
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 13, No. 3, 2025, 305-319.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

Research paper

Anomaly Detection in IoT Traffic in the Presence of Gaussian Noise

Using Deep Neural Networks
Roya Morshedi and S.Mojtaba Matinkhah*

Department of Computer Engineering, Yazd University, Yazd, Iran.

Article Info Abstract

Article History:
Received 27 January 2025

Revised 28 February 2025
Accepted 15 April 2025

DOI:10.22044/jadm.2025.15672.2684

 The Internet of Things (IoT), is one of the fastest-growing domains

and plays a pivotal role in modern smart services. However, resource

limitations in IoT nodes pose significant security challenges,

rendering them vulnerable to cyberattacks. In recent years, the use of

deep learning models has emerged as an effective approach for

detecting anomalies in IoT traffic. One of the main challenges of these

approaches is the detrimental impact of Gaussian noise on the models'

detection accuracy. In this study, a deep learning-based intrusion

detection system is proposed, leveraging a simple and optimized

LSTM architecture with 128 memory units. This model is trained on

the CIC-IDS2017 dataset and designed for deployment on edge

servers. The performance evaluation results demonstrate the system's

high capability in detecting diverse attacks such as DoS, DDoS, and

other advanced threats. Key features of this system include a detection

rate of 99.90%, an overall accuracy of 99.90%, and an F1 score of

98.93%. One innovation of this research is the examination of the

impact of integrating the Hurst parameter with deep learning models.

The results indicate that this integration enhances the model's

resilience against Gaussian noise and improves threat detection

performance in IoT traffic. The findings of this research emphasize

the importance of utilizing advanced statistical features and designing

noise-resistant models for the cybersecurity of IoT networks. The

proposed system, with its precise performance, rapid response time,

and unique defensive strategy, represents a significant step toward

improving IoT network security and protecting smart infrastructure.

This research can be an efficient solution for developing security

systems to counter complex cyber threats.

Keywords:
Anomaly Detection, Gaussian

Noise, Hurst Parameter,

Intrusion Detection System, LSTM

Network.

*Corresponding author:
matinkhah@yazd.ac.ir (S. M.

Matinkhah).

1. Introduction

The Internet of Things (IoT), as one of the most

innovative and rapidly growing fields, has had a

profound impact on industry and individuals’ daily

lives. From connected devices in smart homes to

complex systems in smart cities, IoT has brought

about a transformative change in every aspect of

human life. However, these intelligent networks

face numerous security threats due to the resource

limitations of their nodes and the complexity of

communications between them. Cyberattacks,

which can compromise IoT data and systems,

require advanced security solutions to detect

threats in real-time. One of the greatest challenges

in this field is combating Gaussian noise and its

adverse impact on the accuracy of anomaly

detection models. The Internet of Things (IoT), as

one of the most innovative and rapidly growing

fields, has had a profound impact on industry and

individuals’ daily lives. From connected devices in

smart homes to complex systems in smart cities,

IoT has brought about a transformative change in

every aspect of human life. However, these

intelligent networks face numerous security threats

due to the resource limitations of their nodes and

mailto:matinkhah@yazd.ac.ir

Matinkhah & Morshedi et al./ Journal of AI and Data Mining, Vol. 13, No. 3, 2025.

306

the complexity of communications between them.

Cyberattacks, which can compromise IoT data and

systems, require advanced security solutions to

detect threats in real time. One of the greatest

challenges in this field is combating Gaussian noise

and its adverse impact on the accuracy of anomaly

detection models. This paper introduces a deep

learning-based intrusion detection system utilizing

LSTM networks, capable of identifying diverse

threats in IoT traffic with high accuracy. Trained

on the CIC-IDS2017 dataset and integrated with

the Hurst parameter, the proposed system exhibits

exceptional resilience to Gaussian noise. The

results demonstrate that this system can play a

pivotal role in safeguarding IoT networks and

ensuring their security against various threats. For

the seamless integration of the proposed intrusion

detection system within IoT nodes, a precise

understanding of the architecture of IoT nodes is

crucial. The architecture of IoT nodes, illustrated in

Figure 1, primarily comprises sensor, processing,

and communication subsystems. Each IoT node

includes sensors that collect environmental data,

microcontrollers that manage processing and

control operations, and communication subsystems

that enable data transmission between nodes and

other devices or networks. These nodes are

typically connected to edge servers through WiFi

routers, establishing their internet connectivity.

Compromising these nodes can disrupt their

operation and directly affect the efficiency and

security of the network. Therefore, a key metric for

intrusion detection is evaluating IoT nodes’

performance in terms of energy consumption,

latency, and throughput. This research addresses

one of the most critical security concerns in the

digital era by evaluating and enhancing the

performance of deep learning models for detecting

threats in IoT traffic. In this study, a novel

framework for anomaly detection in IoT traffic is

presented, which utilizes the Hurst parameter for

long-term memory analysis of the data and a hybrid

LSTM model for identifying complex patterns.

Furthermore, by injecting Gaussian noise into the

data, an attempt is made to simulate real network

conditions and assess the model’s ability to detect

anomalies under various scenarios. The results of

this study show that using the Hurst parameter as a

key feature can enhance the accuracy and

reliability of intrusion detection systems. In this

research, the Hurst parameter is a powerful tool for

identifying evolutionary anomalies in time series

data. The Hurst parameter can measure the self-

similarity and long-term dependencies of network

data, and by analyzing the oscillatory behavior of

the data, it can detect unusual patterns. This feature

proves particularly useful in detecting IoT traffic

anomalies in the presence of Gaussian noise.

 Figure 1. Architecture of IoT,

2. Related Works

Anomaly detection is a key area in data analysis

and the security of Internet of Things (IoT)

systems, aiming to identify abnormal behaviors in

the data collected from IoT devices and networks

[1,2]. In essence, anomaly detection is an approach

to identifying unexpected or unusual behaviors that

may indicate issues such as technical malfunctions,

cyberattacks, or network disruptions [3].

Anomalies can significantly impact device

performance and data security, making their swift

and accurate detection essential for maintaining

system integrity and preventing damage.

The rapid growth of IoT in recent years has led to

the generation of massive amounts of data. These

data, often containing time-series values and

location-dependent information, pose challenges in

storage, processing, and analysis due to their high

volume and complex nature [4]. Among these

challenges, Gaussian noise in the data can

complicate the anomaly detection process. Thus,

robust analytical algorithms and methods are

required to effectively handle this noise and

accurately detect anomalies [5].

One important approach for analyzing IoT data is

the use of the Hurst parameter. This parameter,

which represents the self-correlation and

scalability characteristics of the data, can provide

valuable insights into the long-term behavior of

systems. Anomaly detection based on the Hurst

parameter involves several operations that classify

data into anomalies and normal behavior [5-6].

Anomaly detection is conducted at three levels:

network, device, and event. At the network level

Anomaly Detection in IoT Traffic in the Presence of Gaussian Noise Using Deep Neural Networks

307

[7], the analysis concentrates on assessing overall

traffic patterns to identify any unusual or abnormal

behavior within the network. The device-level [8]

entails a more granular approach, where the

behavior of individual devices is scrutinized to

detect anomalies specific to each device's activity.

At the event level [9], the analysis targets particular

events, identifying anomalies within specific time

frames or geographic locations.

The methods for anomaly detection can generally

be grouped into three categories: rule-based

approaches, deep learning approaches, and hybrid

models. Among these, deep learning has gained

widespread adoption due to its ability to leverage

machine learning algorithms and data-dependent

features to classify behaviors as normal or

anomalous [10].

Deep learning methods for anomaly detection have

proven to be highly effective and powerful,

utilizing architectures like recurrent neural

networks (RNNs), convolutional neural networks

(CNNs), and long short-term memory networks

(LSTMs) to analyze complex data patterns and

uncover hidden anomalies [14].

Given the limited research in this area, efforts have

been made to utilize studies directly or indirectly

related to the subject. Table 1 presents common

methods used in previous studies along with their

references.

Table1. Comparison of Various Approaches.

Security

Focus

Evaluation &

Comparison

Scalability Resource &

Implementation

Limitation

Method Network Articles

Intrusion

Detection in
Smart Home

IoT

Performance

evaluation using
LSTM

Suitable for

smart home
IoT

Relies on LSTM

models for IoT

LSTM-

based deep
learning

Smart

Home IoT

[1]

Intrusion

Detection for

IoT Security

Evaluation using

deep neural

networks

Scalable for

IoT networks

Relies on deep

neural networks

for IoT

Deep neural

networks

General

IoT

Networks

[2]

Intrusion

Detection

with 5G IoT

Using deep

learning for IoT

network security

Scalable for

5G IoT

networks

Needs 5G

network

infrastructure

Deep

learning for

IoT security

5G IoT

Networks

[3]

Intrusion

Detection for

IoT Network
Security

Evaluation using

deep learning for

IoT

Suitable for

IoT networks

Relies on deep

learning for IoT

security

Deep

learning-

based IDS

IoT

Networks

[4]

Impact of

Data Noise

on IoT
Security

Study of decision

tree classification

Evaluates

noise impact

in IoT
security

Depends on

decision tree

models

Decision

tree

classification

IoT

Networks

[5]

Feature
Extraction for

Intrusion

Detection

Machine learning
for IoT intrusion

detection

Applicable
for IoT

environment

s

Depends on
feature extraction

Machine
learning-

based feature

extraction

IoT
Networks

[6]

Intrusion
Detection for

SDN

Machine learning
for SDN intrusion

detection

Scalable for
SDN

networks

SDN-specific
limitations

Machine
learning for

SDN

SDN
Networks

[7]

Class
Imbalance in

Network IDS

Data resampling
for class imbalance

Handles
class

imbalance in

large datasets

Class imbalance
issues in datasets

Data
resampling

with deep

learning

Network IDS [8]

Matinkhah & Morshedi et al./ Journal of AI and Data Mining, Vol. 13, No. 3, 2025.

308

Securing
IoT and SDN

Systems

Deep learning for
IoT and SDN

systems

Scalable for
IoT and SDN

Requires IoT and
SDN integration

Deep
learning for

automatic

intrusion
detection

IoT and SDN
Systems

[9]

Privacy-

preserving
Framework

for Smart

Cities

Blockchain for

privacy-preserving
security

Scalable for

smart cities

Complex privacy

solutions

Blockchain

and machine
learning

Smart Cities [10]

AI for

Intrusion
Detection in

IoT

Review of AI

methods for IoT
IDS

Scalable AI

methods for
IDS

Resource-

intensive AI
methods

AI

techniques
for IoT

security

IoT

Networks

[11]

Hybrid

CNN+LSTM

IDS for

Industrial IoT

Hybrid

CNN+LSTM

evaluation

Scalable for

industrial

IoT

Requires hybrid

CNN+LSTM

architecture

Hybrid

CNN+LSTM

Industrial

IoT

[12]

Enhancing

IoT Network
Security

Enhancing security

through deep
learning

Scalable for

IoT networks

Resource and

computational
challenges

Deep

learning for
network

security

IoT

Networks

[13]

SDN-based

IDS for IoT

Networks

SDN-enabled IDS

for IoT networks

Scalable for

IoT and SDN

systems

SDN-specific

issues

SDN-based

deep learning

IoT and SDN

Systems

[14]

Systematic

Review of

IDS

Review of IDS

techniques

Applicable to

various

network
environment

s

General IDS

limitations

Literature

review of

IDS methods

General

Networks

[15]

Deep-IDS

for IoT

Nodes

Real-time intrusion

detection using deep

learning

Suitable for

real-time IoT

nodes

Requires deep

learning for real-

time detection

Deep

learning-

based IDS

IoT

Networks

[16]

3. Data sets and Methodology

3.1. Datasets

The CIC-IDS2017 dataset, one of the most

prominent resources for evaluating intrusion

detection systems, contains 78 features and a class

label for each sample. These features encompass

various network traffic attributes and statistics

related to packet data. Each sample in the dataset is

labeled as either normal or belonging to one of the

several types of network attacks. This dataset

enables researchers to evaluate intrusion detection

systems under various conditions and across

different types of attacks, which is crucial for

assessing the performance of deep learning

algorithms in detecting network threats.

3.2. Hurst Parameter
The Hurst parameter is a statistical measure used to

assess the self-similarity of a signal or pattern,

typically in the context of time series data [24]. In

our research, this parameter is utilized for anomaly

detection in Internet of Things (IoT) network

traffic using the CICIDS2017 dataset. We calculate

the Hurst parameter for each data record to

determine the degree of self-similarity in the

network traffic.

The calculation process is as follows:

1. First, the time series data is divided into

equally sized segments. For example, if the

dataset contains 100 data points, it might

be divided into segments, each containing

10 data points.

2. For each segment, we compute its range

(R), which is the difference between the

highest and lowest values, and its standard

deviation (S), which measures the

variability from the mean.

3. The ratio of R/S is then calculated for each

segment, which is obtained by dividing the

range by the standard deviation.

Anomaly Detection in IoT Traffic in the Presence of Gaussian Noise Using Deep Neural Networks

309

4. The logarithm of these R/S values is

computed to normalize the data.

5. The average of these logarithmic values

across all segments is calculated.

6. The Hurst parameter is then determined

using the following formula:

The Hurst parameter is introduced as a distinctive

feature in our dataset to quantify the self-similarity

in network traffic patterns, a critical aspect of

detecting modern intrusions. By using the Hurst

parameter, our proposed model is not only capable

of identifying obvious intrusions, but it also has the

ability to detect and flag complex and hidden

patterns, which are characteristic of advanced

network threats. This strategic enhancement plays

a vital role in improving the model’s detection

capabilities and contributes to the advancement of

intrusion detection research.

3.3. Methodology

The proposed methodology for detecting and

analyzing attacks in Internet of Things (IoT)

networks consists of several stages. In the first step,

a simulation of an IoT network is created, where

each node is associated with sub-nodes. The edge

server, which plays a critical role in the network, is

defined as part of the system and is equipped with

an Intrusion Detection System (IDS) model.

During this stage, computations such as energy

consumption and throughput for each node are

performed and incorporated into the network's

graph structure.

In the second stage, input data is loaded from a

standardized dataset and undergoes preprocessing.

This process includes the removal of invalid

values, such as missing and out-of-bounds data,

which are subsequently replaced with mean values.

Data features are normalized, and labels are

converted into a numerical format to prepare them

for deep learning models. To address the issue of

class imbalance, the Synthetic Minority Over-

sampling Technique (SMOTE) is employed to

balance the number of samples across each class.

In the third stage, to evaluate the system's resilience

to noise, Gaussian noise with a normal distribution

is added to the data. The added noise was generated

randomly with a mean of zero and a standard

deviation of 0.1, and was subsequently injected

into the original data. By introducing Gaussian

noise into the data, an attempt was made to

simulate real network conditions and evaluate the

model's ability to detect anomalies under various

scenarios. The Hurst parameter, which reflects self-

similarity, is calculated for both the original and

noisy data, and a comparison is made to assess the

impact of noise on data stability. This parameter is

one of the key metrics in time series analysis,

indicating the degree of self-similarity and the

long-term dependence behavior of the data. This

analysis contributes to improving the model's

robustness in real-world conditions.

The proposed deep learning model consists of a

Long Short-Term Memory (LSTM) network

designed for attack analysis and detection. The

input data is reconstructed in a three-dimensional

format for use in this model. The network

comprises two LSTM layers with different

configurations, followed by an output layer using a

Softmax activation function. To prevent

overfitting, early stopping is applied during

training. The model is trained using both training

and validation datasets, and its performance is

evaluated on test data.

In the next stage, results analysis involves

calculating metrics such as accuracy, recall,

precision, and the F1 score. Another crucial step is

evaluating the model's performance using various

metrics, including accuracy and error. Accuracy

and error charts are plotted for both training and

validation periods, allowing for a detailed

examination of how these values evolve throughout

the training process. These plots assist in

identifying the model's strengths and weaknesses,

as well as the impact of various configurations on

performance. Confusion matrices are generated for

specific attack classes, and Detection Rate (DR)

and False Alarm Rate (FAR) are calculated at

different threshold levels. The confusion matrix

analysis provides detailed insights into the model's

ability to identify attacks, helping pinpoint

instances where the model failed to detect certain

attacks.

Furthermore, the detection rate and response time

for different types of attacks are presented in bar

charts, and the model’s performance in terms of

accuracy and error during training and validation is

examined. The anomaly detection phase is another

key component of the methodology, which

involves calculating the absolute error between

predicted and actual values of the validation data.

Samples with errors exceeding a specified

threshold are identified as anomalies. The number

and percentage of detected anomalies are

calculated, and a distribution chart of these

anomalies is plotted in comparison with predicted

and actual values. This analysis helps identify

(log(())

log()

RE
SH

n

Matinkhah & Morshedi et al./ Journal of AI and Data Mining, Vol. 13, No. 3, 2025.

310

abnormal behavioral patterns and their correlation

with attack data.

In the subsequent stage, the frequency of attacks

and anomalies in training and validation datasets is

examined. The number of attacks and normal

samples is calculated for each dataset, and the

results are presented in comparative bar charts.

This analysis provides a deeper understanding of

the data distribution and its relationship with the

model’s detection accuracy.

Another critical step involves evaluating the

model’s performance through various metrics such

as accuracy and error. Accuracy and error charts

are plotted for both the training and validation

phases and trends in these values are analyzed

throughout the training period. These charts aid in

identifying strengths and weaknesses in the model,

as well as the effects of different configuration

settings on its performance.

This methodology, by offering a comprehensive

framework, integrates network simulation, data

analysis, and deep learning techniques to enhance

the detection and analysis of attacks in IoT

networks.

The proposed method for identifying and removing

noise from the data consists of several key steps

that have been proven effective. Initially, statistical

analyses, such as identifying outliers and

examining data distributions, are used to detect

anomalies. Then, invalid values in the data context

are converted to NaN and replaced using the mean

and statistical methods to improve data quality.

Adding controlled noise to the data enables the

model to learn more effectively when faced with

noise, enhancing its resilience to nonlinear and

noisy data. Additionally, calculating the Hurst

parameter, as a proven method for trend analysis

and accuracy evaluation, helps identify structural

changes in noisy data. The use of techniques such

as SMOTE to address class imbalance and improve

data quality in machine learning models is also

well-documented in the literature. Moreover,

Dropout layers in neural network architectures,

such as LSTM, help reduce noise learning and

prevent overfitting. Finally, analyzing predicted

errors and establishing a specific threshold for

anomaly detection is an effective method for noise

identification and removal, which can enhance the

accuracy of machine-learning model results

(Figure 2).

Figure 2. Flowchart for the proposed method.

3.4 Implementation of Anomaly Detection in

IoT Network Traffic Using the LSTM Model

In this research, the goal is to detect anomalies in

the traffic of Internet of Things (IoT) networks. For

this purpose, Long Short-Term Memory (LSTM)

networks are used to identify normal and abnormal

traffic behaviors. This model utilizes real network

traffic data to detect attacks and abnormal

behaviors in IoT networks, and an IDS model

based on LSTM is developed for this task. The

implementation steps are as follows:

1. Creation and Definition of the IoT Network

Initially, an IoT network is created using the

NetworkX library. In this network, the nodes

represent sensors, edge servers, and gateways, each

with its own specific features such as energy

consumption, communication protocols, and

performance characteristics. These nodes are

randomly assigned properties like active time, idle

time, power consumption, etc.

 Definition of Nodes: The nodes include

active sensors, microcontroller processors,

and various communication protocols such

as IEEE802.15.4, Bluetooth LE, and

LoRaWAN.

 Sensor Nodes: Defined with power

consumption and communication

protocols such as IEEE802.15.4 and

Bluetooth LE.

 Edge Server: Acts as the central

processing hub, receiving data from

sensors and sending it to gateways.

 Gateways: Designed to connect the

network to the internet and send data from

the edge server to the internet network.

Code for creating the IoT network graph:

G = nx.Graph()

Anomaly Detection in IoT Traffic in the Presence of Gaussian Noise Using Deep Neural Networks

311

Define IoT nodes with power

consumption and communication

protocols

for i in range(10):

 T_active = np.random.uniform(1, 5) #

Active time

 T_idle = np.random.uniform(5, 10) #

Idle time

 P_active = np.random.uniform(0.1, 0.5)

Active power

 P_idle = np.random.uniform(0.05, 0.1)

Idle power

 E = T_active * P_active + T_idle *

P_idle # Energy consumption

 D = np.random.uniform(100, 500) #

Data size

 T = np.random.uniform(1, 10) # Task

duration

 TH = D / T # Power calculation

 G.add_node(f'node_{i+1}',

 type='node',

 sensor_subsystem='active',

processing_subsystem='microcontroller',

communication_subsystem=np.random.ch

oice(['IEEE802.15.4', 'Bluetooth LE',

'LoRaWAN']),

 energy_subsystem='solar_panel',

 energy_usage=E,

 delay=np.random.uniform(0.1,

1.0),

 throughput=TH)

Add edge server and gateways to the

network

G.add_node('edge_server',

type='edge_server', protocol='Cellular

IoT', ids_model='LSTM IDS Model')

for i in range(5):

 G.add_node(f'gateway_{i+1}',

 type='gateway',

protocol=np.random.choice(['LoRaWAN',

'Cellular IoT']),

 connection='internet')

Define network connections

for i in range(10):

 G.add_edge(f'node_{i+1}',

'edge_server',

protocol=G.nodes[f'node_{i+1}']['commu

nication_subsystem'])

for i in range(5):

 G.add_edge('edge_server',

f'gateway_{i+1}', protocol='WiFi')

Calculate energy consumption

energy_consumption =

sum([G.nodes[node]['energy_usage'] for

node in G.nodes if G.nodes[node]['type']

== 'node'])

print(f"Total Energy Consumption:

{energy_consumption:.2f} J")

2. Data Loading and Preprocessing

Data is loaded from a CSV file. Initial

preprocessing steps are performed to handle

missing values, correct erroneous data, and

normalize the data. Additionally, SMOTE is used

to address class imbalance. Then, the data is

reshaped into sequences to serve as input to the

LSTM model. The preprocessing steps include:

 Handling Missing Values (NaN):

Missing values for features are replaced

with the mean of those features.

 Defining Feature and Label Columns:

Feature and label columns are extracted

from the data.

 Converting Labels to Numerical

Format: Labels are converted to a binary

or one-hot encoding format.

 Normalizing Features: Features are

normalized using StandardScaler to

ensure consistent value ranges.

Code for data preprocessing:

data_path =

'/content/drive/MyDrive/data.csv'

data = pd.read_csv(data_path)

Preprocess data

data.columns = data.columns.str.strip() #

Remove extra spaces from column names

label_column = 'Label' # Label column

name

feature_columns = [col for col in

data.columns if col != label_column] #

Extract features

features = data[feature_columns]

labels = data[label_column]

Replace incorrect values with column

mean

features.replace([np.inf, -np.inf], np.nan,

inplace=True)

features.fillna(features.mean(),

inplace=True)

Convert labels to numerical format

labels = pd.get_dummies(labels).values

Normalize features

scaler = StandardScaler()

features = scaler.fit_transform(features)

Matinkhah & Morshedi et al./ Journal of AI and Data Mining, Vol. 13, No. 3, 2025.

312

3. Adding Noise to the Data

To improve the model's generalization capability

and simulate real-world conditions where data may

have noise, noise is added to the features. This

noise is generated from a normal distribution with

a mean of 0 and a standard deviation of 0.1.

 Noise: Gaussian noise is added to the

features to simulate real-world data

conditions.

Code for adding noise:

def AddNoise(data):

 mu, sigma = 0, 0.1 # Mean and standard

deviation of noise

 noise = np.random.normal(mu, sigma,

np.shape(data)) # Generate noise from

normal distribution

 noised_data = data + noise # Add noise

to the data

 return noised_data

X_noised = AddNoise(features)

4. Calculation of the Hurst Parameter

The Hurst exponent is used to model the self-

similarity behavior of the data and detect long-term

trends. This parameter is especially useful in time-

series analysis and can also be beneficial in traffic

data analysis.

 Raw and Noisy Data: The Hurst

parameter is computed for both the raw

and noisy data.

Therefore, the Hurst parameter is calculated for

each numerical feature in the dataset. This is done

using the hurst_exponent function, which

computes the Hurst exponent for each feature and

stores the result in the hurst_features list. If any

NaN values arise during the calculation, they are

replaced with 0 using the np.nan_to_num function

to prevent errors. Next, the data is standardized

using the StandardScaler to ensure that the features

are on the same scale, which is particularly

important for machine learning models like LSTM

that are sensitive to the scale of the data. After the

data is scaled, the calculated Hurst parameters need

to be added to the scaled data. To achieve this, the

Hurst values are first reshaped into the appropriate

dimensions. Then, the Hurst values are repeated for

each data sample to match the number of samples

in the feature set. If the number of samples in the

Hurst values and the feature data does not align,

np.tile is used to repeat the Hurst values until they

match the number of feature samples. Finally, the

scaled data and the Hurst parameters are

concatenated together, creating a final dataset

(X_scaled_hurst) that contains the original features

along with the Hurst parameters. This combined

dataset is then ready for use in machine learning

models, such as LSTM, to leverage the additional

feature of the Hurst parameter.

Code for Hurst parameter calculation:

H_raw = nolds.hurst_rs(features.flatten())

Calculate Hurst for raw data

print(f"Hurst Parameter (Original Data):

{H_raw:.4f}")

H_noised =

nolds.hurst_rs(X_noised.flatten()) #

Calculate Hurst for noisy data

print(f"Hurst Parameter (Noised Data):

{H_noised:.4f}")

--- Calculate Hurst Exponent for each

feature ---

def hurst_exponent(ts):

 ts = np.array(ts)

 ts = ts[~np.isnan(ts)]

 if len(ts) <= 1 or np.std(ts) == 0:

 return np.nan

 l = len(ts)

 T = np.arange(1, l + 1)

 R = np.cumsum(ts - np.mean(ts))

 S = np.std(ts)

 try:

 Y = np.log10(R / S)

 X = np.log10(T)

 except ValueError:

 return np.nan

 fit = np.polyfit(X, Y, 1)

 return fit[0]

Calculate Hurst Exponent for each

feature

hurst_features = []

for col in

features.select_dtypes(include=[np.numbe

r]).columns:

 hurst_value =

hurst_exponent(features[col].values)

 hurst_features.append(hurst_value)

Replace NaN values with 0

hurst_features =

np.nan_to_num(np.array(hurst_features),

nan=0.0)

--- Preprocess the data ---

Anomaly Detection in IoT Traffic in the Presence of Gaussian Noise Using Deep Neural Networks

313

scaler = StandardScaler()

X_scaled = scaler.fit_transform(features)

--- Add Hurst Exponent to features ---

hurst_features = hurst_features.reshape(-1,

1)

hurst_features_repeated =

np.tile(hurst_features, (X_scaled.shape[0]

// len(hurst_features), 1))

if len(hurst_features_repeated) >

X_scaled.shape[0]:

 hurst_features_repeated =

hurst_features_repeated[:X_scaled.shape[

0]]

elif len(hurst_features_repeated) <

X_scaled.shape[0]:

 hurst_features_repeated =

np.tile(hurst_features_repeated,

(X_scaled.shape[0] //

len(hurst_features_repeated) + 1, 1))

 hurst_features_repeated =

hurst_features_repeated[:X_scaled.shape[

0]]

X_scaled_hurst =

np.concatenate([X_scaled,

hurst_features_repeated], axis=1)

5. Building and Training the LSTM Model

After preprocessing, an LSTM model is used for

anomaly detection in network traffic. LSTM is

ideal for learning long-term dependencies in

sequential data, making it suitable for traffic data

with temporal features.

Model Architecture:

 LSTM Layers: The model consists of

LSTM layers for learning time-dependent

patterns, with Dropout layers to prevent

overfitting.

 Input Shape: Data needs to be reshaped

into sequences, i.e., timesteps and

features.

 Layers:

o First LSTM layer with 128 units.

o Second LSTM layer with 64

units.

o Dropout layers for regularization.

o A final Dense layer with a

softmax activation function for

multi-class classification.

Code for LSTM model definition and training:

model = Sequential()

model.add(LSTM(128,

input_shape=(X_train.shape[1],

X_train.shape[2]),

return_sequences=True))

model.add(Dropout(0.2))

model.add(LSTM(64,

return_sequences=False))

model.add(Dropout(0.2))

model.add(Dense(y_train.shape[1],

activation='softmax'))

Compile the model

model.compile(optimizer='adam',

loss='categorical_crossentropy',

metrics=['accuracy'])

EarlyStopping for overfitting prevention

early_stopping =

EarlyStopping(monitor='val_loss',

patience=10, restore_best_weights=True)

Train the model

history = model.fit(X_train, y_train,

epochs=50, batch_size=64,

validation_split=0.2,

callbacks=[early_stopping], verbose=1)

6. Model Evaluation

After training, the model is evaluated using test

data to compute the overall accuracy. Additionally,

recall is calculated to evaluate the model's

performance in detecting anomalies.

Code for model evaluation:
loss, accuracy = model.evaluate(X_test,

y_test)

print(f"Test Accuracy: {accuracy *

100:.2f}%")

y_pred = model.predict(Test)

y_pred_classes = np.argmax(y_pred,

axis=1)

y_true = np.argmax(y_test, axis=1)

Calculate accuracy

test accuracy = accuracy_score(y_true,

y_pred_classes)

print(f"Test Accuracy: {test_accuracy *

100:.2f}%")

Calculate Recall

recall = recall_score(y_true,

y_pred_classes, average='macro')

print(f'Accuracy: {test_accuracy *

100:.2f}%')

print(f'Recall: {recall * 100:.2f}%')

7. Anomaly Detection

At this stage, the model is used to detect anomalies.

Anomalies are defined as samples that are

incorrectly classified and likely exhibit abnormal

behavior.

Matinkhah & Morshedi et al./ Journal of AI and Data Mining, Vol. 13, No. 3, 2025.

314

Code for error calculation and anomaly

detection:
error = np.abs(y_pred.flatten() -

y_test.flatten()) # Absolute error

threshold = 0.5 # Threshold for anomaly

detection

Detect anomalies

anomalies = error > threshold

Display anomaly results

print(f"Number of anomalies detected:

{np.sum(anomalies)}")

print(f"Percentage of anomalies:

{np.mean(anomalies) * 100:.2f}%")

8. Displaying Anomalies and Comparison with

Attacks

To observe and compare the behavior of anomalies

and attacks in the dataset, various plots and

matrices are used.

1. Displaying Anomalies:

o Anomalies are displayed as red

dots on the plot of predicted and

true labels.

2. Comparing the Frequency of

Anomalies and Attacks:

o The number of attack samples and

anomalies in the training and test

datasets are counted and

displayed.

Plot anomalies

plt.figure(figsize=(10, 6))

plt.plot(y_val.flatten(), label='True

Labels', color='blue', alpha=0.5) #

True labels

plt.plot(predicted.flatten(),

label='Predicted Labels',

color='orange', alpha=0.5) # Predicted

labels

plt.scatter(np.where(anomalies)[0],

predicted.flatten()[anomalies],

color='red', label='Anomalies',

zorder=5) # Anomalies

plt.title('Anomaly Detection in Traffic

Behavior')

plt.xlabel ('Sample Index')

plt.ylabel('Prediction Value')

plt.legend()

plt.show()

Step 6: Comparison of Anomaly and

Attack Frequency

train_attack_counts =

np.sum(y_train.argmax(axis=1) == 1)

train_benign_counts =

np.sum(y_train.argmax(axis=1) == 0)

val_attack_counts =

np.sum(y_val.argmax(axis=1) == 1)

val_benign_counts =

np.sum(y_val.argmax(axis=1) == 0)

Print attack and anomaly counts

print(f"Training set - Attack samples:

{train_attack_counts}, Benign

samples: {train_benign_counts}")

print(f"Validation set - Attack

samples: {val_attack_counts}, Benign

samples: {val_benign_counts}")

Plot comparison of anomaly and

attack frequency

labels = ['Benign', 'Attack']

train_counts = [train_benign_counts,

train_attack_counts]

val_counts = [val_benign_counts,

val_attack_counts]

x = np.arange(len(labels)) # Number

of categories

width = 0.35 # Bar width

fig, ax = plt.subplots(figsize=(8, 6))

Plot training and validation bars

rects1 = ax.bar(x - width/2,

train_counts, width, label='Training',

color='blue')

Anomaly Detection in IoT Traffic in the Presence of Gaussian Noise Using Deep Neural Networks

315

rects2 = ax.bar(x + width/2,

val_counts, width, label='Validation',

color='red')

Add labels and titles

ax.set_ylabel('Counts')

ax.set_title('Anomaly and Attack

Frequency Comparison')

ax.set_xticks(x)

ax.set_xticklabels(labels)

ax.legend()

Add labels on bars

def add_labels(rects):

 for rect in rects:

 height = rect.get_height()

 ax.annotate('{}'.format(height),

 xy=(rect.get_x() +

rect.get_width() / 2, height),

 xytext=(0, 3), # Offset

label

 textcoords="offset

points",

 ha='center', va='bottom')

add_labels(rects1)

add_labels(rects2)

plt.show()

9. Confusion Matrix

For a more detailed evaluation of the model, a

confusion matrix is calculated for the predictions

and true labels. This matrix shows how many

samples were correctly classified and how many

were misclassified.

10. Accuracy and Loss Plots

Finally, to visualize the training and evaluation

trends of the model, accuracy (Figure 3) and loss

(Figure 4) plots are generated for the training and

validation data. The data is divided into two

sections: 80% of the data is used for training the

model and is allocated to the training set, while the

remaining 20% is designated for evaluating the

model's performance on unseen data and is

assigned to the testing set.

Figure 3. Accuracy graph of LSTM with CIC-IDS2017

dataset.

Figure 4. Loss graph of LSTM with CIC-IDS2017 dataset.

Table 3 presents a comparison of the performance

between the proposed method and other similar

approaches. This comparison highlights the

significant superiority of the proposed method in

intrusion detection over several existing systems,

which is clearly demonstrated through a

comprehensive evaluation of model performance.

The proposed method, with an accuracy of 99.90%,

has made a substantial improvement over other

similar studies. Specifically, none of the other

methods have been able to achieve the balanced

performance across all metrics that our proposed

method has demonstrated. This comparison clearly

showcases the power and efficiency of the

proposed method in accurately detecting and

classifying attacks and intrusions, setting a new

standard for evaluating cybersecurity systems in

the field of IoT.

Matinkhah & Morshedi et al./ Journal of AI and Data Mining, Vol. 13, No. 3, 2025.

316

Table 3. Comparison with other similar articles.

F1-

Score

Reacall Precisio

n

Accuracy Article/Year

70% 90% 60% 90% 5/2023

98 99/7 99 99/7 4/2024

98/9

3%

99/90% 99% 99/90% Proposed

method

4. Results

4.1 Evaluation

The model evaluation is conducted using several

different metrics that thoroughly examine and

analyze the model's performance. Initially, the

model's accuracy is calculated using the test data,

with the final output presented as a percentage. The

Hurst parameter value for the LSTM model is

measured at 0.8253 on the original data and 0.8228

on the noisy data.
Next, the model’s performance in identifying various

attacks is assessed using the Confusion Matrix. To

perform a more detailed analysis, the Confusion Matrix

is visualized, breaking down the number of correct and

incorrect samples for each class, Benign and Attack,

providing a clearer understanding of the model's

performance. For a more precise evaluation,

confusion matrices are specifically plotted for

different types of attacks. This helps in accurately

identifying attacks and comparing predictions with

true labels for each attack type. In the Confusion

Matrix for performance evaluation, attacks are

precisely categorized into various types, including

BRF (Brute Force Attack), MITM (Man-in-the-

Middle Attack), DDoS (Distributed Denial of

Service Attack), RP (Replay Attack), Port Scan,

Botnet, Heartbleed, Infiltration, Spoofing, SQL

Injection, and AML (Adversarial Machine

Learning Attack). This categorization aids the

model in assessing its accuracy in detecting

different types of attacks and allows for the

measurement of true and false performance rates in

each class. The confusion matrices shown in

Figures 5, 6, and 7 illustrate the performance of the

proposed method in classifying network traffic into

one of six classes, demonstrating the system's

efficacy in identifying these categories.

Advanced evaluation metrics used in this paper for

assessing the Intrusion Detection System (IDS)

performance are calculated from the true positives

(TP), true negatives (TN), false positives (FP), and

false negatives (FN) of the Confusion Matrix

presented in Figures 4, 5, and 6. Accuracy,

Precision, Recall (Sensitivity), and F1 score are

defined in Equations 1, 2, 3, and 4, respectively, in

Table 2. Additionally, Precision, Recall, and F1

scores are calculated separately to

comprehensively evaluate the model's performance

in detecting various attacks. These metrics are used

to ensure a balance between precision and recall

and to prevent potential errors in the model. The

evaluation results show that the model has

achieved an intrusion detection rate of 99.90%,

overall accuracy of 99.90%, and an F1 score of

98.93%, demonstrating good performance in

detecting various types of attacks. Furthermore,

techniques such as EarlyStopping have been used

to prevent overfitting, ensuring reliable results in the

final evaluation.

In the next step, graphs are plotted to display the

Detection Rate and False Alarm Rate at different

thresholds, which helps to better understand the

model’s efficiency under various conditions.

Additionally, the detection rate and response time

for different attacks are displayed in bar charts to

highlight the model's performance in identifying

various attacks and its speed. The detection rates

for various attacks, including BRF, MITM, DDoS,

RP, Port Scan, Botnet, Heartbleed, Infiltration,

Replay, Spoofing, SQL Injection, and AML, are as

follows: 100%, 100%, 100%, 98%, 98%, 98%,

100%, 98%, 100%, 98%, 100%, and 100%,

respectively. The corresponding response times for

these attacks are 1.46, 1.05, 2.02, 0.92, 1.20, 1.30,

1.75, 1.60, 1.10, 1.25, 1.85, and 1.50 seconds, as

shown in Figures 8 and 9. These results indicate the

model’s high accuracy in detecting various attacks

and its good performance in terms of detection rate

and response time.

Next, anomaly detection is performed. To achieve

this, the absolute error between predicted values

and true values is first calculated. Then, using a

predefined threshold (set to 0.5 in this case),

samples with an error greater than this threshold are

identified as anomalies (Figure 10). These

anomalies are plotted on a graph that displays both

predicted and true labels, providing a clear

visualization of the detected anomalies (Figure 11).

This information helps in identifying abnormal

behaviors or potential attacks. Finally, a

comparison is made between the number of attack

samples and benign samples in the training and

validation sets. This comparison provides insight

into the distribution of data across different sets and

aids in a more detailed analysis of how attacks and

benign samples are distributed. The bar chart

created visually represents this comparison, with

labels added to indicate the exact number of

samples in each category. These evaluations help

in a better understanding of the model’s

performance and its ability to detect various attacks

(Figure 12).

Anomaly Detection in IoT Traffic in the Presence of Gaussian Noise Using Deep Neural Networks

317

Table 2. Equations Used.

Equations numbe

r

(1)

Pr /
TP

ecision PPV
TP FP

(2)

TP TN
ACC

TP TN FP FN

(3)

Pr *Re
1 2*

Pr Re

ecision call
F score

ecision call

(4)

Figure 5. Confusion matrix.

Figure 6. Confusion matrix.

Figure 7. Confusion matrix.

Figure 8. Detector rate different attacks.

Figure 9. Response time different attacks.

Re /
TP

call TPR
TP FN

Matinkhah & Morshedi et al./ Journal of AI and Data Mining, Vol. 13, No. 3, 2025.

318

Figure 10. Anomaly Detection in Traffic Behavior Using

LSTM in the Presence of Gaussian Noise and the Hurst

Parameter.

Figure 11. Real Data and Anomaly Predictions by the

LSTM Model in the Presence of Gaussian Noise and the

Hurst Parameter.

Figure 12. Comparison of the Frequency of Normal and

Attack Samples Using LSTM in the Presence of Gaussian

Noise and the Hurst Parameter.

4.2 Discussion and Comparison

In this study, the proposed model, which combines

LSTM networks and the Hurst Exponent parameter

for anomaly detection in IoT traffic, has achieved

significant results, outperforming related works.

One of the key innovations of this research is the

use of the combination of LSTM and the Hurst

parameter as a tool for simulating self-similarity

and dynamic data analysis of network traffic. This

combination allows the model to simulate and

analyze more complex features of the data, which

proves to be highly effective in noisy conditions. In

this context, the Hurst parameter helps simulate

long-term self-similarity trends in traffic data, a

feature that is highly beneficial for detecting

anomalies in complex network conditions.

Moreover, the process of adding Gaussian noise to

the training data improves the model's

generalizability when facing unfamiliar and real-

world data. This technique enables the model to

detect attacks and anomalies in real-world

conditions, which are often noisy, as many IoT data

in real-world environments are influenced by

unpredictable factors. The use of precise

preprocessing techniques, such as feature

standardization and replacing missing values with

the mean of the features, has significantly

improved the quality of the input data. This, in turn,

enhances the model's accuracy during the learning

process and results in more stable outcomes. In

terms of model optimization, the use of the Adam

optimization algorithm alongside EarlyStopping to

prevent overfitting and accelerate model

convergence has played a critical role in improving

its performance. These methods ensure that the

model halts before overfitting occurs and that the

best weights are retained throughout the training

process. Ultimately, the proposed model has shown

a significant improvement in identifying more

complex attacks compared to similar models,

demonstrating better performance in anomaly and

attack detection. Particularly in IoT networks,

which are typically exposed to high noise and

unstable data, this model has been able to simulate

and detect anomalies in real-world conditions with

greater accuracy. The performance improvements

of the proposed model over previous methods are

attributed to the combination of innovative data

processing techniques and the use of advanced

optimization algorithms. This combination not

only provides higher accuracy in detecting attacks

and anomalies but also makes the model applicable

in complex, real-world environments.

Anomaly Detection in IoT Traffic in the Presence of Gaussian Noise Using Deep Neural Networks

319

5. Conclusion

In this study, a deep learning-based intrusion

detection system utilizing an optimized LSTM

architecture is introduced, demonstrating

exceptional performance in detecting various

attacks within Internet of Things (IoT) networks.

The system achieves an accuracy of 99.90% and an

F1 score of 98.93%, effectively identifying

complex threats such as DoS and DDoS attacks.

One of the key innovations of this research is the

integration of the Hurst parameter with deep

learning models, which enhances the model's

resilience to Gaussian noise and improves its

performance in detecting threats within IoT traffic.

The findings underscore the importance of

employing advanced statistical features and

designing noise-resistant models, with the

proposed solutions representing a significant step

forward in enhancing the security of IoT networks

and safeguarding smart infrastructures.

References

[1] S. W. Azumah, N. Elsayed, V. Adewopo, Z. S.

Zaghloul, and C. Li, "A deep LSTM based approach for

intrusion Detector IoT devices network in smart home,"

in Proc. IEEE 7th World Forum Internet Things (WF-

IoT), Jun. 2021, pp. 836–841.

[2] M. Ahsan, N. Rifat, M. Chowdhury, and R. Gomes,

"Intrusion Detector for IoT network security with deep

neural network," in Proc. IEEE Int. Conf. Electro Inf.

Technol. (eIT), May 2022, pp. 467–472.

[3] N. Yadav, S. Pande, A. Khamparia, and D. Gupta,

"Intrusion Detector system on IoT with 5G network

using deep learning," Wireless Commun. Mobile

Comput., vol. 2022, pp. 1–13, Mar. 2022.

[4] R. Morshedi, S. M. Matinkhah, and M. T. Sadeghi,

"Intrusion detection for IoT network security with deep

learning," Journal of Artificial Intelligence and Data

Mining 12, no. 1 (2024): 37–55.

[5] S. M. Matinkhah, R. Morshedi, and Seyed Akbar

Mostafavi, "Exploring Impact of Data Noise on IoT

Security: a Study using Decision Tree Classification in

Intrusion Detection Systems," Journal of Artificial

Intelligence and Data Mining (JAIDM), vol. 11, no. 4,

pp. 609-626, 2023.

[6] D. Musleh, M. Alotaibi, F. Alhaidari, A. Rahman,

and R. M. Mohammad, "Intrusion Detector system using

feature extraction with machine learning algorithms in

IoT," J. Sensor Actuator Netw., vol. 12, no. 2, p. 29,

Mar. 2023.

[7] G. Logeswari, S. Bose, and T. Anitha, "An intrusion

Detector system for SDN using machine learning,"

Intell. Autom. Soft Comput., vol. 35, no. 1, pp. 867–880,

2023.

[8] A. Abdelkhalek and M. Mashaly, "Addressing the

class imbalance problem in network intrusion Detector

systems using data resampling and deep learning," J.

Supercomput., vol. 79, no. 10, pp. 10611–10644, Jul.

2023.

[9] R. A. Elsayed, R. A. Hamada, M. I. Abdalla, and S.

A. Elsaid, "Securing IoT and SDN systems using deep-

learning based automatic intrusion Detector," Ain Shams

Eng. J., vol. 14, no. 10, Oct. 2023, Art. no. 102211.

[10] P. Kumar, G. P. Gupta, and R. Tripathi, "TP2SF: A

trustworthy privacy-preserving secured framework for

sustainable smart cities by leveraging blockchain and

machine learning," J. Syst. Archit., vol. 115, May 2021,

Art. no. 101954.

[11] M. Saied, S. Guirguis, and M. Madbouly, "Review

of artificial intelligence for enhancing intrusion Detector

in the Internet of Things," Eng. Appl. Artif. Intell., vol.

127, Jan. 2024, Art. no. 107231.

[12] H. C. Altunay and Z. Albayrak, "A hybrid

CNN+LSTM-based intrusion Detector system for

industrial IoT networks," Eng. Sci. Technol., Int. J., vol.

38, Feb. 2023, Art. no. 101322.

[13] S. A. Bakhsh, M. A. Khan, F. Ahmed, M. S.

Alshehri, H. Ali, and J. Ahmad, "Enhancing IoT

network security through deep learning-powered

intrusion Detector system," Internet Things, vol. 24,

Dec. 2023, Art. no. 100936.

[14] R. Chaganti, W. Suliman, V. Ravi, and A. Dua,

"Deep learning approach for SDN-enabled intrusion

Detector system in IoT networks," Information, vol. 14,

no. 1, p. 41, 2023.

[15] O. H. Abdulganiyu, T. Ait Tchakoucht, and Y. K.

Saheed, "A systematic literature review for network

intrusion Detector system (IDS)," Int. J. Inf. Secur., vol.

22, no. 5, pp. 1125–1162, Oct. 2023.

[16] S. Racherla, P. Sripathi, N. Faruqui, M. A. Kabir,

M. Whaiduzzaman, and S. A. Shah, "Deep-IDS: A Real-

Time Intrusion Detector for IoT Nodes Using Deep

Learning," IEEE Access, 2024.

 .1404سال ،دوره سیزدهم، شماره سوم ،کاویمجله هوش مصنوعی و داده مرشدیخواه و متین

 عمیق عصبی هایشبکه از استفاده با گوسی نویز حضور در اشیاء اینترنت ترافیک در ناهنجاری تشخیص

 *سید مجتبی متین خواه و رؤیا مرشدی

 .ایران یزد، یزد، دانشگاه کامپیوتر، مهندسی گروه

 15/04/2025 پذیرش؛ 28/02/2025 بازنگری 27/01/2025 ارسال

 چکیده:

کند. با این حال، رود و نقش محوری در ارائه خدمات هوشمند مدرن ایفا میهای در حال رشد سریع به شمار مییکی از حوزه (IoT)اینترنت اشیاء

های سازد. در سالپذیر میها را در برابر حملات سایبری آسیبتوجهی را به همراه دارد و آنهای امنیتی قابلچالش IoTهای های منابع در گرهمحدودیت

های اصلی مطرح شده است. یکی از چالش IoTها در ترافیک عنوان رویکردی مؤثر برای شناسایی ناهنجاریهای یادگیری عمیق بهاخیر، استفاده از مدل

ها است. در این مطالعه، یک سامانه تشخیص نفوذ مبتنی بر یادگیری عمیق پیشنهاد شده أثیر منفی نویز گوسی بر دقت شناسایی مدلاین رویکردها، ت

آموزش داده شده CIC-IDS2017داده برد. این مدل با استفاده از مجموعهواحد حافظه بهره می 128با LSTMشده است که از معماری ساده و بهینه

دهد که این سامانه توانایی بالایی در شناسایی حملات متنوعی ای طراحی گردیده است. نتایج ارزیابی عملکرد نشان میسازی در سرورهای لبهیادهو برای پ

و امتیاز ٪۹۹.۹0، دقت کلی ٪۹۹.۹0توان به نرخ شناسایی های برجسته این سیستم میو سایر تهدیدات پیشرفته دارد. از ویژگی DoS ،DDoSهمچون

F1 های یادگیری عمیق است. نتایج حاکی از آن های این پژوهش بررسی تأثیر ادغام پارامتر هرست با مدلاشاره کرد. یکی از نوآوری ٪۹8.۹۳معادل

های بخشد. یافتهود میبهب IoTاست که این ادغام، مقاومت مدل را در برابر نویز گوسی افزایش داده و عملکرد آن را در شناسایی تهدیدات در ترافیک

تأکید IoT هایهای مقاوم در برابر نویز برای تأمین امنیت سایبری شبکههای آماری پیشرفته و طراحی مدلگیری از ویژگیاین تحقیق بر اهمیت بهره

و IoTهای در جهت ارتقای امنیت شبکهفرد خود، گامی مؤثر دهی سریع و راهبرد دفاعی منحصربهدارد. سامانه پیشنهادی با عملکرد دقیق، زمان پاسخ

های امنیتی در مقابله با تهدیدات پیچیده تواند راهکاری کارآمد برای توسعه سامانهشود. این پژوهش میهای هوشمند محسوب میحفاظت از زیرساخت

 سایبری باشد.

 .، نویز گوسیLSTMپارامتر هرست، تشخیص نفوذ، تشخیص ناهنجاری، شبکه :کلمات کلیدی

