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Abstract 

Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the 

intelligent behavior of honey bees when searching for food sources. Various versions of the ABC algorithm 

have been widely used to solve continuous and discrete optimization problems in different fields. In this 

paper, a new binary version of the ABC algorithm inspired by quantum computing called binary quantum-

inspired artificial bee colony algorithm (BQIABC) is proposed. BQIABC combines the main structure of 

ABC with the concepts and principles of quantum computing such as quantum bit, quantum superposition 

state, and rotation Q-gates strategy to make an algorithm with more exploration ability. Due to its higher 

exploration ability, the proposed algorithm can provide a robust tool to solve binary optimization problems. 

To evaluate the effectiveness of the proposed algorithm, several experiments are conducted on the 0/1 

knapsack problem, Max-Ones, and Royal-Road functions. The results produced by BQIABC are compared 

with those of ten state-of-the-art binary optimization algorithms. Comparisons show that BQIABC presents 

better results than or similar to other algorithms. The proposed algorithm can be regarded as a promising 

algorithm to solve binary optimization problems. 

 

Keywords: Artificial Bee Colony Algorithm, Quantum Computing, Rotation Q-gate, 0/1 Knapsack 

Problems, Benchmark Functions. 

1. Introduction 

The artificial bee colony (ABC) algorithm is a 

population-based optimization algorithm, which 

was developed by Karaboga in 2005 [1]. The 

ABC algorithm was motivated by the intelligence 

foraging behavior of real bees. This algorithm, 

due to easy implementation, low number of 

control parameters, and rapid convergence, has 

attracted the attention of many researchers to 

itself. In [2] and [3], the performance of the ABC 

algorithm has been compared with those of 

Genetic Algorithm (GA), Particle Swarm 

Algorithm (PSO), Differential Evolution (DE), 

Evolutionary Algorithm (EA), and Particle Swarm 

Inspired Evolutionary Algorithm (PS-EA) on 

some well-known test functions. The comparison 

results have indicated that ABC may be regarded 

as a promising algorithm to solve optimization 

problems. 

The standard versions of evolutionary algorithms 

are basically used for solving continuous 

problems. H. Gökdağ et al. [4] have applied the 

PSO algorithm to detect the damaged structural 

elements of a Timoshenko beam. To solve the 

multi-pass turning optimization problems, 

optimization methods based on the ABC 

algorithm [5] and hybrid robust differential 

evolution (HRDE) [6] by A.R. Yildiz have been 

developed. Also to optimize cutting parameters in 

milling operations, a hybrid method based on the 

differential evolution algorithm and immune 

system has been presented [7], and a method 

based on the cuckoo search algorithm, reported in 

[8], has been introduced. I. Durgun et al. [9] and 

B. Yildiz et al. [10] have applied the cuckoo 

search algorithm and the gravitational search 

algorithm, respectively, to solve the problem of 
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the optimum design of a vehicle component. Z. 

Izakian et al. [11] applied the particle swarm 

optimization algorithm for clustering time 

series data.  

However, most optimization problems in the 

engineering fields are set in binary space. 

Different binary and discrete versions of 

evolutionary algorithms have been presented to 

solve the binary encoded problems such as the 0/1 

knapsack problem, feature selection, and 

benchmark binary functions. H. Shi [12] has 

adopted the ant colony optimization, A. Lui et al. 

[13] have improved the simulated annealing 

algorithm using two kinds of solution spaces, Z. 

Li et al. [14] have proposed a novel binary particle 

swarm optimization based on the QBPSO 

algorithm by applying a multi-mutation strategy 

including single mutation operator and full 

mutation operator, and H. Sajedi et al. [15] have 

proposed a discrete gravitational search algorithm 

(DGSA) based on a new method for discretely 

updating the position of the agents for solving the 

0/1 knapsack problem. S. Sunder et al. [16] have 

introduced a hybrid artificial bee colony algorithm 

called ABC-MKP, and M. Kong et al. [17] have 

proposed a binary ant system (BAS) based on a 

pheromone-laying method for solving the 0/1 

multi-dimensional knapsack problem. In [18], the 

quantum-inspired binary gravitational search 

algorithm (BQGSA), and in [19], a modified GSA 

have been applied to solve the feature subset 

selection problem in data classification.  

The binary artificial bee colony (BABC) 

algorithms can be divided into two categories, the 

BABC algorithm based on the continuous space 

and the discrete space [20]. In the first category, 

algorithms are based on the standard ABC 

algorithm and apply its formulae and operation 

rules to solve binary encoded problems by 

mapping the discrete space to the continuous 

space. The BinABC algorithm, proposed by Y. 

Marinakis et al. [21], AMABC, and NormABC, 

proposed by G. Pampara et al. [22] are in this 

category. However, it should be noted that these 

maps have a high complexity. The algorithms in 

the second category modify the food source 

generating formula, and replace the bit operation 

with the traditional vector operation. The DisABC 

algorithm proposed by M.H. Kashani et al. [23] is 

in this category.  

Quantum computing (QC) is the art of applying 

the laws of quantum mechanics to computer 

science [24]. R. Feynman [25] and D. Deutsch 

[26] have proposed the initial idea of QC in the 

early 1980s. In solving computational problems, 

QC is stronger than classical computing. Since the 

late 1990s, many studies have been done on the 

integration of evolutionary algorithms and 

quantum computing. The kind of algorithms can 

be classified into three categories, as follow [27]: 

 Evolutionary-designed quantum algorithms, 

which aim to automate the combination of 

new quantum algorithms using EAs for 

quantum computers (e.g. [28, 29]). 

 Quantum evolutionary algorithms (QEAs) 

concentrate on execution of EC algorithms 

in a quantum computation environment (e.g. 

[30-32]) 

 Quantum-inspired evolutionary algorithms 

(QIEAs) concentrate on execution of new 

EC algorithms using some concepts and 

principles of QC (e.g. [27, 33-35]). 

Y. Jeong et al. [31] have proposed a quantum-

inspired binary particle swarm optimization, and 

have applied it to solve unit commitment 

problems for power systems. H.B. Duan et al. [36] 

have combined the artificial bee colony algorithm 

and the quantum evolutionary algorithm quantum, 

introducing a hybrid method, and also N.H. Abbas 

et al. [37] have presented a quantum ABC 

inspired by quantum physics concepts to solve the 

continuous optimization problems. K. Han et al. 

[38] have introduced a quantum-inspired 

evolutionary algorithm for a class of 

combinatorial optimization, and G. Zhang has 

presented a comprehensive survey of the recent 

work in the field of quantum-inspired algorithm. 

To enhance the performance of ABC algorithm, 

G. Li et al. [39] have integrated QC into ABC and 

used Q-bits described on the Bloch sphere to solve 

continuous problems. Also X. Yuan et al. [40] 

have integrated ABC with QC and the chaotic 

local search strategy to solve the optimal power 

flow problem. K. Manochehri et al. [41] have 

presented a quantum ABC, called KQABC, by an 

unclear relation to produce new food sources, and 

have adopted it to solve 0/1 knapsack problem. 

Also the updating process of Q-bits in the 

KQABC is not clearly defined. M. Soleimanpour 

et al. [32] have proposed a quantum-behaved 

gravitational search algorithm, and H. 

Nezamabadi-pour [27] has presented a binary 

quantum-inspired GSA to solve binary encoded 

problems. 

The admirable results achieved from combination 

of the evolutionary algorithms and quantum 

computing persuaded us to develop a new 

quantum-inspired version of the ABC algorithm 

called binary quantum-inspired artificial bee 

colony algorithm (BQIABC) to effectively solve 

combinatorial problems in binary space by 

applying the some concepts of quantum 
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computing such as a quantum bit and 

superposition of states in the standard ABC 

algorithm. The use of quantum computing in ABC 

has enabled BQIABC to improve the exploration 

ability and convergence rate in obtaining optimum 

solutions. 

The main contributions of this paper are 

summarized as the following: 

 The artificial bee colony algorithm is 

combined with the quantum computing, and 

a binary quantum-inspired algorithm is 

presented to solve the binary-encoded 

problems. 

 Binary quantum-inspired artificial bee 

colony algorithm (BQIABC) is proposed 

based on the concepts and principles of 

quantum computing such as a quantum bit, 

superposition of states, and a new rotation 

gate.  

 In this work, a combination of ABC and QC 

is used to improve the convergence rate and 

exploration ability, and prevent trapping in 

local optima.  

 In accordance with the ABC algorithm, a 

new rotation Q-gate is proposed, which 

determines rotation angle based on the 

current position and the best position so far. 

 In BQIABC, a new behavior for scout bee is 

suggested to replace the abandoned food 

sources. 

 A comparative study is carried out with ten 

other binary optimization algorithms to 

emphasize on the effectiveness of BQIABC 

algorithm. 
 

The remainder of this paper is organized as 

follows. A brief review on the artificial bee 

colony algorithm and quantum computing that is 

used in this study is presented in Section 2. 

Section 3 presents the proposed algorithm. In 

Section 4, we present the experimental results and 

comparison with ten other algorithms on several 

cases of 0/1 knapsack problem, Max-Ones, and 

Royal-Road functions. Finally, a brief conclusion 

is offered in Section 5. 

 

2. Background Knowledge  

In this section, we review some background 

knowledge required for an easier understanding of 

our proposed algorithm, in brief, including 

artificial bee colony algorithm and quantum 

computing.  

 

2.1. Artificial Bee Colony Algorithm 

The artificial bee colony (ABC) algorithm [8] is a 

member of the class of swarm intelligence 

algorithms, proposed by Karaboga in 2005. The 

ABC algorithm is motivated by the natural 

behaviour of honey bees when searching for food 

sources. The colony of artificial bees consists of 

three different types of bees: employed, onlooker, 

and scout bees [42]. The number of employed and 

onlooker bees in the colony is the same, and is 

equal to the number of food sources around the 

hive. A potential solution in the optimization 

problem corresponds to the position of each food 

source, and the solution fitness is its nectar 

amount.  

In this algorithm, the initial position of every food 

source is randomly generated by scout bee, and 

each employed bee is assigned to a food source. 

(1) 
min max min( )ij i i ix x r x x    

where, min

ix  and max

ix  are the minimum and 

maximum values of the jth dimension, 

respectively, and r is a random number in the 

interval [0,1].  

At each iteration t of the algorithm, the employed 

bee j selects a food source 
wx  randomly and 

discovers a new food source jv  around its 

assigned food source jx , as follows:  

(2) ( 1) ( ) ( )( ( ) ( ))jk jk jk jk wkv t x t t x t x t     

where, ( )jk t  is a random number in the interval  

[-1,1] ( )jkx t  indicates the position of the jth food 

source in the kth dimension, and jkv  presents the 

position of the new food source j in the dimension 

k. The nectar amount of new food source jv  is 

computed. If jv  has a further nectar amount, the 

current food source jx  will be replaced by it.  

(3) 

( 1) ( ( )) ( ( 1))
( 1)

( ) ( ( )) ( ( 1))

j j j

j

j j j

v t if fit x t fit v t
x t

x t if fit x t fit v t

  
  

 

 

There is only one scout bee in the colony. The 

employed bee whose food source has been 

abandoned becomes a scout bee and carries out a 

random search to find a new food source. After 

finishing the search process by all the employed 

bees, they perform a waggle dance in the hive to 

share the information about the nectar amount and 

the position of food sources with onlooker bees. 

Each onlooker bee chooses a food source based on 

a probability value associated with it, and explores 

a new food source around the selected food 
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source. The probability value of food source i is 

calculated as follows:  

(4) 
1

i

i SN

jj

fit
p

fit





 

where, 
ifit  and SN are the fitness value of food 

source i and the number of food sources or the 

colony size, respectively. The pseudo-code of the 

ABC algorithm is given in figure 1.  

ABC algorithm  

Initialize  

Repeat 

   Send the employed bees onto their food sources and 
      determine their nectar amounts 

   Send the onlooker bees onto the food sources based on  

       their probability and determine their nectar amounts 
   Send the scout bees for searching new food sources 

   Memorize the best food source found so far 

Until (a termination condition is met) 

Figure 1. Pseudo-code of ABC algorithm. 

2.2. Quantum computing 

The smallest unit of information in digital 

computers is a bit representing either 0 or 1 at a 

certain time, whereas Q-bit or quantum bit is the 

smallest unit of information in quantum 

computing. Each Q-bit is able to be in states “0”, 

“1” or a combination of both states at the same 

time. This is known by superposition. A Q-bit is 

indicated as a pair of numbers ( , )  , where the 

values for 
2

  and 
2

  denote the probability of 

discovering the Q-bit in the states “0” and “1”, 

respectively. The state of a Q-bit is presented as 

follows: 

0 1     (5) 

Each Q-bit should satisfy the following 

normalization equation: 
2 2

1    (6) 

In a quantum computer, an individual q is denoted 

by a sequence of n Q-bits, as follows [43]: 

  1 2

1 2

1 2

, ,...,
...

n

n

n

q q q q
 

 

 
   

  

 (7) 

In the act of observing a quantum state, it 

collapses to a single state. The observation 

process of Q-bit   is performed as follows: 
2(0,1) ( )

0

1

i

i

i

if rand

then f

else f







 

Figure 2: Observation process in a quantum system. 

Quantum computers apply a sequence of quantum 

operations to update the values for the Q-bits in 

each individual such that the updated Q-bits 

should satisfy Eq. (7). Q-gate is one of the 

quantum operations to update Q-bits. There are 

various Q-gates such as NOT gate, controlled 

NOT gate, rotation gate, Hadamard gate, X-gate, 

Y-gate, and Z-gate [24]. In most studies, the 

rotation Q-gate is employed more than other Q-

gates. The rotation Q-gate ( )iU   is defined as 

follows [38]: 

cos( ) sin( )
( )

sin( ) cos( )

i i

i

i i

U
 


 

   
   

  
 (8) 

where 
i  is the rotation angle of Q-bit i toward 

either 0 or 1 state. The state of Q-bit i at time t is 

updated as follows: 

( 1) ( )
( )

( 1) ( )

i i

i

i i

t t
U

t t

 


 

   
    

   
 (9) 

 

3. Proposed Algorithm 

The BQIABC algorithm was introduced by 

applying some concepts of quantum computing 

such as quantum bits, quantum gates, and 

superposition of states in the main structure of the 

ABC algorithm. BQIABC preserves the basic 

structure of the standard ABC algorithm and its 

main ideas, and replaces the concept of position of 

food sources and their updating process with new 

concepts. The position of each food source is 

defined as a Q-bit vector of length n. Each 

element in a food source takes a value of 0 or 1 by 

the probability of 
2

  or 
2

 . In other words, by 

observing a quantum state, it collapses to a single 

state [27]. The observation process is given by 

figure 2. The steps of the BQIABC algorithm are 

as follows: 

i. Initialization: The set 

 1( ) ( ),..., ( )SNFB t B t B t  is an archive 

set to hold the best binary solution achieved 

by the onlooker and employed bees through 

iterations of BQIABC. At iteration 0t  , 

the set (0) {}FB  . In this step, the set 

( )Q t  of SN quantum food sources in a n-

dimensional search space is randomly 

generated such that the normalization 

equation (6) is satisfied. 

(10) 1 2( ) { ( ), ( ),..., ( )}SNQ t q t q t q t  

where, ( )iq t  is the quantum food source i 

that is defined as follows: 

(11) 

1 2

1 2

( ) ( ) ( )
( ) ...

( ) ( ) ( )

n

i i i

i n

i i i

t t t
q t

t t t

  

  

 
  
  

 



Barani & Nezamabadi-pour/ Journal of AI and Data Mining, Vol 6, No 1, 2018. 
 

137 

 

The value d

i  ( 1,..., )d n  is initially set to 

1

2
 and the value d

i  is calculated by 

equation 
2 2

1d d

i i   . 

ii. Observation: the set 

1 2( ) { ( ), ( ),..., ( )}SNFW t F t F t F t  

contains the SN binary food sources 

(current solutions) that are made by 

observing on each Q-bit ( )iq t  in the set

( )Q t . The binary food source i is 

presented as 
1 2( ) , ,..., ( )n

i i i iF t f f f t     

where {0,1}d

if  . The observation 

process on the ith quantum food source 

iq  is carried out, as shown in figure 2. 

iii. Fitness evolution: in this step, the fitness 

value of each binary food source ( )iF t  in 

the set ( )FW t  is evaluated using function 

fit . 

iv. Updating ( )FB t : in this step, N binary food 

sources with the highest fitness value are 

selected from all food sources in the set 

( )FW t  and ( )FB t  and are replaced by the 

previous food sources in ( )FB t . At 0t  , 

all binary food sources in (0)FW  are 

transferred into ( )FB t . 

v. Employed bees: in this step, each 

employed bee   selects randomly a food 

source ( ) ( )wF t FB t  and then the rotation 

angle 
i  is calculated by Eq. (12). The 

employed bee i updates the position of 

quantum food source ( )iq t  using the rotation 

Q-gate in Eqs. (8, 9) and explores a new 

quantum food source iq  in the 

neighborhood of ( )iq t . The amount of 

movement towards 0 or 1 is denoted by 
i . 

 

(12) 
( )j j j

i i wf b     

where, j

if  and j

wb  are the value of jth 

dimension of the food sources iF  and wB , 

respectively, and   denotes the magnitude of 

the rotation angle. To enhance the 

convergence of the proposed algorithm, we 

employed a dynamic rotation angle approach 

used in [43] to calculate  . 

(13) max max min

max

( )
t

iter
        

where, t and 
maxiter  are the current iteration 

number and the maximum iteration number, 

respectively. Based on the above equation, 

the value for   changes monotonously from 

max  to 
min . In general, the value from 

0.05  to 0.001  is considered for  . The 

considered values for   are dependent on 

problem [35]. 

Then the observation process is applied to 

the quantum food source iq  and is makes 

the binary food source iF . If iF  has a more 

nectar amount, the previous food source iF  

will be replaced by iF . 

(14) 

( 1)

( 1)

cos( ( )) sin( ( )) ( )

sin( ( )) cos( ( )) ( )

j

i

j

i

j j j

i i i

j j j

i i i

t

t

t t t

t t t





  

  

 
 

 

     
   

      

vi. Onlooker bees: in this step, the selection 

probability of each food source is calculated 

by Eq. (4). Then the onlooker bee i chooses a 

food source based on the probability values 

associated with food sources, and explores a 

new food source around the selected food 

source similar to the employed bees.  

vii. Scout bee: if the number of sequential 

unsuccessful attempts to improve the fitness 

value of a food source is higher than the 

given value limit, it is considered as an 

abandoned food source. In this situation, the 

scout bee replaces the worst food source in 

the current iteration with the best food source 

in that iteration. 

viii. Repeat: the steps (ii)-(vii) are repeated 

until the stopping criterion is met.  

The pseudo-code of the proposed algorithm is 

presented in figure 3. 

4. Experimental results 

In this section, vast experiments are carried out to 

assess the performance of our proposed algorithm 

in order to solve the binary encoded optimization 

problems. In this study, the Max-Ones, Royal-

Road functions, and the 0-1 knapsack problem are 

considered as well-known benchmark binary 

problems. The BQIABC algorithm will be 

compared with ten binary-valued algorithms, 

which have been applied on the 0/1 knapsack 
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problems, the Max-Ones, and Royal-Road 

functions to validate the superiority of the 

proposed algorithm. The experimental results are 

summarized in tables 2-5. In the following 

sections, the benchmark binary problems will be 

clarified in detail. It is noteworthy that all 

experiments have been implemented on the 

Matlab environment on a system with 2.40 GHz 

CPU and 4 GB of RAM.  

BQIABC algorithm  

   0,  {}, {}t FB t FW t    

Initialize  Q t  (Eq. 10 and 11) 

Repeat 

   Observe  Q t and make  FW t  (Fig. 2) 

   Calculate fitness values of    iF t FW t   

   Update  FB t   

   for each employed bee i  do 

      Generate a new quantum food source 
iq in the 

       neighborhood of iq using Equations (12,13,14) 

      Observe 
iq and make 

iF by (Fig. 2) 

      Calculate fitness value of 
if  

      if    i ifit B fit B then  

            
i iq q  

            
i iB B  

      end if 

   end for 

   for each onlooker bee i  do 

      Calculate the probability of food sources using Eq. 4 

      Select a quantum food source jq based on probability 

      values 

       Generate a new quantum food source 
jq in the 

       neighborhood of   jq using Equations (12,13, 14)  

       Observe 
jq and make  jB by (Fig. 2) 

       Calculate fitness value of 
jf   

      if    j jfit B fit B then  

            
j jq q   

            
j jB B   

      end if 

   end for 

   Determine abandoned food source and replace it with a  
   new quantum food source for the scout bee 

   Memorize the best food source found so far 

   1t t    

Until (a termination condition is met) 

Figure 3. Pseudo code of BQIABC algorithm. 

 

4.1. Knapsack problem 

The 0/1 knapsack problem is one of well-known 

binary encoded optimization problems. Given a 

set of N objects, where each object   having a 

weight 
iw  and a profit 

ip  and a knapsack with 

limited weight capacity C. The aim of problem is 

filling the knapsack with a subset of objects in 

such a way that the sum of weight of selected 

objects does not exceed the specified capacity of 

knapsack, whereas their profit is maximized. The 

0/1 knapsack problem can be explained as 

follows: 

(15) 
1

:
n

i i

i

Maximize p x


  

 

Subject to the constraint: 

(16)  
1

, 0,1
n

i i i

i

w x C x


   

where, 
ix  is 0 or 1. If 

ix  takes the value of “1”, 

the object i is selected, otherwise the object is not 

selected for knapsack.  

In the recent years, researchers have proposed 

several exact methods based on branch and bound, 

dynamic programming, and heuristic methods to 

deal with the knapsack problems. In this study, 

five test cases of the 0/1 knapsack problem with 

50, 200, 400, 600, and 1000 items are employed 

to assess the BQIABC algorithm. All test cases 

are created by strongly correlated sets of data 

[38]. The unsorted data considered by Zhang [43] 

on the knapsack problems with 50, 200, and 400 

items and the unsorted data has been considered 

by Nezamabadi-pour [27] on the knapsack 

problems with 600 and 1000 items. Also some of 

experiments reported on them are used for 

comparison between the proposed algorithm and 

other algorithms.  

 

4.2. Binary benchmark functions 

Max-ones and Royal-Road are maximization 

benchmark functions in binary space (see Table 

1). In this study, the Max-Ones function with 

dimensions 40,80,160,320,640n   and the 

Royal-Road function with dimensions 

40,80,160,320n   were used to assess the 

performance of the BQIABC algorithm. 

 

4.3. Comparative algorithms 

To confirm the superiority of the proposed 

algorithm, it was compared with ten binary 

encoded heuristic algorithms. The proposed 

algorithm was applied on the Max-Ones, Real-

Road functions, and the 0/1 knapsack problem. 

For comparison, we implemented KQABC [41] 

and used the results reported by Nezamabadi-pour 

[27] for the binary quantum-inspired particle 

swarm optimization (BQIPSO) [44], binary 

particle swarm optimization (BPSO) [45], 

modified binary particle swarm optimization 

(MBPSO) [46], binary gravitational search 

algorithm (BGSA) [47], and novel binary 
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differential evolution NBDE [48] and the results 

given by Zhang [43] for the original binary 

quantum-inspired evolutionary algorithm 

(BQIEAo) [38], modified BQIEA by 

incorporating cross-over and mutation operators 

(BQIEAcm) [49], modified BQIEA by 

introducing new rotation Q-gate strategy 

(BQIEAn) [50] and conventional genetic 

algorithm (CGA).  

Table 1. Binary benchmark functions. 

Name Function S 

Max-Ones  
1

n
d

i i

d

f X X


   0,1
n

    

Royal-Road  
 

88

1 8 1 1

n

d
d

i i

d j d

f X X
   

 
  

 
 

    0,1
n

    

 

4.4. Comparative study 

The comparison between binary algorithm is 

performed based on three criteria, the best, mean, 

and the worst solution found. The comparison 

results are reported as the mean of 30 independent 

runs. In BQIABC, the maximum number of 

iterations and the parameter value of limit are 

set to 1000 and 200, respectively. The colony size 

is considered to be 20.  

The max  and min  value are set to 0.05  and

0.001π , respectively. Table 2 presents the 

comparison results of the performance of 

BQIABC with those of CGA, BPSO, MBPSO, 

NBDE, BGSA, BQIEAo, BQIEAcm, BQIEAn 

and BQIPSO on solving the knapsack problem 

with 50, 200, and 400 items.  

Rows captioned by “BS”, “MBS”, and “WS” 

report the best of the best profits, mean best 

profits, and worst of the best profits over 30 runs. 

Table 2. Comparison between BQIABC and other algorithms using the knapsack problems with 50, 200, and 400 items. 

Items Criteria CGA BPSO MBPSO NBDE BGSA BQIEAo BQIEAcm BQIEAn BQIPSO BQIABC 

50 

BS 296.45 307.05 302.23 301.98 312.16 312.17 312.13 307.25 312.22 312.23 

MBS 287.29 303.22 297.57 298.41 307.32 307.40 306.86 304.24 307.67 311.09 

WS 282.00 297.21 295.25 296.03 306.74 307.21 302.24 299.23 302.23 310.33 

200 

BS 1047.98 1107.93 1078.27 1082.35 1147.92 1178.22 1173.18 1102.08 1193.31 1198.22 

MBS 1027.13 1089.85 1069.09 1070.09 1120.18 1166.67 1156.22 1090.64 1184.91 1188.79 

WS 1017.15 1078.04 1058.55 1060.72 1078.29 1153.27 1143.20 1077.45 1178.23 1185.69 

400 

BS 2120.54 2210.46 2175.19 2181.15 2255.59 2341.36 2336.41 2211.12 2396.42 2410.94 

MBS 2100.85 2190.18 2156.64 2164.15 2219.28 2322.47 2315.92 2190.67 2380.10 2407.08 

WS 2086.29 2175.00 2140.68 2146.38 2191.14 2300.49 2291.25 2165.62 2366.02 2395.89 

 

The results summarized in table 2 denote that 

BQIABC can present the better solutions than the 

other binary algorithms for all test cases. The 

largest difference in the performance between 

BQIGSA and other binary algorithms occurs in 

the test case with 400 items. It implies that 

BQIABC in more complex problems, due to its 

higher exploration ability, provides better results 

than the other binary algorithms.  

Also we carried out experiments on the higher-

dimensional cases of the 0/1 knapsack problem 

with 600 and 1000 items. The comparison results 

of BQIABC with BPSO, BGSA, and BQIPSO are 

tabulated in table 3. 
 

From table 3, it can be observed that BQIABC 

finds the solutions with higher profits in 

comparison with the other comparative binary 

algorithms. As it can be seen, the distinction 

between the results found by BQIABC and the 

other comparative algorithms is very noticeable.  

In [41], a basic version of quantum ABC, called 

KQABC, is presented to solve the 0/1 knapsack 

problem. Authors used a raw relation to produce 

and update food sources. 

To confirm the superiority of BQIABC to the 

KQABC algorithm in solving the 0/1 knapsack 

problem, the KQABC algorithm was implemented 

based on the description provided in that paper, 

and the results obtained were compared with the 

proposed algorithm. These algorithms were 

implemented in the same conditions. The results 

obtained are tabulated in table 4. 
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Table 3. Comparison between BQIABC and some binary 

algorithms using knapsack problems with 600 and 1000 

items. 

Items Criteria BPSO BGSA BQIPSO BQIABC 

600 

BS 3265.45 3415.23 3564.97 3585.23 

MBS 3242.03 3379.19 3545.32 3577.02 

WS 3219.77 3318.24 3519.56 3573.43 

1000 

BS 5349.12 5439.99 5866.55 5929.91 

MBS 5328.96 5403.17 5832.95 5911.22 

WS 5306.90 5318.24 5803.74 5887.89 

 

Table 4. Comparison between BQIABC and KQABC. 

 

item 

 

 

criteria 

50 200 400 600 1000 

K
Q

A
B

C
 BS 279.26 1028.22 2087.63 3000.12 5229.7 

MBS 276.02 1022.94 2087.59 3100.05 5205.51 

WS 272.77 1017.74 2087.57 3100.03 5181.29 

B
Q

IA
B

C
 BS 312.23 1198.22 2410.94 3585.23 5929.91 

MBS 311.09 1188.79 2407.08 3577.02 5911.22 

WS 310.33 1185.69 2395.89 3573.43 5887.89 

Table 4 denotes that the results found by BQIABC 

in comparison with KQABC have very large 

distinctions, and our proposed algorithm can 

provide better solutions for the 0/1 knapsack 

problem. The performance of BQIABC, BPSO, 

BGSA, and BQIPSO in solving two well-known 

binary benchmark functions with several sizes 

was compared in table 5. The binary functions are 

given in table 1. The Max-Ones function with 

different sizes 40,80,160,320,640n  and the 

Royal-Road function with different sizes 

40,80,160,320n   are considered to assess the 

performance of the proposed algorithm. For small 

size cases on solving the Max-Ones, BGSA, and 

BQIPSO can be found optimal solutions but by 

increasing the size of problem, their performance 

is reduced. This reduction is very sensible for 

BGSA. In Max-Ones with sizes of 320 and 640, 

there was a considerable difference between 

BQIABC and other comparative algorithms. The 

results obtained for BGSA and BQIABC are 

almost the same on solving the Royal-Road with 

size of 40 and 80. BQIABC is able to outperform 

BGSA, BQIPSO, and BPSO in the sizes of     

and    . In all sizes of Royal-Road, there was a 

significant distinction between BQIABC and 

BPSO, and between BQIGSA and BQIPSO.  

 

 

 

Table 5. Comparison between BQIABC and some binary algorithms using Max-Ones and Royal-Road with different sizes. 

Function Criteria BPSO [43] BGSA [47] BQIPSO [44] BQIABC 

Max-Ones(40) 

BS 40 (1) 40 (1) 40 (1) 40 (1) 

WS 38 40 40 40 

MBS 39.251 40 40 40 

Max-Ones(80) 

BS 74 (2) 80 (1) 80 (1) 80 (1) 

WS 69 79 80 80 

MBS 71.15 79.65 80 80 

Max-Ones(160) 

BS 129 (2) 160 (1) 160 (1) 160 (1) 

WS 123 153 160 157 

MBS 125.35 157.32 160 159 

Max-Ones(320) 

BS 237 (4) 302 (3) 319 (2) 320 (1) 

WS 219 291 314 318 

MBS 227.05 308.60 316.95 319 

Max-Ones(640) 

BS 422 (4) 553 (3) 606 (2) 632 (1) 

WS 408 513 586 627 

MBS 413.60 529.85 596.15 630 

Royal-Road(40) 

BS 4 (2) 5 (1) 4 (2) 5 (1) 

WS 2 5 1 5 

MBS 2.95 5 2.7 5 

Royal-Road(80) 

BS 5 (3) 10 (1) 7 (2) 10 (1) 

WS 3 8 2 9 

MBS 3.80 9.25 3.60 9.5 

Royal-Road(160) 

BS 5 (4) 15 (2) 10 (3) 16 (1) 

WS 4 10 3 15 

MBS 4.2 11.55 6.50 15 

Royal-Road(320) 

BS 6 (4) 15 (3) 18 (2) 24 (1) 

WS 4 9 8 21 

MBS 5.00 11.19 12.00 22.5 
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Figure 4. Effect of population size on average best profits obtained by BQIEAn, BQIEAcm, BQIEAo, BQIPSO, BGSA, and 

the proposed algorithm. The different swarm sizes are 10, 40, 60, 80, 100, and 200. 

It can be observed in table 4 that BQIABC is able 

to provide better solutions in comparison with the 

other binary algorithms. The ability of the 

proposed algorithm to solve the binary encoded 

problems with larger sizes is mostly intuitive. In 

the table, rows captioned by “BS”, “WS”, and 

“MBS” report the best solution, worst solution, 

and mean best solutions over 30 runs, 

respectively. In Max-Ones and Royal-Road, the 

maximum number of iterations and the colony 

size were selected as 1000 and 20, respectively. 

Figure 4 illustrates the relationship between the 

population size and the average best profits on the 

knapsack problem with 200 items. The results 

observed in this figure were achieved by the 

proposed algorithm and five binary comparative 

algorithms over 30 independent runs. These 

comparative algorithms include BQIEAn, 

BQIEAcm, BQIEAo, BQIPSO, and BGSA. The 

results for BQIPSO, BGSA and BQIEAn, 

BQIEAcm, BQIEAo have already been reported 

by H. Nezamabadi-pour [27] and G. Zhang [43], 

respectively. The information presented in figure 

4 indicates that the increasing population size has 

the most influence on the optimal solutions 

obtained by BGSA and BQIEAn. Especially, 

BGSA has a significant increase from population 

size of 10 to 60. The BQIABC algorithm with 

population size of 20 could find the best solution 

with a profit of 1198.22. With increasing 

population size, the algorithms are able to find 

better solutions in the search space but to the 

contrary, the running time of algorithms will 

increase. In comparison with the other algorithms, 

BQIABC provides a better solution in all cases. In 

this study, the population size is considered to be 

20 for the knapsack problem in all experiments.  

 

5. Conclusions and future works 

In the recent years, various versions of 

optimization algorithms have been widely used to 

solve binary problems. The artificial bee colony 

(ABC) is an evolutionary optimization algorithm 

motivated by the intelligence foraging behavior of 

real bees. 

In this paper, we proposed a new quantum-

inspired version of the ABC algorithm, called 

binary quantum-inspired artificial bee colony 

algorithm (BQIABC), to effectively solve 

combinatorial problems in binary space by 

applying some concepts of quantum computing 

such as a quantum bit and superposition of states 

in the standard ABC algorithm. BQIABC, due to 

its higher exploration ability, can provide a robust 

tool to solve binary optimization problems. 

BQIABC preserved the initial structure of the 

standard ABC algorithm. However, the concept of 

position of food sources and their updating 

process were replaced with new concepts. In this 

study, the 0/1 knapsack problem, Max-Ones, and 

Royal-Road functions were employed as binary 

optimization problems. To emphasize the 

effectiveness of BQIABC algorithm, a 

comparative study was done with ten other binary 

optimization algorithms. The comparison results 

illustrate that BQIABC can overcome other 

comparative algorithms. Also it seems that 

BQIABC has the ability to solve other binary 

optimization problems. We can consider this 

extension as one of the future works of this study.  

References 
[1] Hardy, G., Lucet, C. B. & Limnios, N. (2007). K-

Terminal Network Reliability Measures with Binary 



Barani & Nezamabadi-pour/ Journal of AI and Data Mining, Vol 6, No 1, 2018. 
 

142 

 

Decision Diagrams. IEEE Transactions on Reliability, 

vol. 56, no. 3, pp. 506-515. 
 

[1] Karaboga, D. (2005). An idea based on honey bee 

swarm for numerical optimization. Technical Report-

TR06, Erciyes University, Engineering Faculty, 

Computer Engineering Department. 
 

[2] Karaboga, D. & Basturk, B. (2007). A powerful and 

efficient algorithm for numerical function optimization: 

artificial bee colony (ABC) algorithm. Journal of 

Global Optimization. vol. 39, no. 3, pp. 459-471.  
 

[3] Karaboga, D. & Basturk, B. (2008). On the 

performance of artificial bee colony (ABC) algorithm, 

Applied Soft Computing, vol. 8, no. 1, pp. 687-697. 
 

[4] Gökdağ, H. & Yildiz, A. R. (2012). Structural 

damage detection using modal parameters and particle 

swarm optimization, Materials Testing, vol. 54, no. 6, 

pp. 416-420. 
 

[5] Yildiz, A. R. (2013). Optimization of cutting 

parameters in multi-pass turning using artificial bee 

colony-based approach, Information Sciences, vol. 220, 

pp. 399-407. 
 

[6] Yildiz, A. R. (2013). Hybrid Taguchi-differential 

evolution algorithm for optimization of multi-pass 

turning operations, Applied Soft Computing, vol. 13, 

no. 3, pp. 1433-1439. 
 

[7] Yildiz, A. R. (2013). A new hybrid differential 

evolution algorithm for the selection of optimal 

machining parameters in milling operations, Applied 

Soft Computing, vol. 13, no. 3, pp. 1561–1566. 
 

[8] Yildiz, A. R. (2013). Cuckoo search algorithm for 

the selection of optimal machining parameters in 

milling operations, International Journal of Advanced 

Manufacturing Technology, vol. 64, no. 1-4, pp. 55-61. 
 

[9] Durgun, I. & Yildiz, A.R. (2012). Structural design 

optimization of vehicle components using Cuckoo 

search algorithm, Materials Testing, vol. 54, no. 3, pp. 

185-188. 
 

[10] Yildiz, B. S., Lekesiz, H. & Yildiz, A. R. (2016). 

Structural design of vehicle components using 

gravitational search and charged system search 

algorithms, Materials Testing, vol. 58, no. 1, pp. 79-81. 
 

[11] Izakian, Z. & Mesgari, M. S. (2015). Fuzzy 

clustering of time series data: A particle swarm 

optimization approach. Journal of AI and Data Mining, 

vol.  3, no 1, pp. 39-46. 
 

[12] Shi, H. (2006). Solution to 0-1 knapsack problem 

based on improved ant colony algorithm, In proceeding 

of IEEE International Conference on Information 

Acquisition, pp. 1062-1066, 2006. 
 

[13] Liu, A., Wang, J., Han, G., Wang, S. & Wen, J. 

(2006). Improved simulated annealing algorithm 

solving for 0-1 knapsack problem, In proceedings of 

IEEE the 6th international conference in intelligent 

systems design and application, pp. 1-6, 2006. 
 

[14] Li, ZK. & Li, N. (2009). A novel multi-mutation 

binary particle swarm optimization for 0-1 knapsack 

problem. In proceedings of Control and Decision 

conference, pp. 3042-3047, 2009. 
 

[15] Sajedi, H. & Razavi, S. F. (2016). DGSA: discrete 

gravitational search algorithm for solving knapsack 

problem, Oper Res Int J, pp. 1-29. 
 

[16] Sundar, S., Singh, A. & Rossi, A. (2010). An 

artificial bee colony algorithm for the 0-1 multi-

dimensional knapsack problem, Commun. Comput. Inf. 

Sci., vol. 94, pp. 141–151. 
 

[17] Kong, M., Tian, P. & Kao, Y. (2008). A new ant 

colony optimization algorithm for the multi-

dimensional knapsack problem, Comput. Oper. Res., 

vol. 35, no. 8, pp. 2672–2683. 
 

[18] Han, X. H., Quan, L., Xiong, X. Y. & Wu, B. 

(2013). Facing the classification of binary problems 

with a hybrid system based on quantum- inspired 

binary gravitational search algorithm and K-NN 

method, Eng. Appl. Artif. Intell., vol. 26, pp. 580-593. 
 

[19] Han, X. H., Chang, X. M., Quan, L., Xiong, X. Y., 

Li, J. X., Zhang, Zh. X. & Liu Y. (2014). Feature 

subset selection by gravitational search algorithm 

optimization, Information Sciences, vol. 281, pp. 128- 

146. 
 

[20] Liu, T., Zhang, L. & Zhang, J. (2013). Study of 

Binary Artificial Bee Colony Algorithm Based on 

Particle Swarm Optimization. Journal of 

Computational Information Systems, vol. 9, no. 16, pp. 

6459-6466.  
 

[21] Marinakis, Y, Marinaki, M, Matsatsinis, N. 

(2009). A hybrid discrete artificial bee colony-GRASP 

algorithm for clustering. International Conference on 

Computers Industrial Engineering. Troyes, France, pp. 

548-553 2009.  
 

[22] Pampara, G. & Engelbrecht, A. P. (2011). Binary 

artificial bee colony optimization. IEEE Symposium on 

Swarm Intelligence, IEEE, Perth, pp. 1-8, 2011. 
 

[23] Kashan, M. H., Nahavandi, N. & Kashan, A. H. 

(2012). DisABC: A new artificial bee colony algorithm 

for binary optimization. App. Soft Com., vol. 12, no. 1, 

pp. 342-352.  
 

[24] Hey, T. (1999). Quantum computing: An 

introduction. Com. and Cont. Eng. Journal, vol. 10, no. 

3, pp. 105-112.  
 

[25] Feynman, R. P. (1982). Simulating physics with 

computers. International Journal of Theoretical 

Physics, vol. 21, nos. 6/7, pp. 467-488.  
 

[26] Deutsch, D. (1985). Quantum theory, the church-

Turing principle and the universal quantum computer. 

In Proceedings of the Royal Society of London, pp. 97-

117.  
 

[27] Nezamabadi-pour, H. (2015). A quantum-inspired 

gravitational search algorithm for binary encoded 



Barani & Nezamabadi-pour/ Journal of AI and Data Mining, Vol 6, No 1, 2018. 
 

143 

 

optimization problems. Engineering Applications of 

Artificial Intelligence. vol. 40, pp. 62-75.  
 

[28] Spector, L., Barnum, H., Bernstein, H. J. & 

Swamy, N., (1999). Finding a better-than-classical 

quantum AND/OR algorithm using genetic 

programming. In Proceedings of Congr. Evolutionary 

Computation, Piscataway, NJ, vol. 3, pp. 2239–2246, 

1999.  
 

[29] Sahin, M., Atav, U. & Tomak, M. (2005). 

Quantum genetic algorithm method in self-consistent 

electronic structure calculations of a quantum dot with 

many electrons. International Journal of Modern 

Physics, vol. 16, no. 9, pp. 1379–1393.  
 

[30] Sun, J., Feng, B. & Xu, W. (2004). Particle swarm 

optimization with particles having quantum behavior. 

In Proceedings of congress on evolutionary 

computation, Portland, Oregon, USA, pp. 325–331, 

2004.  
 

[31] Sun, J., Xu, W. & Feng, B. (2004). A global 

search strategy of quantum-behaved particle swarm 

optimization. In Proceedings of IEEE Conference on 

Cybernetics and Intelligent Systems, pp. 111–116, 

2004.  
 

[32] Soleimanpour-moghadam M., Nezamabadi-pour, 

H. & Farsangi, M.M. (2012). A quantum behaved 

gravitational search algorithm. Intel. Info. Manag., vol. 

4, no. 6, pp. 390–395.  
 

[33] Moore, M. & Narayanan A. (1995). Quantum-

Inspired Computing. Dept. Comput. Sci., Univ. Exeter. 

Exeter, U.K.  
 

[34] Narayanan, A. & Moore, M. (1996). Quantum-

inspired genetic algorithms. In Proceedings of IEEE 

Int. Conf. Evolutionary Computation, Japan, pp. 61–

66, 1996.  
 

[35] Han, K. H. & Kim, J. H. (2002). Quantum-

inspired evolutionary algorithm for a class of 

combinatorial optimization. IEEE Trans. Evol. 

Comput., vol. 6, no. 6, pp. 580–593.  
 

[36] Duan, H. B., Xu, C. F. & Xing, Z. H. (2010). A 

hybrid artificial bee colony optimization and quantum 

evolutionary algorithm for continuous optimization 

problems. International Journal of Neural Systems, vol. 

20, no. 1, pp. 39-50.  
 

[37] Abbas, N. H. & Aftan, H. S. (2014). Quantum 

artificial bee colony algorithm for numerical function 

optimization. International Journal of Computer 

Applications, vol. 93, no. 9, pp. 0975-8887. 
 

[38] Han, K. & Kim, J. (2002). Quantum-inspired 

evolutionary algorithm for a class of combinatorial 

optimization. IEEE Trans. Evol. Comput., vol. 6, no. 6, 

pp. 580–593. 

 

 

 

 

 

 

[39] Li, G., Sun, M. & Li, P. (2015). Quantum-inspired 

bee colony algorithm. Journal of Optimization, vol. 4, 

pp. 51-60.  
 

[40] Yuan, X., Wang, P., Yuan, Y., Huang, Y. & 

Zhang, X. (2015). A new quantum inspired chaotic 

artificial bee colony algorithm for optimal power flow 

problem. Energy Conversion and Management, vol. 

100, pp. 1-9.  
 

[41] Manochehri, K. & Alizadegan, A. (2015). 

Designing and Comparing Classic versus Quantum 

Artificial Bee Colony Algorithm. Journal of 

mathematics and computer science, vol. 14, pp. 183-

192.  
 

[42] Karaboga D (2010). Artificial Bee Colony 

Algorithm, 

www.scholarpedia.org/article/Artificial_bee_colony_al

gorithm, Scholarpedia. vol. 5, no. 3.  
 

[43] Zhang, G. (2011). Quantum-inspired evolutionary 

algorithms: a survey and empirical study. Journal of 

Heuristics, vol. 7, no. 3, pp. 303-351.  
 

[44] Jeong Y., Park J., Jang S. & Lee K. Y. (2010). A 

New Quantum-Inspired Binary PSO: Application to 

Unit Commitment Problems for Power Systems. IEEE 

Transactions on Power Systems, vol. 25, no. 3, pp. 

1486 – 1495. 
 

[45] Kennedy J. & Eberhart R. C. (1997). A discrete 

binary version of the particle swarm algorithm. In 

Proceedings of IEEE Int. Conf. Systems, Man, and 

Cybernetics, vol. 5, pp. 4104–4108, 1997.  
 

[46] Lee, S., Soak, S., Oh, S., Pedrycz, W. & Joen, M., 

(2008). Modified binary particle swarm optimization. 

Natural Science, vol. 18, no. 9, pp. 1161-1166.  
 

[47] Rashedi, E., Nezamabadi-pour, H. & Saryazdi, S. 

(2010). BGSA: Binary Gravitational Search Algorithm, 

Journal of Nat Compute, vol. 9, pp. 727–745.  
 

[48] Deng, C., Zhao, B., Yang, Y. & Deng, A. (2010). 

Novel binary differential evolution without scale 

factor. In proceedings of the third international 

workshop on advanced computer intelligence. Auzhou, 

Jiangsu, China, pp. 250-253, 2010.  
 

[49] Li, N., Du, P. & Zhao, H. J. (2005). Independent 

component analysis based on improved quantum 

genetic algorithm: Application in hyperspectral images. 

In Proceedings of IGARSS, pp. 4323–4326, 2005.  
 

[50] Zhang, G. X., Li, N., Jin, W. D. & Hu, L. Z. 

(2006). Novel quantum genetic algorithm and its 

applications. Front. Electr. Electron. Eng. China, vol. 1, 

no. 1, pp. 31–36. 

http://www.sciencedirect.com/science/journal/01968904
http://www.sciencedirect.com/science/journal/01968904/100/supp/C


 

 

 

 نشریه هوش مصنوعی و داده کاوی

 

 

 

 سازی باینریارائه یک الگوریتم کوانتومی کلونی زنبورهای مصنوعی باینری برای حل مسائل بهینه
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 چکیده:

عسل در هنگام جستتووی زنبورهای هوشمندانه سازی هوش جمعی است که از رفتار یکی از الگوریتم بهینه (ABC)الگوریتم کلونی زنبورهای مصنوعی 

هتای در زمینتهپیوستته   گسستته ستازی برای حل مسائل بهینهبه طور گسترده  ABCتم الگوریهای مختلف نسخهالهام گرفته شده است. منابع غذایی 

   بته نتام الگتوریتم کوانتتومی کلتونی زنبورهتای مصتنوعی بتاینریABCاز الگتوریتم نستخه بتاینری جدیتدی در ایت  ماالته  اند. استفاده شدهمختلف 

(BQIABC)   در ارائه شده است. با الهام از محاسبات کوانتومیBQIABC  ستاتتار التلی  بیشتتر جدید با توانایی جستووی برای تعریف یک الگوریتم

هتای گیتت-Qکوانتتومی   استترات ی بیت کوانتومی   ضتعیت سوپرپوزیشت  جمله  از محاسبات کوانتومی موجود در مفاهیم برتی از    ABCالگوریتم 

ستازی بتاینری فتراهم را برای حل مستائل بهینتهقادر است ابزار قدرتمندی جستووی بالا به دلیل توانایی الگوریتم پیشنهادی اند. ترکیب شدهچرتشی  

 Royal-Road   Max-Onesتوابتع معیتار حتداک ر   2/6پشتی کولهمساله های مختلفی بر ر ی آزمایشالگوریتم پیشنهادی برای ارزیابی کارایی نماید. 

نشتا  دادنتد کته ها سازی بتاینری دیگتر متورد ماایسته قترار گرفتت. ماایستهبا ده الگوریتم بهینه BQIABC نتایج تولید شده توسطانوام شده است. 

BQIABC دهد.ارائه میهای دیگر الگوریتمیا مشابه  نتایج بهتر  

 .  توابع معیار حداک ر2/6پشتی گیت چرتشی  مساله کوله-Qالگوریتم کلونی زنبورهای مصنوعی  محاسبات کوانتومی   :کلمات کلیدی

 


