L. Falahiazar; V. Seydi; M. Mirzarezaee
Abstract
Many of the real-world issues have multiple conflicting objectives that the optimization between contradictory objectives is very difficult. In recent years, the Multi-objective Evolutionary Algorithms (MOEAs) have shown great performance to optimize such problems. So, the development of MOEAs will always ...
Read More
Many of the real-world issues have multiple conflicting objectives that the optimization between contradictory objectives is very difficult. In recent years, the Multi-objective Evolutionary Algorithms (MOEAs) have shown great performance to optimize such problems. So, the development of MOEAs will always lead to the advancement of science. The Non-dominated Sorting Genetic Algorithm II (NSGAII) is considered as one of the most used evolutionary algorithms, and many MOEAs have emerged to resolve NSGAII problems, such as the Sequential Multi-Objective Algorithm (SEQ-MOGA). SEQ-MOGA presents a new survival selection that arranges individuals systematically, and the chromosomes can cover the entire Pareto Front region. In this study, the Archive Sequential Multi-Objective Algorithm (ASMOGA) is proposed to develop and improve SEQ-MOGA. ASMOGA uses the archive technique to save the history of the search procedure, so that the maintenance of the diversity in the decision space is satisfied adequately. To demonstrate the performance of ASMOGA, it is used and compared with several state-of-the-art MOEAs for optimizing benchmark functions and designing the I-Beam problem. The optimization results are evaluated by Performance Metrics such as hypervolume, Generational Distance, Spacing, and the t-test (a statistical test); based on the results, the superiority of the proposed algorithm is identified clearly.
H.3. Artificial Intelligence
F. Barani; H. Nezamabadi-pour
Abstract
Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different ...
Read More
Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, called binary quantum-inspired artificial bee colony algorithm (BQIABC), is proposed. The BQIABC combines the main structure of ABC with the concepts and principles of quantum computing such as, quantum bit, quantum superposition state and rotation Q-gates strategy to make an algorithm with more exploration ability. The proposed algorithm due to its higher exploration ability can provide a robust tool to solve binary optimization problems. To evaluate the effectiveness of the proposed algorithm, several experiments are conducted on the 0/1 knapsack problem, Max-Ones and Royal-Road functions. The results produced by BQIABC are compared with those of ten state-of-the-art binary optimization algorithms. Comparisons show that BQIABC presents the better results than or similar to other algorithms. The proposed algorithm can be regarded as a promising algorithm to solve binary optimization problems.