B.3. Communication/Networking and Information Technology
Roya Morshedi; S. Mojtaba Matinkhah
Abstract
The Internet of Things (IoT) is a rapidly growing domain essential for modern smart services. However, resource limitations in IoT nodes create significant security vulnerabilities, making them prone to cyberattacks. Deep learning models have emerged as effective tools for detecting anomalies in IoT ...
Read More
The Internet of Things (IoT) is a rapidly growing domain essential for modern smart services. However, resource limitations in IoT nodes create significant security vulnerabilities, making them prone to cyberattacks. Deep learning models have emerged as effective tools for detecting anomalies in IoT traffic, yet Gaussian noise remains a major challenge, impacting detection accuracy. This study proposes an intrusion detection system based on a simple LSTM architecture with 128 memory units, optimized for deployment on edge servers and trained on the CIC-IDS2017 dataset. The model achieves outstanding performance, with a detection rate of 99.90%, accuracy of 99.90%, and an F1 score of 98.93%. A key innovation is integrating the Hurst parameter with the model, improving resilience against Gaussian noise and enhancing detection of attacks like DoS and DDoS. This research highlights the value of advanced statistical features and robust noise-resistant models in securing IoT networks. The system’s precision, rapid response, and innovative approach mark a significant advance in IoT cybersecurity.
H.5.10. Applications
Z. Dorrani; M.S. Mahmoodi
Abstract
The edges of an image define the image boundary. When the image is noisy, it does not become easy to identify the edges. Therefore, a method requests to be developed that can identify edges clearly in a noisy image. Many methods have been proposed earlier using filters, transforms and wavelets with Ant ...
Read More
The edges of an image define the image boundary. When the image is noisy, it does not become easy to identify the edges. Therefore, a method requests to be developed that can identify edges clearly in a noisy image. Many methods have been proposed earlier using filters, transforms and wavelets with Ant colony optimization (ACO) that detect edges. We here used ACO for edge detection of noisy images with Gaussian noise and salt and pepper noise. As the image edge frequencies are close to the noise frequency band, the edge detection using the conventional edge detection methods is challenging. The movement of ants depends on local discrepancy of image’s intensity value. The simulation results compared with existing conventional methods and are provided to support the superior performance of ACO algorithm in noisy images edge detection. Canny, Sobel and Prewitt operator have thick, non continuous edges and with less clear image content. But the applied method gives thin and clear edges.