the graph G. Figure 4 describes a 

global flow diagram of the proposed algorithm.  

Here, we describe the EFAS algorithm on the basis 

of the state transitions of the J  automaton with the 

stochastic transition function, as depicted in figures 

2, 3. The J  automaton behaves deterministically 

when it is rewarded and stochastically when it 

receives a penalty, i.e. γ1 = 0 and γ2 ∈ [0, 1).  Since 

γ1 is set to zero, in the rest of the paper, we ignore 

it and refer to γ2 as γ.  

 
Figure 4.  A global flow diagram of the proposed 

algorithm. 

The schematic diagram and pseudo-code of the 

sampling algorithm EFAS are given, respectively, 

in figures 5, 6. EFAS consists of two parts. At first, 

an initial sample graph is created by successively 

adding the edges one by one from the beginning of 

the stream to sE  and their incident nodes to sV  

until the required number of nodes is sampled (

s sV n ). When a node kV  is visited for the first 

time, it is equipped with a fixed structure learning 

automaton   kLA . Initially, the states of learning 

automata corresponding to the nodes in sV  are set 

to the boundary state of its current action 1   (∀

kV ∈ sV : the current state of  kLA  is set to 1 , i.e. 

1

k  ). In fact, the automation will increase its 

depth as soon as it receives the appropriate 

response from the environment, and thus learning 

is done over time. 

At the second part, the algorithm consecutively 

processes the remaining edges of the stream and 

keeps on updating the sample as long as the graph 

is streaming.  The decision whether to sample a 

streaming edge or not is taken based on a pre-

processing result that embedded in the evaluator 

unit. The evaluator unit calculates the value of the 

edge depending on the automata located in its 

corresponding nodes;, the process of placement of 

new nodes in sV    , depends on factors such as the 

higher value of the new edge., In this case, the new 

edge will be added to the set sE , and the new 

nodes corresponding to it will also be replaced by 

nodes of the sV  set. Note that deleting a node from 

the set sV will always be penalized with the 

probability γ2∈[0,1), in which case all the edges of 

that node will also be deleted from the  sE set; on 

the other insertion in the set, sV will also have a 

definite reward. The placement operation is if the 

value of the edge seen is greater than the minimum 

of the edges of the  sE  set. Most importantly in our 

proposed algorithm in comparison with FLAS, by 

observing each edge, learning will not be made 

solely by the history of the corresponding nodes of 

that edge, but the evaluator unit will evaluate the 

significance of the edge and the corresponding 

nodes. 

4.1. Evaluation unit 

4.1.1. Node evaluation  

In this section, we evaluate the nodes based on the 

factor the depth of learning the automata reside in; 

in this way, each node will be able to find a higher 

value in its internal state. 

. 1  currentN E N                (2) 

where 1  is the coefficient of importance of this 

weight and  current
N  of the current state of the 

automata. 

 



133 
 

 
Figure 5. The schematic diagram of FLAS algorithm when L2N−2 automaton is used. 



Bardsiri et al. / Journal of AI and Data Mining, Vol 8, No 1, 2020. 

 

134 

 

 
Figure 6. The pseudo-code of EFAS algorithm. 

 

4.1.2. Neighborhood evaluation 

In this section, node is evaluated and weighed in 

terms of its neighborhoods structure. In that case, 

the neighborhood with more valuable nodes will 

give a higher weight. 

. 2  ( . )
currentNeigh E N Neighbor       (3) 

where 2  is the coefficient of importance of this 

weight. 

 

4.1.3. Structural evaluation 

In this section, and for simplicity, imagine an edge 

with two nodes A and B. The node is evaluated in 

terms of the sub-graph structure that has been 

evaluated so far. In this way, it is examined whether 

the neighboring set of A (other than node B) has 

any share with the neighbors of Node B. If there is 

a common node (nodes), they will find a higher 

weight. 

  . 3  ({ . } . . )S E N Neighbors N Neighbor Neighbors    (4) 



Bardsiri et al. / Journal of AI and Data Mining, Vol 8, No 1, 2020. 

 

135 

 

where 3  is the coefficient of importance of this 

weight.  

 

4.2. Describing EFAS algorithm  

4.2.1. Initialing phase 

When a node kv  is visited for the first time, it is 

equipped with a fixed structure learning automaton 

(the J  automaton)    kLA . Initially, the states of 

learning automata corresponding to the nodes in 

sV  are set to the boundary state of its action. This 

status after each edge observation is rewarded (i.e.

1k k   ). Each node must store its neighbor's 

node ID. The state of the action of learning 

automaton indicates the strength of membership of 

the corresponding node. 

The initial sample graph is created by successively 

adding the edges one by one from the beginning of 

the stream to sE  and their incident nodes to sV  

until the required number of nodes is sampled. (i.e.

s sV n ). 

Each time the algorithm is confronted with an edge 

(an activity)  ,t i je v v , if its nodes are both in 

the sV  set, both corresponding automatons iLA  

and jLA  are rewarded (i.e. 1k k   ), and the 

edge te  is added to sE . 

4.2.2. Updating phase 

At this stage, after meeting the new edge, the 

evaluator unit determines the importance of the 

edge for sampling. 

If the need for sampling is to be verified , in order 

to preserve the constraint (i.e. s sV n ), two nodes 

from sV  whose corresponding automata’s states 

are closest to their boundary states along with all 

the edges incident to those nodes will be removed. 

The state of each one of the learning automata of 

the removed nodes receives penalty and then 

changes to its boundary state. The isolated nodes in 

the sub-graph will also be deleted in the same way. 

If the need for sampling an edge  ,t i je v v  is 

not verified, both corresponding automatons iLA  

and jLA receives penalty and moves one state 

towards the most boundary state with the 

probability  γ 0,1 1k k    . In each stage, 

when an  edge  ,t i je v v   is added to the sub-

graph, if each  iv  or jv  has a history to a node in 

sV  set, that edge will be added to the sub-graph. 

(Using partial graph induction can help the 

algorithm to recover only some of the original 

connectivity.) 

Using the fixed structure learning automata in our 

proposed algorithm in comparison with variable 

structure learning automata (VSLA), we obtain 

some advantages. The first advantage is that using 

EFAS reduces the computational cost of our 

algorithm. EFAS keeps an account of the number 

of rewards and penalties received for each action.  

It continues performing whatever action it was 

earlier using as long as it is rewarded, and increase 

or decrease from one state to another with the result 

of the unit evaluator; the depth of learning is 

dependent on the death of memory N. However, 

VSLA chooses its action randomly based on the 

action probability vector kept over the action set. 

Therefore, it is probable that the automaton 

switches to another action even though it has 

received reward for doing the current action until 

the selection probability of an action converges to 

one. As a result, the sample sub-graph will incur 

many changes, and the complexity of our algorithm 

will increase. As the second advantage, different 

behavioral variations of an observer can be 

modeled by assigning an EFAS to each node of the 

graph. EFAS plays the role of an observer, which 

keeps track of the history of the activities of its 

node with other nodes in order to decide whether it 

is time to be included or omitted from the sample. 

Depending on the type of EFAS, different 

observers with different behaviors can be 

implemented. For example, when 2 ,2NL  is used, 

we expect a conservative behavior from the 

observer, whereas when 
2N,2G  and J  are used, we 

expect an optimistic behavior from the observer. 

However, because in our proposed algorithm, only 

the past behavior of the system will be of great 

importance for the current issue, there is no need 

for more complex automata, and so we will use the 

J  automaton in the proposed algorithm. This 

possibility of modeling different behavioral 

variations does not exist when using VSLA. To In 

order to evaluate the performance of the proposed 

EFAS algorithm, several experiments are 

conducted on the real-world networks, described in 

table 1.  

 

4.3. Discussion 

In this section, we will discuss the advantages of 

the proposed algorithm against the two algorithms 

FLAS and PIES. Similar to the FLAS algorithm 



Bardsiri et al. / Journal of AI and Data Mining, Vol 8, No 1, 2020. 

 

136 

 

developed in [8], the proposed EFAS algorithm 

scans the edge stream in a single pass, has a 

selection bias to high activity nodes, uses the 

concept of graph induction, and retains a dynamic 

sample while the graph G is streaming. The main 

difference between EFAS and the algorithm FLAS 

is in the way that the edges are sampled and their 

incident nodes are added to the sample set. In other 

words, the most prominent feature of EFAS is in 

the evaluation unit in a pre-processing role, so that 

it performs recognition and weighting of the edges 

for sampling. In EFAS, unlike FLAS, the value of 

an edge, does not relate solely to the observation 

history of the edge that leads to biased towards high 

degree nodes. In EFAS, there are three types of 

evaluations for weighting, and therefore, there is 

more probability to accurately retain the properties 

of the original graph. EFAS attempts to overcome 

their drawbacks using a simpler fixed structure 

learning automaton, which reduces the 

computational burden, and using the evaluator unit 

that will evaluate the significance of the edge and 

the corresponding nodes. In EFAS, the addition of 

an edge to the sample and then selection of nodes 

of sV  to be replaced by the nodes incident on that 

edge are done on the basis of the decisions made by 

the evaluator unit and learning automata. In fact, 

the learning automaton of each node somehow 

keeps track of the history of the activities of its 

node with other nodes and evaluator unit, then use 

for it, and two other structural features evaluate the 

significance of the edge. Once an edge is 

encountered, the evaluator unit decides whether the 

edge and (or) the incident nodes to be added to the 

sample or not. Therefore, the probability of being 

sampled of an edge depends on other edges that 

have already been observed from the edge’s 

incident nodes, and any edge incident on the nodes 

with a high activity has a higher probability to be 

sampled than the edges incident on the nodes with 

a low activity. In other words, node itself, node 

neighborhood, and node structure have important 

roles in evaluating unit decision. In addition, for a 

sampled edge, the learning automata corresponding 

to the nodes in sV  determine which sampled nodes 

must be replaced by the incident nodes to the edge.  

 

5. Experimental evaluation  

In this section, we assess the efficiency of the 

proposed EFAS algorithm on several real-world 

networks. We utilize social networks from Flickr 

[31], a collaboration network from CondMAT, and 

a citation network from ArXiv HepPH [32]. 

 

5.1. Network statistics 

The performance of a sampling algorithm is 

measured by determining how well the sub-graphs 

sampled by it match properties of the original 

graph. The statistics that we consider in our 

experiments are: degree, clustering coefficient k–

core, and path length distributions, eigenvalues, 

and network values. We present a formal definition 

of these properties below: 

Degree distribution The degree of a node in graph 

G is the number of connections or edges the node 

has to other nodes. The degree distribution  P d  

is then considered to be the fraction of nodes in the 

network with degree d>0. Thus, if there are dn  

nodes in the network with degree d, we have: 

  dn
P d

V
  

          (5) 

Clustering coefficient distribution The clustering 

coefficient for a node is defined as the proportion 

of links between the nodes within its neighborhood 

to the number of links that could possibly exist 

between them. The clustering coefficient 

distribution  P c  is then calculated as: 

    , 0 1cn
P c c

V
  


 

         (6) 

where  cn  illustrates the number of nodes in graph 

G  with clustering coefficient c , and V   is the set 

of nodes with a degree greater than 1. 
 

Table 1. Characteristics of datasets used 

Dataset Nodes Edges Density Avg. Path Global Clustering 

Flickr 820878 66252280 1.9E-5 6.5 0.116 

HepPH 34546 420877 7E-4 4.33 0.146 

CondMAT 23133 93439 4E-4 5.35 0.264 

 

 

 



Bardsiri et al. / Journal of AI and Data Mining, Vol 8, No 1, 2020. 

 

137 

 

Table 2.  The results of statistical test for different types of algorithms in terms of KS distance for degree distribution. 

Test Results 

Dataset 
Difference. Sign. 

Mean KS Distance 
(KS EFAS−KS FLAS) 

Difference  . Sign. 
Mean KS Distance 

(KS EFAS−KS PIES ) 

4.8765E-61 -0.1 2.4367E-81 -0.1381 Flickr 

2.7211E-26 -0.0722 3.8966E-21 -0.5099 HepPH 

3.5643E-41 -0. 0355 6.7916E-57 -0.3951 CondMAT 

 
Table 3.  The results of statistical test for different types of algorithms in terms of KS distance for clustering coefficient 

distribution. 

Test Results 

Dataset 
Difference  . Sign. 

Mean KS Distance 
(KS EFAS−KS FLAS) 

Difference  . Sign. 
Mean KS Distance 

(KS EFAS−KS PIES ) 

3.8396E-21 -0.007 3.1426E-63 -0.0585 Flickr 

2.8739E-9 -0.0124 1.7532E-10 -0.4581 HepPH 

4.1654E-21 -0. 0752 2.8231E-57 -0.3301 CondMAT 

 

Table 4.  The results of statistical test for different types of algorithms in terms of KS distance for path length distribution. 

Test Results 

Dataset 
Difference .Sign 

Mean KS Distance 
(KS EFAS−KS FLAS) 

Difference .Sign 
Mean KS Distance 

(KS EFAS−KS PIES ) 

7.7345E-14 -0.1945 2.6574E-23 -0.3011 Flickr 

4.6299E-5 -0.1552 1.2598E-8 -0.3241 HepPH 

1.7123E-11 -0. 1189 4.9272E-17 -0.2933 CondMAT 

 

 

Table 5.  KS distance for all datasets, at sampling fraction 0.2. 

FLAS PIES EFAS 

Dataset 
Path 

K 

Core 
Clus Deg Path 

K 

Core 
Clus Deg Path 

K 

Core 
Clus Deg 

0.196

3 

0.172

1 

0.108

7 

0.144

5 

0.302

9 

0.214

5 

0.159

8 

0.182

6 

0.001

8 

0.110

5 

0.101

3 

0.044

5 
Flickr 

0.178
6 

0.169
7 

0.028
8 

0.081
3 

0.347
5 

0.664
1 

0.474
5 

0.519
0 

0.023
4 

0.204
1 

0.016
4 

0.009
1 

HepPH 

0.132

3 

0.085

8 

0.172

6 

0.072

0 

0.306

7 

0.482

9 

0.427

5 

0.381

6 

0.013

4 

0.061

9 

0.097

4 

0.036

5 
CondMA

T 

0.169

0 

0.142

5 

0.103

3 

0.099

2 

0.319

0 

0.453

8 

0.353

9 

0.361

0 
0.012 

0.125

5 

0.071

7 

0.030

0 
Avg. 

 

 



Bardsiri et al. / Journal of AI and Data Mining, Vol 8, No 1, 2020. 

 

138 

 

  

  

 
 

Figure 7.  Average KS distance and average L1, L2 distance across 3 datasets. 

  

0

0.2

0.4

0.6

0.8

1

0 20 40

A
v
er

ag
e 

K
S

 D
is

ta
n

ce

Sampling Fraction (%)

Path Length

PIES

FLAS

EFAS

0

0.2

0.4

0.6

0.8

1

0 20 40

A
v
er

ag
e 

K
S

 D
is

ta
n

ce

Sampling Fraction (%)

Clustering Coefficient

PIES

FLAS

EFAS

0

0.2

0.4

0.6

0.8

1

0 20 40

A
v
er

ag
e 

L
2

 D
is

ta
n

ce

Sampling Fraction (%)

Network Value

PIES

FLAS

EFAS

0

0.2

0.4

0.6

0.8

1

0 20 40

A
v
er

ag
e 

K
S

 D
is

ta
n

ce

Sampling Fraction (%)

Degree

PIES

FLAS

EFAS

0

0.2

0.4

0.6

0.8

1

0 20 40

A
v
er

ag
e 

L
1

 D
is

ta
n

ce

Sampling Fraction (%)

Eigen Values

PIES

FLAS

EFAS

0

0.2

0.4

0.6

0.8

1

0 20 40

A
v
er

ag
e 

K
S

 D
is

ta
n

ce

Sampling Fraction (%)

K-core Decomposition

PIES

FLAS

EFAS



Bardsiri et al. / Journal of AI and Data Mining, Vol 8, No 1, 2020. 

 

139 

 

K−core distribution The k–core of graph G is 

defined as the largest sub-graph of G in which all 

nodes have degree at least k . A node has coreness 

k  if it belongs to the k core  but not to

 1k core  . The k core  Distribution  P k  

is computed as the fraction of nodes having a 

coreness 0k  : 

  kn
P k

V
  

          (7) 

where kn  denotes the number of nodes in graph G 

with coreness k. 

Path length distribution The shortest path length 

denotes the fewest number of hops required to 

reach from a node to another node. The path length 

distribution  P h  is considered to be the fraction 

of pairs of nodes in graph G  with the shortest path 

length  0:h   

 

  2

hn
P h

V
  

         (8) 

where hn  is the number of pairs with shortest path 

length h . 

Eigenvalues The eigenvalue λ of the adjacency 

matrix A of graph G is computed as 

Av  λv           (9) 

Where v  is the eigenvector of A  associated with 

the eigenvalue λ. Eigenvalues are known as the 

basis of spectral graph analysis [13]. In the 

experiments, the largest 25 eigenvalues of a graph 

G are considered.  

Network values Network values denotes the 

distribution of the eigenvector components 

corresponding to the largest eigenvalue of the 

adjacency matrix A of graph G [13]. In the 

experiments, the largest 100 network values of a 

graph G are considered. 

Table 6.  L1/L2 distance for all datasets, at sampling fraction 0.2. 

FLAS PIES EFAS 
Dataset 

Net Val Eigen Val Net Val Eigen Val Net Val Eigen Val 

0.0013 0.0071 0.1923 0.5496 0.0421 0.0221 Flickr 

0.1203 0.2147 0.3383 0.7151 0.0976 0.1061 HepPH 

0.0768 0.1605 0.3172 0.6743 0.0101 0.1371 CondMAT 

0.0661 0.1274 0.2826 0.6463 0.0499 0.0884 Avg. 

 

5.2. Evaluation measures  

In order to assess the distance between the statistic 

in the original graph and that in the sampled sub-

graph, we use the following distance measures in 

this paper: 

Kolmogorov-Smirnov (KS) statistic The KS 

statistic is commonly used for measuring the 

agreement between two cumulative distribution 

functions (CDFs) [46]. This statistic can be 

computed as the maximum vertical distance 

between two distributions: 

   max
x

ks F x F x    
      (10) 

where x is the range of the random variables, F and 

F´ denote two CDFs, and 0 ≤ KS ≤ 1. In this paper, 

we use the KS- statistic for computing the distance 

between the true distribution of the original graph 

and the estimated distribution from the sampled 

sub-graph for the degree, clustering coefficient, k–

core, and path length distributions. 

Normalized L1 distance The normalized 1L  

distance (i.e. normalized manhattan distance) 

computes the distance between two positive m-

dimensional real vectors [12]. 

1

1

1 m
i i

i i

p p
L

m p





  

       (11) 

where p and p´ are, respectively, the true vector and 

the estimated vector. In our experiment, we use the 

normalized 1L  distance to measure the distance 

between two vectors of eigenvalues from the 

original and the sampled graphs. 

Normalized L2 distance The normalized 2L  

distance (i.e. normalized euclidean distance) 

measures the distance between two vectors when 



Bardsiri et al. / Journal of AI and Data Mining, Vol 8, No 1, 2020. 

 

140 

 

the components of these vectors are fractions [13]. 

This distance measure is computed as:  

2

p p
L

p





 

      (12) 

In this paper, the normalized 2L  distance is utilized 

for computing the distance between two vectors of 

network values related to the original and the 

sampled graphs. 

5.3. Experimental results 

Although all the mentioned automatons depending 

on their performance can work on a variety of 

issues, since in our proposed algorithm, only the 

past behavior of the system will be of great 

importance for the current issue, there is no need 

for more complex automata, and so we will use the  

J  automaton in the proposed algorithm with the 

same settings obtained in the FLAS algorithm (i.e. 

γ = 0.9 and N = 4). The proposed algorithm, 

considering the best setting for the parameters, is 

compared with the FLAS and PIES algorithms. In 

the experiments, the sampling fraction f varies 

from 0.1 to 0.3 with an increment of 0.025. For 

each sampling fraction, we report the average 

results of 30 independent runs. In each run, we 

utilize a random permutation of the edge stream as 

the input to the algorithm to make the results 

independent from any stream ordering. It is ensured 

that the different variations in the proposed 

algorithm and the FLAS and PIES algorithms use 

the same streaming orders. 

 

 

Table 7.  The maximum number of cores for sampling fraction 0.2 versus the actual value for each set. 

PIES FLAS EFSA Real Max. core No. Dataset 

162 221 232 406 Flickr 

5 20 21 30 HepPH 

6 16 19 25 CondMAT 

 

5.3.1. Experiment 1 

In the first experiment, the proposed EFAS 

algorithm is compared with the FLAS and PIES 

algorithms according to the KS distance for degree 

clustering and path length distribution. We perform 

the test with a 95% confidence interval and report 

the results for the sampling fraction of 0.2 in tables 

2, 3, and 4. Based on the results in these tables, 

EFAS has a significant performance compared to 

PIES and FLAS. 

 

5.3.2. Experiment 2  

Investigate the ability of preserving the graph, 

statistics is one of the most important experiments 

for an algorithm in this field. Thus we assume the 

statistics such as the degree, clustering coefficient, 

k–core, path length distributions and report the 

average KS distance over three data sets for 

different sampling fractions, and plot the average 

L1 and L2 distances, respectively, for eigenvalues 

and for network values in figure 7. From these 

figures and the results in tables 5 and 6, we can see 

the superiority of the EFAS algorithm over the 

other algorithms for all the statistics. Finally, by 

computing the maximum core numbers (the 

maximum value of k in the k– core distribution) for 

sub-graphs sampled by EFAS and comparing those 

with the real maximum core number for each 

dataset, we investigate the ability of the EFAS 

algorithm to maintain the local density in the 

sampled sub-graphs with other algorithms. As 

shown in table 7, the sub-graphs that are sampled 

by EFAS have a maximum number of cores very 

close to the original graphs, while in FLAS and 

PIES, such a phenomenon does not happen. 

 

 



Bardsiri et al. / Journal of AI and Data Mining, Vol 8, No 1, 2020. 

 

141 

 

  

  

  

Figure 8.  Comparison of sampling algorithms in the Flickr data set for different distribution statistics in the sampling section 

0.2.  

 

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

P
(X

<
 x

)

Path Length

Original

PIES

EFAS

FLAS

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

1 10 100

N
et

w
o

rk
 V

al
u

e

Rank

Original

PIES

EFAS

FLAS

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

1 10 100 100010000100000

P
(X

>
x)

Degree

Original

PIES

EFAS

FLAS

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
(X

<
 x

)

Clustering Coeficient

Original

PIES

EFAS

FLAS

0

200

400

600

800

1000

0 5 10 15 20 25

|E
ig

e
n

 V
al

u
es

|

Rank

Original

PIES

EFAS

FLAS

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100 110

P
(X

>
 x

)

k-core

Original

PIES

EFAS

FLAS



Bardsiri et al. / Journal of AI and Data Mining, Vol 8, No 1, 2020. 

 

142 

 

 

 

  

  

Figure 9.  Comparison of sampling algorithms in the HepPH  data set for different distribution statistics in the sampling 

section 0.2. 

 

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

P
(X

<
 x

)

Path Length

Original

PIES

EFAS

FLAS

0

20

40

60

80

0 5 10 15 20 25

|E
ig

en
 V

al
u

es
|

Rank

Original

PIES

EFAS

FLAS

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

1 10 100

N
et

w
o

rk
 V

al
u

e

Rank

Original

PIES

EFAS

FLAS

0

0.2

0.4

0.6

0.8

1

0 5 10

P
(X

>
 x

)

k-core

Original

PIES

EFAS

FLAS

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
(X

<
 x

)

Clustering Coeficient

Original

PIES

EFAS

FLAS

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

1 10 100 1000

P
(X

>
x)

Degree

Original

PIES

EFAS

FLAS



Bardsiri et al. / Journal of AI and Data Mining, Vol 8, No 1, 2020. 

 

143 

 

 

  

  

 
 

Figure 10.  Comparison of sampling algorithms in the CondMAT  data set for different distribution statistics in the sampling 

section 0.2. 

 

 

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

P
(X

<
 x

)

Path Length

Original

PIES

EFAS

FLAS

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

1 10 100 1000

P
(X

>
x)

Degree

Original

PIES

EFAS

FLAS

0

10

20

30

40

0 5 10 15 20 25

|E
ig

en
 V

al
u

es
|

Rank

Original

PIES

EFAS

FLAS

0

0.2

0.4

0.6

0.8

1

0 5 10

P
(X

>
 x

)

k-core

Original

PIES

EFAS

FLAS

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
(X

<
 x

)

Clustering Coeficient

Original

PIES

EFAS

FLAS

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

1 10 100

N
e

tw
o

rk
 V

al
u

e

Rank

Original

PIES

EFAS

FLAS



144 
 

5.3.3. Experiment 3  

In most graph statistics, both algorithms EFAS and 

FLAS have a near-closing performance. However, 

we can see the impact of using the evaluator unit 

on the relative improvement of EFAS to FLAS. In 

this experiment, plot the distributions of six graph, 

statistics for each of the three datasets. Note that for 

the degree and k–core distributions, CCDF 

(complementary cumulative distribution function) 

is plotted, and for clustering coefficient and path 

length distributions, we plot CDF. While EFAS 

preserves the k–core distribution in almost all the 

datasets, FLAS and PIES have different functions 

either underestimated or overestimated in different 

distributions. As shown in figures 8, 9, and 10, 

EFAS preserves the degree distribution more 

accurately than PIES and a little bit better than 

FLAS. The PIES algorithm underestimates the 

degree distribution for all datasets, except for 

Flickr and clustering coefficient distribution for all 

datasets. The FLAS algorithm captures the 

clustering coefficient statistic for HepPH, and 

underestimates it for CondMAT for the k–core 

distribution. FLAS generally provides better results 

compared to the PIES algorithm. PIES 

overestimate the core structures in Flickr and 

underestimate them in the other datasets. FLAS 

captures the path length distribution for all the 

tested graphs. However, PIES underestimates this 

statistic for Flickr and overestimates it for 

CondMAT and HepPH. Both EFAS and FLAS, 

while, having a far better performance than PIES, 

are able to accurately estimate the eigenvalues, and 

especially, the network values for all test graphs. 
 

5.3.4. Experiment VII  

In Another experiment, we want to investigate the 

number of isolated nodes, connected components, 

and nodes 100 degrees higher (100 higher hubs) in 

the sub-graphs that are sampled by the proposed 

EFAS algorithm. Table 8 shows the results of the 

probability of the isolated nodes as well as the ratio 

of the top 100 hubs that are collected by sample 

sub-graphs for three algorithms. We also compare 

the number of connected components in the sub-

graphs that were sample by three algorithms in 

sampling 0.2 with their actual number for each 

dataset in table 9. In these tables, it can be seen that, 

sub-graphs sampled by EFAS have, the less 

isolated nodes and include the more ratio of the 

highest degree nodes as compared to FLAS and 

PIES. In EFAS, the evaluator unit has paid special 

attention to the history of streaming edges, and 

high activity nodes have a high probability of 

counting in the sample sub-graphs, and for this 

reason, EFAS generates more connected sub-

graphs than FLAS. As reported in table 9, sub-

graphs that have been sampled by EFAS have 

fewer connected components than those sampled 

by FLAS and PIES, and so the graph will have 

more connections. 
 

5.3.5. Experiment VIII  

The purpose of this experiment is to evaluate the 

performance of EFAS, FLAS, and PIES over time, 

and compare the performance of these three while 

the main graph is in streaming. In the first step, an 

initial sub-graph is sampled from the main graph. 

Then, with a sampling fraction of 0.2, it is 

examined how the quality of the sample sub-graph 

changes after examining the proportions of the 

edges remaining from the current. The tested ratio 

varies from 0 to 30 percent. For each ratio, we 

report the mean KS distance in the data sets for the 

statistics degree, clustering, and path length 

distribution in figure 11. It is worth mentioning, 

that the ratio 0 is related to the initial sub-graph, 

which has not been checked for any remaining 

edges of the stream. It is clear that, the increase in 

the ratio of the revised edges reduces the mean KS 

distance for all the three algorithms. However this 

decline is faster for EFAS, so in the same 

proportion, EFAS always provides much better 

results than FLAS and PIES. In the following, we 

also examine the EFAS by setting a stop condition, 

where the sample update continues until all the 

learning automata of the node in Vs are in their 

most internal state. In table 10, the average ratio of 

the edges to be reviewed, and the mean KS distance 

for the three graphs, statistics with EFAS with and 

without the use of stopping conditions are reported. 

Based on the results obtained, EFAS meets the stop 

condition in the whole dataset after an average 

review of 58% of the remaining edges of the 

current stream and the results close to when there 

is no stop condition considered in EFAS. Hence, in 

order to reduce the computational cost, we can use 

the EFAS sampling algorithm with stopping 

conditions and observe the results close to EFAS 

without stopping conditions. 

 

5.3.6. Experiment IX 

Downward bias in the degree distribution is one of 

the challenges in sub-graphs sampled from scale-

free networks; in this experiment, we validate how 

the evaluator unit can offset that. We create two 

synthetic networks, called S-W1, and S-W2 as 

small networks that are based on the Watts-

Stroggatz model [33], and two latter networks, 

called S-F1 and S-F2 are scale-free networks based 

on the Barabasi-Albert model [33]. Table 11 

provides information about these synthetic 



Bardsiri et al. / Journal of AI and Data Mining, Vol 8, No 1, 2020. 

 

145 

 

networks. One of the advantages of our proposed 

algorithm is to consider the high degree bias in the 

evaluator unit and use it more in order to preserve 

more accurately the degree distribution of the 

scale-free networks. For a sampling fraction of 0.2, 

we plot the degree distribution for each synthetic 

network (Figure 12). We can see the effect of using 

that in the degree distribution. Although it is more 

difficult to achieve degree distribution in small-

world networks, EFAS also has a better 

performance in these networks. As expected, EFAS 

is always better than FLAS and PIES due to the use 

of the evaluator unit, especially in scale-free 

networks.  

 

Table 8.  The probability of isolated nodes and the proportion of hubs. 

Hub (Top 100) Isolated Node 
Dataset  

PIES FLAS EFAS PIES FLAS EFAS 

0.20 0.59 0.77 0.1623 0.1301 0.062 Flickr  

0.68 0.72 0.91 0.0970 0.0424 0.005 HepPH  

0.55 0.82 0.84 0.1514 0.1074 0.0015 CondMAT  

 

 
 

 
Figure 11.  The mean KS distance in all data sets for different edges, in the sampling fraction of 0.2. 

 

 

 

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45

A
ve

ra
ge

 K
S 

D
is

ta
n

ce

Remaining Edges(%)
(a) Degree

PIES

EFAS

FLAS

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45

A
ve

ra
ge

 K
S 

D
is

ta
n

ce

Remaining Edges(%)
(c) Path Length

PIES

EFAS

FLAS

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45

A
ve

ra
ge

 K
S 

D
is

ta
n

ce

Remaining Edges(%)
(b) Clustering Coefficient

PIES

EFAS

FLAS



Bardsiri et al. / Journal of AI and Data Mining, Vol 8, No 1, 2020. 

 

146 

 

 

  

 
 

Figure 12.  Impact of high degree bias in sampled degree distribution for different types of synthetic networks in sampling 

fraction 0.2 

 

 

Table 9.  The number of connected components for the sampling fraction of 0.2 compared to its actual value for each dataset. 

PIES FLAS EFAS Real Connected Components Dataset  

21668 919 782 1 Flickr  

316 27 14 61 HepPH  

340 127 113 567 CondMAT  

 

Table 10.  Average reviewing proportion and KS distance across all datasets for EFAS, in the sampling fraction of 0.2. 

Path Clust. Deg. % Remaining Edges EFSA 

0.012 0.0717 0.0300 100 Without stop condition 

0.1498 0.1056 0.1267 58 With stop condition 

 

 

0.00001
0.09001
0.18001
0.27001
0.36001
0.45001
0.54001
0.63001
0.72001
0.81001
0.90001
0.99001

1 10

P
(X

>x
)

Degree
(a) S-W1

Original

PIES

EFAS

FLAS

0.00001
0.09001
0.18001
0.27001
0.36001
0.45001
0.54001
0.63001
0.72001
0.81001
0.90001
0.99001

1 10

P
(X

>x
)

Degree
(b) S-W2

Original

PIES

EFAS

FLAS

0.00001
0.09001
0.18001
0.27001
0.36001
0.45001
0.54001
0.63001
0.72001
0.81001
0.90001
0.99001

1 10 100 1000

P
(X

>x
)

Degree
(c) S-F1

Original

PIES

EFAS

FLAS

0.00001
0.09001
0.18001
0.27001
0.36001
0.45001
0.54001
0.63001
0.72001
0.81001
0.90001
0.99001

1 10 100 1000

P
(X

>x
)

Degree
(d) S-F2

Original

PIES

EFAS

FLAS



Bardsiri et al. / Journal of AI and Data Mining, Vol 8, No 1, 2020. 

 

147 

 

Table 11.  Characteristics and parameters of synthetic networks 

Parameters Density Edges Nodes Graph 

K=6, P=0.2 2E-4 90000 30000 S-W1 

K=10, P=0.2 5E-4 100000 20000 S-W2 

m0=10, m=5 3.3E-4 149987 30000 S-F1 

m0=6, m=5 4.9E-4 99985 20000 S-F2 

 

6. Conclusion  

In this paper, we addressed the problem of 

sampling from activity networks in which the 

stream of edges continuously evolves over time. 

We proposed EFAS, a new streaming sampling 

algorithm based on a simpler fixed structure 

learning automata, which overcomes the PIES’s 

drawbacks and an evaluator unit that evaluates 

nodes based on a variety of aspects that overcomes 

the FLAS’s drawback, while maintaining its 

advantages. As a result, EFAS not only provides 

good results on sparse, less clustered graphs, but 

also can produce high quality sub-graphs for dense 

and highly clustered graphs.  
 

References 
[1] Pinto, P., et al. (2017). Data mining and social web 

semantics: a case study on the use of hashtags and 

memes in Online Social Networks. IEEE Latin America 

Transactions, vol. 15, no. 12, pp. 2276-2281. 
 

[2] Z.Karimi Zandian; M. R. Keyvanpour. (2019). 

MEFUASN: A Helpful Method to Extract Features 

using Analyzing Social Network for Fraud Detection. 

Journal of AI and Data Mining, vol. 7, no. 2, pp. 213-

224. 
 

[3] Leskovec, J. and C. Faloutsos. (2006). Sampling 

from large graphs. in Proceedings of the 12th ACM 

SIGKDD international conference on Knowledge 

discovery and data mining. ACM, New York, NY, USA, 

2006. 
 

[4] Ebbes, P., Z. Huang, and A. Rangaswamy. (2012). 

Subgraph Sampling Methods for Social Networks: The 

Good, the Bad, and the Ugly. No. hal-02058253. 2010. 
 

[5] Yoon, S., et al. (2007). Statistical properties of 

sampled networks by random walks. Physical Review E, 

vol. 75, no. 4, pp. 046-114. 
 

[6] Lee, S.H., P.-J. Kim and H. Jeong. (2006) Statistical 

properties of sampled networks. Physical Review E, vol. 

73, no. 1, pp. 016-102. 
 

[7] Rezvanian, A. and M.R. Meybodi. (2017). A new 

learning automata-based sampling algorithm for social 

networks. International Journal of Communication 

Systems, vol. 30, no. 5, pp. e3091. 
 

[8] Ghavipour, M. and M.R. Meybodi. (2017). Irregular 

cellular learning automata-based algorithm for sampling 

social networks. Engineering Applications of Artificial 

Intelligence, vol. 59, pp. 244-259. 
 

[9] Rezvanian, A. and M.R. Meybodi. (2015). Sampling 

social networks using shortest paths. Physica A: 

Statistical Mechanics and its Applications, vol. 424, pp. 

254-268. 
 

[10] Kurant, M., A. Markopoulou, and P. Thiran. 

(2011). Towards Unbiased BFS Sampling. IEEE Journal 

on Selected Areas in Communications, vol. 29, no. 9, pp. 

1799-1809. 
 

[11] Hübler, C., et al. (2008). Metropolis algorithms for 

representative subgraph sampling. IEEE International 

Conference on Data Mining. Pisa, Italy 2008. 
 

[12] Krishnamurthy, V., et al. (2007). Sampling large 

Internet topologies for simulation purposes. Computer 

Networks, vol. 51, no. 15, pp. 4284-4302. 
 

[13] Ahmed, N.K., J. Neville, and R. Kompella. (2014). 

Network sampling: From static to streaming graphs. 

ACM Transactions on Knowledge Discovery from Data 

(TKDD), vol. 8, no. 2, pp. 7. 
 

[14] Sarma, A.D., S. Gollapudi, and R. Panigrahy. 

(2011). Estimating pagerank on graph streams. Journal 

of the ACM (JACM), vol. 58, no. 3, pp. 13. 
 

[15] Chen L, W.C. (2010). Continuous subgraph pattern 

search over certain and uncertain graph streams. IEEE 

Trans Knowl Data Eng, vol. 22, pp. 1093–1109. 
 

[16] Aggarwal CC, Z.Y., Yu PS. (2010). On clustering 

graph streams, in Proceedings of the 2010 SIAM 

international conference on data mining SIAM. 2010. p. 

478–489. 
 

[17] Aggarwal, C.C., et al. (2010). On dense pattern 

mining in graph streams. Proceedings of the VLDB 

Endowment, vol. 3, no. 2, pp. 975-984. 
 

[18] Buriol, L.S., et al. (2006). Counting triangles in 

data streams. in Proceedings of the twenty-fifth ACM 

SIGMOD-SIGACT-SIGART symposium on Principles 

of database systems. 
 

[19] Aggarwal, C.C. (2006). On biased reservoir 

sampling in the presence of stream evolution. in 

Proceedings of the 32nd international conference on 

Very large data bases. 
 

[20] Bar-Yossef, Z., R. Kumar, and D. Sivakumar. 

(2002). Reductions in streaming algorithms, with an 

application to counting triangles in graphs. in 

Proceedings of the thirteenth annual ACM-SIAM 



Bardsiri et al. / Journal of AI and Data Mining, Vol 8, No 1, 2020. 

 

148 

 

symposium on Discrete algorithms. Society for 

Industrial and Applied Mathematics. 
 

[21] Aggarwal, C.C., Y. Zhao, and P.S. Yu. (2011). 

Outlier detection in graph streams. in 2011 IEEE 27th 

International Conference on Data Engineering, 

Piscataway, NJ, 2011. 
 

[22] Ahmed NK, B.F., Neville J, Kompella R. (2010). 

Timebased sampling of social network activity graphs 

Proceedings 8th Work. Min. Learn. with Graphs, vol. 

75, no. 4, pp. 1-9. 
 

[23] Cormode, G. and S. Muthukrishnan. (2005). Space 

efficient mining of multigraph streams, in Proceedings 

of the twenty-fourth ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems. 

2005, ACM: Baltimore, Maryland. p. 271-282. 
 

[24] Narendra KS, T.M. (2012). Learning automata: an 

introduction. . 2012: Courier Corporation. 
 

[25] Thathachar MAL, S.P. (2011). Networks of 

learning automata: techniques for online stochastic 

optimization. Springer Science & Business Media. 
 

[26] Ghavipour, M. and M.R. Meybodi. (2016). An 

adaptive fuzzy recommender system based on learning 

automata. Electronic Commerce Research and 

Applications, vol. 20, pp. 105-115. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

[27] Rezapoor Mirsaleh, M. and M.R. Meybodi. (2016). 

A new memetic algorithm based on cellular learning 

automata for solving the vertex coloring problem. 

Memetic Computing, vol. 8, no. 3, pp. 211-222. 

 

[28] M, T. (1961). On behaviour of finite automata in 

random medium. Avtom I Telemekhanika, vol. 22, no. 

4, pp. 1345-1354. 
 

[29] DF, G. (2006). Graph of flickr photo-sharing social 

network crawled in May 2006.  
 

[30] Leskovec J, K.A. (2014). SNAP Datasets: Stanford 

Large Network Dataset Collection. 2014. 
 

[31] Goldstein, M.L., S.A. Morris and G.G. Yen. 

(2004). Problems with fitting to the power-law 

distribution. The European Physical Journal B - 

Condensed Matter and Complex Systems, vol. 41, no. 2, 

pp. 255-258. 
 

[32] Watts, D.J. and S.H. Strogatz. (1998). Collective 

dynamics of ‘small-world’networks. nature, vol. 393, 

no. 6684, pp. 440. 
 

[33] Barabási, A.-L. and R. Albert. (1999). Emergence 

of Scaling in Random Networks. Science, vol. 286, no. 

5439, pp. 509. 

 



 

 

 

 نشریه هوش مصنوعی و داده کاوی

 

 

 

ا ببهره گیری از واحد ارزیاب در ماشین های یادگیر  ه کمکنمونه گیری از شبکه های اجتماعی ب

 ساختار ثابت

 

 3نیافرشید کیو  *2یریبردس یبیخط دی، عم1یروح الله دیسع

 .رانی،کرمان، ا یواحد کرمان، دانشگاه آزاد اسلام وتر،یکامپ یگروه مهندس 1

 .رانی،کرمان، ا یواحد کرمان، دانشگاه آزاد اسلام وتر،یکامپ یگروه مهندس *2

 .رانیکرمان، ا شرفته،یپ یو فناور یصنعت یلیتکم لاتیدانشگاه تحص ،یطیو علوم مح شرفتهیپ یپژوهشگاه علوم و تکنولوژ ،یانرژ یساز نهیو به تیریگروه مد 3

 06/10/2019 پذیرش؛ 16/04/2019 بازنگری؛ 06/06/2018 ارسال

 چکیده:

شبکه ساختاهایی های اجتماعی را میتوان گرافگراف متناظر با  ستردهبا  . دای ما بین کاربران تعریف نموظهای از تعاملات لحر  متغیر و  توام با  طیف گ

اظر منجر به ایجاد یال متنری عناوین مشببابه دیگر اشبباره کرد ها و بسببیامیتوان به توئیت ها، رایانامهکه ها  در این شبببکهفعالیت بین کاربران گونه هر 

شبکه .خواهد گردید مابین آنها شبکهبالای  حجم و اندازهدر کنار ، توپولوژی متغیر اعیتمهای اجبا وجود عمومیت  ا را هامکان مطالعه روی آن ها اینگونه 

در این . ها بهره برداسببب با این نوش شبببکهگیری جریانی متنتی جوابگو نبوده و باید از نمونهگیری سببنبدیهی اسببت نمونه. داندگرتا حدودی ناممکن می

 این الگوریتم . در ماشبببین یادگیر با سببباختار وابت خواهند بوده در آن هر نود از گراف مجهز به کگیری را معرفی خواهیم نمود مقاله ، الگوریتم نمونه

نتایج حاصببباه از . گیری بر عهده خواهد داشبببتو درج آنها به مجموعه نمونهواحدی تحت عنوان واحد ارزیاب وظیفه انتخاب یالها و نودهای متناظر 

صای و احاصاه از گراف های فاصاه اقایدسی و منهتن بین متریک، اسمیرنوف-کولموگروف آزمونبر اساس آزمونهای  آماری از جماه الگوریتم پیشنهادی 

گیری شببده در دندین شبببکه واقعی و شبببکه ممببنوعی مورد ارزیابی و مقایسببه قرار گرفت. نتایج بدسببت آمده حاکی از برتری الگوریتم گراف نمونه

  .باشدمیهای مشابه ری ارائه شده در حوزهگیدر مقایسه با سایر روشهای نمونه پیشنهادی

 .با ساختار وابتماشین یادگیر ، گیری جریانینمونه، شبکهگیری اجتماعی، نمونههای واحد ارزیاب، شبکه :کلمات کلیدی

 


