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 The Internet of Things (IoT), is one of the fastest-growing domains 

and plays a pivotal role in modern smart services. However, resource 

limitations in IoT nodes pose significant security challenges, 

rendering them vulnerable to cyberattacks. In recent years, the use of 

deep learning models has emerged as an effective approach for 

detecting anomalies in IoT traffic. One of the main challenges of these 

approaches is the detrimental impact of Gaussian noise on the models' 

detection accuracy. In this study, a deep learning-based intrusion 

detection system is proposed, leveraging a simple and optimized 

LSTM architecture with 128 memory units. This model is trained on 

the CIC-IDS2017 dataset and designed for deployment on edge 

servers. The performance evaluation results demonstrate the system's 

high capability in detecting diverse attacks such as DoS, DDoS, and 

other advanced threats. Key features of this system include a detection 

rate of 99.90%, an overall accuracy of 99.90%, and an F1 score of 

98.93%. One innovation of this research is the examination of the 

impact of integrating the Hurst parameter with deep learning models. 

The results indicate that this integration enhances the model's 

resilience against Gaussian noise and improves threat detection 

performance in IoT traffic. The findings of this research emphasize 

the importance of utilizing advanced statistical features and designing 

noise-resistant models for the cybersecurity of IoT networks. The 

proposed system, with its precise performance, rapid response time, 

and unique defensive strategy, represents a significant step toward 

improving IoT network security and protecting smart infrastructure. 

This research can be an efficient solution for developing security 

systems to counter complex cyber threats. 
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1. Introduction 

The Internet of Things (IoT), as one of the most 

innovative and rapidly growing fields, has had a 

profound impact on industry and individuals’ daily 

lives. From connected devices in smart homes to 

complex systems in smart cities, IoT has brought 

about a transformative change in every aspect of 

human life. However, these intelligent networks 

face numerous security threats due to the resource 

limitations of their nodes and the complexity of 

communications between them. Cyberattacks, 

which can compromise IoT data and systems, 

require advanced security solutions to detect 

threats in real-time. One of the greatest challenges 

in this field is combating Gaussian noise and its 

adverse impact on the accuracy of anomaly 

detection models. The Internet of Things (IoT), as 

one of the most innovative and rapidly growing 

fields, has had a profound impact on industry and 

individuals’ daily lives. From connected devices in 

smart homes to complex systems in smart cities, 

IoT has brought about a transformative change in 

every aspect of human life. However, these 

intelligent networks face numerous security threats 

due to the resource limitations of their nodes and 
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the complexity of communications between them. 

Cyberattacks, which can compromise IoT data and 

systems, require advanced security solutions to 

detect threats in real time. One of the greatest 

challenges in this field is combating Gaussian noise 

and its adverse impact on the accuracy of anomaly 

detection models. This paper introduces a deep 

learning-based intrusion detection system utilizing 

LSTM networks, capable of identifying diverse 

threats in IoT traffic with high accuracy. Trained 

on the CIC-IDS2017 dataset and integrated with 

the Hurst parameter, the proposed system exhibits 

exceptional resilience to Gaussian noise. The 

results demonstrate that this system can play a 

pivotal role in safeguarding IoT networks and 

ensuring their security against various threats. For 

the seamless integration of the proposed intrusion 

detection system within IoT nodes, a precise 

understanding of the architecture of IoT nodes is 

crucial. The architecture of IoT nodes, illustrated in 

Figure 1, primarily comprises sensor, processing, 

and communication subsystems. Each IoT node 

includes sensors that collect environmental data, 

microcontrollers that manage processing and 

control operations, and communication subsystems 

that enable data transmission between nodes and 

other devices or networks. These nodes are 

typically connected to edge servers through WiFi 

routers, establishing their internet connectivity. 

Compromising these nodes can disrupt their 

operation and directly affect the efficiency and 

security of the network. Therefore, a key metric for 

intrusion detection is evaluating IoT nodes’ 

performance in terms of energy consumption, 

latency, and throughput. This research addresses 

one of the most critical security concerns in the 

digital era by evaluating and enhancing the 

performance of deep learning models for detecting 

threats in IoT traffic. In this study, a novel 

framework for anomaly detection in IoT traffic is 

presented, which utilizes the Hurst parameter for 

long-term memory analysis of the data and a hybrid 

LSTM model for identifying complex patterns. 

Furthermore, by injecting Gaussian noise into the 

data, an attempt is made to simulate real network 

conditions and assess the model’s ability to detect 

anomalies under various scenarios. The results of 

this study show that using the Hurst parameter as a 

key feature can enhance the accuracy and 

reliability of intrusion detection systems. In this 

research, the Hurst parameter is a powerful tool for 

identifying evolutionary anomalies in time series 

data. The Hurst parameter can measure the self-

similarity and long-term dependencies of network 

data, and by analyzing the oscillatory behavior of 

the data, it can detect unusual patterns. This feature 

proves particularly useful in detecting IoT traffic 

anomalies in the presence of Gaussian noise. 

 Figure 1. Architecture of IoT, 

2. Related Works  

Anomaly detection is a key area in data analysis 

and the security of Internet of Things (IoT) 

systems, aiming to identify abnormal behaviors in 

the data collected from IoT devices and networks 

[1,2]. In essence, anomaly detection is an approach 

to identifying unexpected or unusual behaviors that 

may indicate issues such as technical malfunctions, 

cyberattacks, or network disruptions [3]. 

Anomalies can significantly impact device 

performance and data security, making their swift 

and accurate detection essential for maintaining 

system integrity and preventing damage. 

The rapid growth of IoT in recent years has led to 

the generation of massive amounts of data. These 

data, often containing time-series values and 

location-dependent information, pose challenges in 

storage, processing, and analysis due to their high 

volume and complex nature [4]. Among these 

challenges, Gaussian noise in the data can 

complicate the anomaly detection process. Thus, 

robust analytical algorithms and methods are 

required to effectively handle this noise and 

accurately detect anomalies [5]. 

One important approach for analyzing IoT data is 

the use of the Hurst parameter. This parameter, 

which represents the self-correlation and 

scalability characteristics of the data, can provide 

valuable insights into the long-term behavior of 

systems. Anomaly detection based on the Hurst 

parameter involves several operations that classify 

data into anomalies and normal behavior [5-6]. 

Anomaly detection is conducted at three levels: 

network, device, and event. At the network level 
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[7], the analysis concentrates on assessing overall 

traffic patterns to identify any unusual or abnormal 

behavior within the network. The device-level [8] 

entails a more granular approach, where the 

behavior of individual devices is scrutinized to 

detect anomalies specific to each device's activity. 

At the event level [9], the analysis targets particular 

events, identifying anomalies within specific time 

frames or geographic locations. 

The methods for anomaly detection can generally 

be grouped into three categories: rule-based 

approaches, deep learning approaches, and hybrid 

models. Among these, deep learning has gained 

widespread adoption due to its ability to leverage 

machine learning algorithms and data-dependent 

features to classify behaviors as normal or 

anomalous [10]. 

Deep learning methods for anomaly detection have 

proven to be highly effective and powerful, 

utilizing architectures like recurrent neural 

networks (RNNs), convolutional neural networks 

(CNNs), and long short-term memory networks 

(LSTMs) to analyze complex data patterns and 

uncover hidden anomalies [14]. 

Given the limited research in this area, efforts have 

been made to utilize studies directly or indirectly 

related to the subject. Table 1 presents common 

methods used in previous studies along with their 

references. 

 

Table1. Comparison of Various Approaches. 

Security 

Focus 

Evaluation & 

Comparison 

Scalability Resource & 

Implementation 

Limitation 

Method Network Articles 

Intrusion 

Detection in 
Smart Home 

IoT 

Performance 

evaluation using 
LSTM 

Suitable for 

smart home 
IoT 

Relies on LSTM 

models for IoT 

LSTM-

based deep 
learning 

Smart 

Home IoT 

[1] 

Intrusion 

Detection for 

IoT Security 

Evaluation using 

deep neural 

networks 

Scalable for 

IoT networks 

Relies on deep 

neural networks 

for IoT 

Deep neural 

networks 

General 

IoT 

Networks 

[2] 

Intrusion 

Detection 

with 5G IoT 

Using deep 

learning for IoT 

network security 

Scalable for 

5G IoT 

networks 

Needs 5G 

network 

infrastructure 

Deep 

learning for 

IoT security 

5G IoT 

Networks 

[3] 

Intrusion 

Detection for 

IoT Network 
Security 

Evaluation using 

deep learning for 

IoT 

Suitable for 

IoT networks 

Relies on deep 

learning for IoT 

security 

Deep 

learning-

based IDS 

IoT 

Networks 

[4] 

Impact of 

Data Noise 

on IoT 
Security 

Study of decision 

tree classification 

Evaluates 

noise impact 

in IoT 
security 

Depends on 

decision tree 

models 

Decision 

tree 

classification 

IoT 

Networks 

[5] 

Feature 
Extraction for 

Intrusion 

Detection 

Machine learning 
for IoT intrusion 

detection 

Applicable 
for IoT 

environment

s 

Depends on 
feature extraction 

Machine 
learning-

based feature 

extraction 

IoT 
Networks 

[6] 

Intrusion 
Detection for 

SDN 

Machine learning 
for SDN intrusion 

detection 

Scalable for 
SDN 

networks 

SDN-specific 
limitations 

Machine 
learning for 

SDN 

SDN 
Networks 

[7] 

Class 
Imbalance in 

Network IDS 

Data resampling 
for class imbalance 

 

  

Handles 
class 

imbalance in 

large datasets 

Class imbalance 
issues in datasets 

Data 
resampling 

with deep 

learning 

Network IDS [8] 
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Securing 
IoT and SDN 

Systems 

Deep learning for 
IoT and SDN 

systems 

Scalable for 
IoT and SDN 

Requires IoT and 
SDN integration 

Deep 
learning for 

automatic 

intrusion 
detection 

IoT and SDN 
Systems 

[9] 

Privacy-

preserving 
Framework 

for Smart 

Cities 

Blockchain for 

privacy-preserving 
security 

Scalable for 

smart cities 

Complex privacy 

solutions 

Blockchain 

and machine 
learning 

Smart Cities [10] 

AI for 

Intrusion 
Detection in 

IoT 

Review of AI 

methods for IoT 
IDS 

Scalable AI 

methods for 
IDS 

Resource-

intensive AI 
methods 

AI 

techniques 
for IoT 

security 

IoT 

Networks 

[11] 

Hybrid 

CNN+LSTM 

IDS for 

Industrial IoT 

Hybrid 

CNN+LSTM 

evaluation 

Scalable for 

industrial 

IoT 

Requires hybrid 

CNN+LSTM 

architecture 

Hybrid 

CNN+LSTM 

Industrial 

IoT 

[12] 

Enhancing 

IoT Network 
Security 

Enhancing security 

through deep 
learning 

Scalable for 

IoT networks 

Resource and 

computational 
challenges 

Deep 

learning for 
network 

security 

IoT 

Networks 

[13] 

SDN-based 

IDS for IoT 

Networks 

SDN-enabled IDS 

for IoT networks 

Scalable for 

IoT and SDN 

systems 

SDN-specific 

issues 

SDN-based 

deep learning 

IoT and SDN 

Systems 

[14] 

Systematic 

Review of 

IDS 

Review of IDS 

techniques 

Applicable to 

various 

network 
environment

s 

General IDS 

limitations 

Literature 

review of 

IDS methods 

General 

Networks 

[15] 

Deep-IDS 

for IoT 

Nodes 

Real-time intrusion 

detection using deep 

learning 

Suitable for 

real-time IoT 

nodes 

Requires deep 

learning for real-

time detection 

Deep 

learning-

based IDS 

IoT 

Networks 

[16] 

3. Data sets and Methodology 

3.1. Datasets 

The CIC-IDS2017 dataset, one of the most 

prominent resources for evaluating intrusion 

detection systems, contains 78 features and a class 

label for each sample. These features encompass 

various network traffic attributes and statistics 

related to packet data. Each sample in the dataset is 

labeled as either normal or belonging to one of the 

several types of network attacks. This dataset 

enables researchers to evaluate intrusion detection 

systems under various conditions and across 

different types of attacks, which is crucial for 

assessing the performance of deep learning 

algorithms in detecting network threats. 

 

3.2. Hurst Parameter 
The Hurst parameter is a statistical measure used to 

assess the self-similarity of a signal or pattern, 

typically in the context of time series data [24]. In 

our research, this parameter is utilized for anomaly 

detection in Internet of Things (IoT) network 

traffic using the CICIDS2017 dataset. We calculate 

the Hurst parameter for each data record to 

determine the degree of self-similarity in the 

network traffic. 

The calculation process is as follows: 

1. First, the time series data is divided into 

equally sized segments. For example, if the 

dataset contains 100 data points, it might 

be divided into segments, each containing 

10 data points. 

2. For each segment, we compute its range 

(R), which is the difference between the 

highest and lowest values, and its standard 

deviation (S), which measures the 

variability from the mean. 

3. The ratio of R/S is then calculated for each 

segment, which is obtained by dividing the 

range by the standard deviation. 
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4. The logarithm of these R/S values is 

computed to normalize the data. 

5. The average of these logarithmic values 

across all segments is calculated. 

6. The Hurst parameter is then determined 

using the following formula: 

 

The Hurst parameter is introduced as a distinctive 

feature in our dataset to quantify the self-similarity 

in network traffic patterns, a critical aspect of 

detecting modern intrusions. By using the Hurst 

parameter, our proposed model is not only capable 

of identifying obvious intrusions, but it also has the 

ability to detect and flag complex and hidden 

patterns, which are characteristic of advanced 

network threats. This strategic enhancement plays 

a vital role in improving the model’s detection 

capabilities and contributes to the advancement of 

intrusion detection research. 

3.3. Methodology 

The proposed methodology for detecting and 

analyzing attacks in Internet of Things (IoT) 

networks consists of several stages. In the first step, 

a simulation of an IoT network is created, where 

each node is associated with sub-nodes. The edge 

server, which plays a critical role in the network, is 

defined as part of the system and is equipped with 

an Intrusion Detection System (IDS) model. 

During this stage, computations such as energy 

consumption and throughput for each node are 

performed and incorporated into the network's 

graph structure. 

In the second stage, input data is loaded from a 

standardized dataset and undergoes preprocessing. 

This process includes the removal of invalid 

values, such as missing and out-of-bounds data, 

which are subsequently replaced with mean values. 

Data features are normalized, and labels are 

converted into a numerical format to prepare them 

for deep learning models. To address the issue of 

class imbalance, the Synthetic Minority Over-

sampling Technique (SMOTE) is employed to 

balance the number of samples across each class. 

In the third stage, to evaluate the system's resilience 

to noise, Gaussian noise with a normal distribution 

is added to the data. The added noise was generated 

randomly with a mean of zero and a standard 

deviation of 0.1, and was subsequently injected 

into the original data. By introducing Gaussian 

noise into the data, an attempt was made to 

simulate real network conditions and evaluate the 

model's ability to detect anomalies under various 

scenarios. The Hurst parameter, which reflects self-

similarity, is calculated for both the original and 

noisy data, and a comparison is made to assess the 

impact of noise on data stability. This parameter is 

one of the key metrics in time series analysis, 

indicating the degree of self-similarity and the 

long-term dependence behavior of the data. This 

analysis contributes to improving the model's 

robustness in real-world conditions. 

The proposed deep learning model consists of a 

Long Short-Term Memory (LSTM) network 

designed for attack analysis and detection. The 

input data is reconstructed in a three-dimensional 

format for use in this model. The network 

comprises two LSTM layers with different 

configurations, followed by an output layer using a 

Softmax activation function. To prevent 

overfitting, early stopping is applied during 

training. The model is trained using both training 

and validation datasets, and its performance is 

evaluated on test data. 

In the next stage, results analysis involves 

calculating metrics such as accuracy, recall, 

precision, and the F1 score. Another crucial step is 

evaluating the model's performance using various 

metrics, including accuracy and error. Accuracy 

and error charts are plotted for both training and 

validation periods, allowing for a detailed 

examination of how these values evolve throughout 

the training process. These plots assist in 

identifying the model's strengths and weaknesses, 

as well as the impact of various configurations on 

performance. Confusion matrices are generated for 

specific attack classes, and Detection Rate (DR) 

and False Alarm Rate (FAR) are calculated at 

different threshold levels. The confusion matrix 

analysis provides detailed insights into the model's 

ability to identify attacks, helping pinpoint 

instances where the model failed to detect certain 

attacks. 

Furthermore, the detection rate and response time 

for different types of attacks are presented in bar 

charts, and the model’s performance in terms of 

accuracy and error during training and validation is 

examined. The anomaly detection phase is another 

key component of the methodology, which 

involves calculating the absolute error between 

predicted and actual values of the validation data. 

Samples with errors exceeding a specified 

threshold are identified as anomalies. The number 

and percentage of detected anomalies are 

calculated, and a distribution chart of these 

anomalies is plotted in comparison with predicted 

and actual values. This analysis helps identify 

(log(( ))

log( )

RE
SH

n
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abnormal behavioral patterns and their correlation 

with attack data. 

In the subsequent stage, the frequency of attacks 

and anomalies in training and validation datasets is 

examined. The number of attacks and normal 

samples is calculated for each dataset, and the 

results are presented in comparative bar charts. 

This analysis provides a deeper understanding of 

the data distribution and its relationship with the 

model’s detection accuracy. 

Another critical step involves evaluating the 

model’s performance through various metrics such 

as accuracy and error. Accuracy and error charts 

are plotted for both the training and validation 

phases and trends in these values are analyzed 

throughout the training period. These charts aid in 

identifying strengths and weaknesses in the model, 

as well as the effects of different configuration 

settings on its performance. 

This methodology, by offering a comprehensive 

framework, integrates network simulation, data 

analysis, and deep learning techniques to enhance 

the detection and analysis of attacks in IoT 

networks. 

The proposed method for identifying and removing 

noise from the data consists of several key steps 

that have been proven effective. Initially, statistical 

analyses, such as identifying outliers and 

examining data distributions, are used to detect 

anomalies. Then, invalid values in the data context 

are converted to NaN and replaced using the mean 

and statistical methods to improve data quality. 

Adding controlled noise to the data enables the 

model to learn more effectively when faced with 

noise, enhancing its resilience to nonlinear and 

noisy data. Additionally, calculating the Hurst 

parameter, as a proven method for trend analysis 

and accuracy evaluation, helps identify structural 

changes in noisy data. The use of techniques such 

as SMOTE to address class imbalance and improve 

data quality in machine learning models is also 

well-documented in the literature. Moreover, 

Dropout layers in neural network architectures, 

such as LSTM, help reduce noise learning and 

prevent overfitting. Finally, analyzing predicted 

errors and establishing a specific threshold for 

anomaly detection is an effective method for noise 

identification and removal, which can enhance the 

accuracy of machine-learning model results 

(Figure 2). 

 
Figure 2. Flowchart for the proposed method. 

3.4 Implementation of Anomaly Detection in 

IoT Network Traffic Using the LSTM Model 

In this research, the goal is to detect anomalies in 

the traffic of Internet of Things (IoT) networks. For 

this purpose, Long Short-Term Memory (LSTM) 

networks are used to identify normal and abnormal 

traffic behaviors. This model utilizes real network 

traffic data to detect attacks and abnormal 

behaviors in IoT networks, and an IDS model 

based on LSTM is developed for this task. The 

implementation steps are as follows: 

 

1. Creation and Definition of the IoT Network 

Initially, an IoT network is created using the 

NetworkX library. In this network, the nodes 

represent sensors, edge servers, and gateways, each 

with its own specific features such as energy 

consumption, communication protocols, and 

performance characteristics. These nodes are 

randomly assigned properties like active time, idle 

time, power consumption, etc. 

 Definition of Nodes: The nodes include 

active sensors, microcontroller processors, 

and various communication protocols such 

as IEEE802.15.4, Bluetooth LE, and 

LoRaWAN. 

 Sensor Nodes: Defined with power 

consumption and communication 

protocols such as IEEE802.15.4 and 

Bluetooth LE. 

 Edge Server: Acts as the central 

processing hub, receiving data from 

sensors and sending it to gateways. 

 Gateways: Designed to connect the 

network to the internet and send data from 

the edge server to the internet network. 

Code for creating the IoT network graph: 

G = nx.Graph() 
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# Define IoT nodes with power 

consumption and communication 

protocols 

for i in range(10): 

    T_active = np.random.uniform(1, 5)  # 

Active time 

    T_idle = np.random.uniform(5, 10)  # 

Idle time 

    P_active = np.random.uniform(0.1, 0.5)  

# Active power 

    P_idle = np.random.uniform(0.05, 0.1)  

# Idle power 

    E = T_active * P_active + T_idle * 

P_idle  # Energy consumption 

    D = np.random.uniform(100, 500)  # 

Data size 

    T = np.random.uniform(1, 10)  # Task 

duration 

    TH = D / T  # Power calculation 

    G.add_node(f'node_{i+1}', 

               type='node', 

               sensor_subsystem='active', 

               

processing_subsystem='microcontroller', 

               

communication_subsystem=np.random.ch

oice(['IEEE802.15.4', 'Bluetooth LE', 

'LoRaWAN']), 

               energy_subsystem='solar_panel', 

               energy_usage=E, 

               delay=np.random.uniform(0.1, 

1.0), 

               throughput=TH) 

# Add edge server and gateways to the 

network 

G.add_node('edge_server', 

type='edge_server', protocol='Cellular 

IoT', ids_model='LSTM IDS Model') 

for i in range(5): 

    G.add_node(f'gateway_{i+1}', 

               type='gateway', 

               

protocol=np.random.choice(['LoRaWAN', 

'Cellular IoT']), 

               connection='internet') 

# Define network connections 

for i in range(10): 

    G.add_edge(f'node_{i+1}', 

'edge_server', 

protocol=G.nodes[f'node_{i+1}']['commu

nication_subsystem']) 

for i in range(5): 

    G.add_edge('edge_server', 

f'gateway_{i+1}', protocol='WiFi') 

# Calculate energy consumption 

energy_consumption = 

sum([G.nodes[node]['energy_usage'] for 

node in G.nodes if G.nodes[node]['type'] 

== 'node']) 

print(f"Total Energy Consumption: 

{energy_consumption:.2f} J") 

 

2. Data Loading and Preprocessing 

Data is loaded from a CSV file. Initial 

preprocessing steps are performed to handle 

missing values, correct erroneous data, and 

normalize the data. Additionally, SMOTE is used 

to address class imbalance. Then, the data is 

reshaped into sequences to serve as input to the 

LSTM model. The preprocessing steps include: 

 Handling Missing Values (NaN): 

Missing values for features are replaced 

with the mean of those features. 

 Defining Feature and Label Columns: 

Feature and label columns are extracted 

from the data. 

 Converting Labels to Numerical 

Format: Labels are converted to a binary 

or one-hot encoding format. 

 Normalizing Features: Features are 

normalized using StandardScaler to 

ensure consistent value ranges. 

Code for data preprocessing: 

data_path = 

'/content/drive/MyDrive/data.csv' 

data = pd.read_csv(data_path) 

# Preprocess data 

data.columns = data.columns.str.strip()  # 

Remove extra spaces from column names 

label_column = 'Label'  # Label column 

name 

feature_columns = [col for col in 

data.columns if col != label_column]  # 

Extract features 

features = data[feature_columns] 

labels = data[label_column] 

# Replace incorrect values with column 

mean 

features.replace([np.inf, -np.inf], np.nan, 

inplace=True) 

features.fillna(features.mean(), 

inplace=True) 

# Convert labels to numerical format 

labels = pd.get_dummies(labels).values 

# Normalize features 

scaler = StandardScaler() 

features = scaler.fit_transform(features) 
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3. Adding Noise to the Data 

To improve the model's generalization capability 

and simulate real-world conditions where data may 

have noise, noise is added to the features. This 

noise is generated from a normal distribution with 

a mean of 0 and a standard deviation of 0.1. 

 Noise: Gaussian noise is added to the 

features to simulate real-world data 

conditions. 

Code for adding noise: 

def AddNoise(data): 

    mu, sigma = 0, 0.1  # Mean and standard 

deviation of noise 

    noise = np.random.normal(mu, sigma, 

np.shape(data))  # Generate noise from 

normal distribution 

    noised_data = data + noise  # Add noise 

to the data 

    return noised_data 

X_noised = AddNoise(features) 

 

4. Calculation of the Hurst Parameter 

The Hurst exponent is used to model the self-

similarity behavior of the data and detect long-term 

trends. This parameter is especially useful in time-

series analysis and can also be beneficial in traffic 

data analysis. 

 Raw and Noisy Data: The Hurst 

parameter is computed for both the raw 

and noisy data. 

Therefore, the Hurst parameter is calculated for 

each numerical feature in the dataset. This is done 

using the hurst_exponent function, which 

computes the Hurst exponent for each feature and 

stores the result in the hurst_features list. If any 

NaN values arise during the calculation, they are 

replaced with 0 using the np.nan_to_num function 

to prevent errors. Next, the data is standardized 

using the StandardScaler to ensure that the features 

are on the same scale, which is particularly 

important for machine learning models like LSTM 

that are sensitive to the scale of the data. After the 

data is scaled, the calculated Hurst parameters need 

to be added to the scaled data. To achieve this, the 

Hurst values are first reshaped into the appropriate 

dimensions. Then, the Hurst values are repeated for 

each data sample to match the number of samples 

in the feature set. If the number of samples in the 

Hurst values and the feature data does not align, 

np.tile is used to repeat the Hurst values until they 

match the number of feature samples. Finally, the 

scaled data and the Hurst parameters are 

concatenated together, creating a final dataset 

(X_scaled_hurst) that contains the original features 

along with the Hurst parameters. This combined 

dataset is then ready for use in machine learning 

models, such as LSTM, to leverage the additional 

feature of the Hurst parameter. 

Code for Hurst parameter calculation: 

H_raw = nolds.hurst_rs(features.flatten())  

# Calculate Hurst for raw data 

print(f"Hurst Parameter (Original Data): 

{H_raw:.4f}") 

 

H_noised = 

nolds.hurst_rs(X_noised.flatten())  # 

Calculate Hurst for noisy data 

print(f"Hurst Parameter (Noised Data): 

{H_noised:.4f}") 

# --- Calculate Hurst Exponent for each 

feature --- 

def hurst_exponent(ts): 

    ts = np.array(ts) 

    ts = ts[~np.isnan(ts)] 

    if len(ts) <= 1 or np.std(ts) == 0: 

        return np.nan 

    l = len(ts) 

    T = np.arange(1, l + 1) 

    R = np.cumsum(ts - np.mean(ts)) 

    S = np.std(ts) 

    try: 

        Y = np.log10(R / S) 

        X = np.log10(T) 

    except ValueError: 

        return np.nan 

    fit = np.polyfit(X, Y, 1) 

    return fit[0] 

 

# Calculate Hurst Exponent for each 

feature 

hurst_features = [] 

for col in 

features.select_dtypes(include=[np.numbe

r]).columns: 

    hurst_value = 

hurst_exponent(features[col].values) 

    hurst_features.append(hurst_value) 

 

# Replace NaN values with 0 

hurst_features = 

np.nan_to_num(np.array(hurst_features), 

nan=0.0) 

 

# --- Preprocess the data --- 
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scaler = StandardScaler() 

X_scaled = scaler.fit_transform(features) 

 

# --- Add Hurst Exponent to features --- 

hurst_features = hurst_features.reshape(-1, 

1) 

hurst_features_repeated = 

np.tile(hurst_features, (X_scaled.shape[0] 

// len(hurst_features), 1)) 

 

if len(hurst_features_repeated) > 

X_scaled.shape[0]: 

    hurst_features_repeated = 

hurst_features_repeated[:X_scaled.shape[

0]] 

elif len(hurst_features_repeated) < 

X_scaled.shape[0]: 

    hurst_features_repeated = 

np.tile(hurst_features_repeated, 

(X_scaled.shape[0] // 

len(hurst_features_repeated) + 1, 1)) 

    hurst_features_repeated = 

hurst_features_repeated[:X_scaled.shape[

0]] 

 

X_scaled_hurst = 

np.concatenate([X_scaled, 

hurst_features_repeated], axis=1) 

 

5. Building and Training the LSTM Model 

After preprocessing, an LSTM model is used for 

anomaly detection in network traffic. LSTM is 

ideal for learning long-term dependencies in 

sequential data, making it suitable for traffic data 

with temporal features. 

Model Architecture: 

 LSTM Layers: The model consists of 

LSTM layers for learning time-dependent 

patterns, with Dropout layers to prevent 

overfitting. 

 Input Shape: Data needs to be reshaped 

into sequences, i.e., timesteps and 

features. 

 Layers: 

o First LSTM layer with 128 units. 

o Second LSTM layer with 64 

units. 

o Dropout layers for regularization. 

o A final Dense layer with a 

softmax activation function for 

multi-class classification. 

Code for LSTM model definition and training: 

model = Sequential() 

model.add(LSTM(128, 

input_shape=(X_train.shape[1], 

X_train.shape[2]), 

return_sequences=True)) 

model.add(Dropout(0.2)) 

model.add(LSTM(64, 

return_sequences=False)) 

model.add(Dropout(0.2)) 

model.add(Dense(y_train.shape[1], 

activation='softmax')) 

# Compile the model 

model.compile(optimizer='adam', 

loss='categorical_crossentropy', 

metrics=['accuracy']) 

# EarlyStopping for overfitting prevention 

early_stopping = 

EarlyStopping(monitor='val_loss', 

patience=10, restore_best_weights=True) 

# Train the model 

history = model.fit(X_train, y_train, 

epochs=50, batch_size=64, 

validation_split=0.2, 

callbacks=[early_stopping], verbose=1) 

 

6. Model Evaluation 

After training, the model is evaluated using test 

data to compute the overall accuracy. Additionally, 

recall is calculated to evaluate the model's 

performance in detecting anomalies. 

Code for model evaluation: 
loss, accuracy = model.evaluate(X_test, 

y_test) 

print(f"Test Accuracy: {accuracy * 

100:.2f}%") 

 

y_pred = model.predict(Test) 

y_pred_classes = np.argmax(y_pred, 

axis=1) 

y_true = np.argmax(y_test, axis=1) 

# Calculate accuracy 

test accuracy = accuracy_score(y_true, 

y_pred_classes) 

print(f"Test Accuracy: {test_accuracy * 

100:.2f}%") 

# Calculate Recall 

recall = recall_score(y_true, 

y_pred_classes, average='macro') 

print(f'Accuracy: {test_accuracy * 

100:.2f}%') 

print(f'Recall: {recall * 100:.2f}%') 

7. Anomaly Detection 

At this stage, the model is used to detect anomalies. 

Anomalies are defined as samples that are 

incorrectly classified and likely exhibit abnormal 

behavior. 
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Code for error calculation and anomaly 

detection: 
error = np.abs(y_pred.flatten() - 

y_test.flatten())  # Absolute error 

threshold = 0.5  # Threshold for anomaly 

detection 

 

# Detect anomalies 

anomalies = error > threshold 

 

# Display anomaly results 

print(f"Number of anomalies detected: 

{np.sum(anomalies)}") 

print(f"Percentage of anomalies: 

{np.mean(anomalies) * 100:.2f}%") 

 

8. Displaying Anomalies and Comparison with 

Attacks 

To observe and compare the behavior of anomalies 

and attacks in the dataset, various plots and 

matrices are used. 

1. Displaying Anomalies: 

o Anomalies are displayed as red 

dots on the plot of predicted and 

true labels. 

2. Comparing the Frequency of 

Anomalies and Attacks: 

o The number of attack samples and 

anomalies in the training and test 

datasets are counted and 

displayed. 

# Plot anomalies 

plt.figure(figsize=(10, 6)) 

plt.plot(y_val.flatten(), label='True 

Labels', color='blue', alpha=0.5)  # 

True labels 

plt.plot(predicted.flatten(), 

label='Predicted Labels', 

color='orange', alpha=0.5)  # Predicted 

labels 

plt.scatter(np.where(anomalies)[0], 

predicted.flatten()[anomalies], 

color='red', label='Anomalies', 

zorder=5)  # Anomalies 

plt.title('Anomaly Detection in Traffic 

Behavior') 

plt.xlabel ('Sample Index') 

plt.ylabel('Prediction Value') 

plt.legend() 

plt.show() 

# Step 6: Comparison of Anomaly and 

Attack Frequency 

train_attack_counts = 

np.sum(y_train.argmax(axis=1) == 1) 

train_benign_counts = 

np.sum(y_train.argmax(axis=1) == 0) 

val_attack_counts = 

np.sum(y_val.argmax(axis=1) == 1) 

val_benign_counts = 

np.sum(y_val.argmax(axis=1) == 0) 

# Print attack and anomaly counts 

print(f"Training set - Attack samples: 

{train_attack_counts}, Benign 

samples: {train_benign_counts}") 

print(f"Validation set - Attack 

samples: {val_attack_counts}, Benign 

samples: {val_benign_counts}") 

# Plot comparison of anomaly and 

attack frequency 

labels = ['Benign', 'Attack'] 

train_counts = [train_benign_counts, 

train_attack_counts] 

val_counts = [val_benign_counts, 

val_attack_counts] 

x = np.arange(len(labels))  # Number 

of categories 

width = 0.35  # Bar width 

fig, ax = plt.subplots(figsize=(8, 6)) 

# Plot training and validation bars 

rects1 = ax.bar(x - width/2, 

train_counts, width, label='Training', 

color='blue') 
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rects2 = ax.bar(x + width/2, 

val_counts, width, label='Validation', 

color='red') 

# Add labels and titles 

ax.set_ylabel('Counts') 

ax.set_title('Anomaly and Attack 

Frequency Comparison') 

ax.set_xticks(x) 

ax.set_xticklabels(labels) 

ax.legend() 

# Add labels on bars 

def add_labels(rects): 

    for rect in rects: 

        height = rect.get_height() 

        ax.annotate('{}'.format(height), 

                    xy=(rect.get_x() + 

rect.get_width() / 2, height), 

                    xytext=(0, 3),  # Offset 

label 

                    textcoords="offset 

points", 

                    ha='center', va='bottom') 

add_labels(rects1) 

add_labels(rects2) 

plt.show() 

9. Confusion Matrix 

For a more detailed evaluation of the model, a 

confusion matrix is calculated for the predictions 

and true labels. This matrix shows how many 

samples were correctly classified and how many 

were misclassified. 

10. Accuracy and Loss Plots 

Finally, to visualize the training and evaluation 

trends of the model, accuracy (Figure 3) and loss 

(Figure 4) plots are generated for the training and 

validation data. The data is divided into two 

sections: 80% of the data is used for training the 

model and is allocated to the training set, while the 

remaining 20% is designated for evaluating the 

model's performance on unseen data and is 

assigned to the testing set. 

 

Figure 3. Accuracy graph of LSTM with CIC-IDS2017 

dataset. 

 

 

Figure 4. Loss graph of LSTM with CIC-IDS2017 dataset. 

 

Table 3 presents a comparison of the performance 

between the proposed method and other similar 

approaches. This comparison highlights the 

significant superiority of the proposed method in 

intrusion detection over several existing systems, 

which is clearly demonstrated through a 

comprehensive evaluation of model performance. 

The proposed method, with an accuracy of 99.90%, 

has made a substantial improvement over other 

similar studies. Specifically, none of the other 

methods have been able to achieve the balanced 

performance across all metrics that our proposed 

method has demonstrated. This comparison clearly 

showcases the power and efficiency of the 

proposed method in accurately detecting and 

classifying attacks and intrusions, setting a new 

standard for evaluating cybersecurity systems in 

the field of IoT. 
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Table 3. Comparison with other similar articles. 

F1-

Score 

Reacall Precisio

n 

Accuracy Article/Year 

70% 90% 60% 90% 5/2023 

98 99/7 99 99/7 4/2024 

98/9

3% 

99/90% 99% 99/90% Proposed 

method 

 

4. Results 

4.1 Evaluation 

The model evaluation is conducted using several 

different metrics that thoroughly examine and 

analyze the model's performance. Initially, the 

model's accuracy is calculated using the test data, 

with the final output presented as a percentage. The 

Hurst parameter value for the LSTM model is 

measured at 0.8253 on the original data and 0.8228 

on the noisy data. 
Next, the model’s performance in identifying various 

attacks is assessed using the Confusion Matrix. To 

perform a more detailed analysis, the Confusion Matrix 

is visualized, breaking down the number of correct and 

incorrect samples for each class, Benign and Attack, 

providing a clearer understanding of the model's 

performance. For a more precise evaluation, 

confusion matrices are specifically plotted for 

different types of attacks. This helps in accurately 

identifying attacks and comparing predictions with 

true labels for each attack type. In the Confusion 

Matrix for performance evaluation, attacks are 

precisely categorized into various types, including 

BRF (Brute Force Attack), MITM (Man-in-the-

Middle Attack), DDoS (Distributed Denial of 

Service Attack), RP (Replay Attack), Port Scan, 

Botnet, Heartbleed, Infiltration, Spoofing, SQL 

Injection, and AML (Adversarial Machine 

Learning Attack). This categorization aids the 

model in assessing its accuracy in detecting 

different types of attacks and allows for the 

measurement of true and false performance rates in 

each class. The confusion matrices shown in 

Figures 5, 6, and 7 illustrate the performance of the 

proposed method in classifying network traffic into 

one of six classes, demonstrating the system's 

efficacy in identifying these categories. 

Advanced evaluation metrics used in this paper for 

assessing the Intrusion Detection System (IDS) 

performance are calculated from the true positives 

(TP), true negatives (TN), false positives (FP), and 

false negatives (FN) of the Confusion Matrix 

presented in Figures 4, 5, and 6. Accuracy, 

Precision, Recall (Sensitivity), and F1 score are 

defined in Equations 1, 2, 3, and 4, respectively, in 

Table 2. Additionally, Precision, Recall, and F1 

scores are calculated separately to 

comprehensively evaluate the model's performance 

in detecting various attacks. These metrics are used 

to ensure a balance between precision and recall 

and to prevent potential errors in the model. The 

evaluation results show that the model has 

achieved an intrusion detection rate of 99.90%, 

overall accuracy of 99.90%, and an F1 score of 

98.93%, demonstrating good performance in 

detecting various types of attacks. Furthermore, 

techniques such as EarlyStopping have been used 

to prevent overfitting, ensuring reliable results in the 

final evaluation. 

In the next step, graphs are plotted to display the 

Detection Rate and False Alarm Rate at different 

thresholds, which helps to better understand the 

model’s efficiency under various conditions. 

Additionally, the detection rate and response time 

for different attacks are displayed in bar charts to 

highlight the model's performance in identifying 

various attacks and its speed. The detection rates 

for various attacks, including BRF, MITM, DDoS, 

RP, Port Scan, Botnet, Heartbleed, Infiltration, 

Replay, Spoofing, SQL Injection, and AML, are as 

follows: 100%, 100%, 100%, 98%, 98%, 98%, 

100%, 98%, 100%, 98%, 100%, and 100%, 

respectively. The corresponding response times for 

these attacks are 1.46, 1.05, 2.02, 0.92, 1.20, 1.30, 

1.75, 1.60, 1.10, 1.25, 1.85, and 1.50 seconds, as 

shown in Figures 8 and 9. These results indicate the 

model’s high accuracy in detecting various attacks 

and its good performance in terms of detection rate 

and response time. 

Next, anomaly detection is performed. To achieve 

this, the absolute error between predicted values 

and true values is first calculated. Then, using a 

predefined threshold (set to 0.5 in this case), 

samples with an error greater than this threshold are 

identified as anomalies (Figure 10). These 

anomalies are plotted on a graph that displays both 

predicted and true labels, providing a clear 

visualization of the detected anomalies (Figure 11). 

This information helps in identifying abnormal 

behaviors or potential attacks. Finally, a 

comparison is made between the number of attack 

samples and benign samples in the training and 

validation sets. This comparison provides insight 

into the distribution of data across different sets and 

aids in a more detailed analysis of how attacks and 

benign samples are distributed. The bar chart 

created visually represents this comparison, with 

labels added to indicate the exact number of 

samples in each category. These evaluations help 

in a better understanding of the model’s 

performance and its ability to detect various attacks 

(Figure 12). 
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Table 2. Equations Used. 

Equations numbe

r 

 

(1) 

Pr /
TP

ecision PPV
TP FP




 
(2) 

TP TN
ACC

TP TN FP FN




  
 

(3) 

Pr *Re
1 2*

Pr Re

ecision call
F score

ecision call



 

(4) 

 
Figure 5. Confusion matrix.  

 

Figure 6. Confusion matrix. 

  

 

Figure 7. Confusion matrix.  

 

Figure 8. Detector rate different attacks. 

 

Figure 9. Response time different attacks. 

Re /
TP

call TPR
TP FN
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Figure 10. Anomaly Detection in Traffic Behavior Using 

LSTM in the Presence of Gaussian Noise and the Hurst 

Parameter.

 
Figure 11. Real Data and Anomaly Predictions by the 

LSTM Model in the Presence of Gaussian Noise and the 

Hurst Parameter. 

 
Figure 12. Comparison of the Frequency of Normal and 

Attack Samples Using LSTM in the Presence of Gaussian 

Noise and the Hurst Parameter. 

4.2 Discussion and Comparison 

In this study, the proposed model, which combines 

LSTM networks and the Hurst Exponent parameter 

for anomaly detection in IoT traffic, has achieved 

significant results, outperforming related works. 

One of the key innovations of this research is the 

use of the combination of LSTM and the Hurst 

parameter as a tool for simulating self-similarity 

and dynamic data analysis of network traffic. This 

combination allows the model to simulate and 

analyze more complex features of the data, which 

proves to be highly effective in noisy conditions. In 

this context, the Hurst parameter helps simulate 

long-term self-similarity trends in traffic data, a 

feature that is highly beneficial for detecting 

anomalies in complex network conditions. 

Moreover, the process of adding Gaussian noise to 

the training data improves the model's 

generalizability when facing unfamiliar and real-

world data. This technique enables the model to 

detect attacks and anomalies in real-world 

conditions, which are often noisy, as many IoT data 

in real-world environments are influenced by 

unpredictable factors. The use of precise 

preprocessing techniques, such as feature 

standardization and replacing missing values with 

the mean of the features, has significantly 

improved the quality of the input data. This, in turn, 

enhances the model's accuracy during the learning 

process and results in more stable outcomes. In 

terms of model optimization, the use of the Adam 

optimization algorithm alongside EarlyStopping to 

prevent overfitting and accelerate model 

convergence has played a critical role in improving 

its performance. These methods ensure that the 

model halts before overfitting occurs and that the 

best weights are retained throughout the training 

process. Ultimately, the proposed model has shown 

a significant improvement in identifying more 

complex attacks compared to similar models, 

demonstrating better performance in anomaly and 

attack detection. Particularly in IoT networks, 

which are typically exposed to high noise and 

unstable data, this model has been able to simulate 

and detect anomalies in real-world conditions with 

greater accuracy. The performance improvements 

of the proposed model over previous methods are 

attributed to the combination of innovative data 

processing techniques and the use of advanced 

optimization algorithms. This combination not 

only provides higher accuracy in detecting attacks 

and anomalies but also makes the model applicable 

in complex, real-world environments.  
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5. Conclusion 

In this study, a deep learning-based intrusion 

detection system utilizing an optimized LSTM 

architecture is introduced, demonstrating 

exceptional performance in detecting various 

attacks within Internet of Things (IoT) networks. 

The system achieves an accuracy of 99.90% and an 

F1 score of 98.93%, effectively identifying 

complex threats such as DoS and DDoS attacks. 

One of the key innovations of this research is the 

integration of the Hurst parameter with deep 

learning models, which enhances the model's 

resilience to Gaussian noise and improves its 

performance in detecting threats within IoT traffic. 

The findings underscore the importance of 

employing advanced statistical features and 

designing noise-resistant models, with the 

proposed solutions representing a significant step 

forward in enhancing the security of IoT networks 

and safeguarding smart infrastructures. 
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 چکیده:

کند. با این حال، رود و نقش محوری در ارائه خدمات هوشمند مدرن ایفا میهای در حال رشد سریع به شمار مییکی از حوزه (IoT)اینترنت اشیاء 

های سازد. در سالپذیر میها را در برابر حملات سایبری آسیبتوجهی را به همراه دارد و آنهای امنیتی قابلچالش IoTهای های منابع در گرهمحدودیت

های اصلی مطرح شده است. یکی از چالش IoTها در ترافیک عنوان رویکردی مؤثر برای شناسایی ناهنجاریهای یادگیری عمیق بهاخیر، استفاده از مدل

ها است. در این مطالعه، یک سامانه تشخیص نفوذ مبتنی بر یادگیری عمیق پیشنهاد شده أثیر منفی نویز گوسی بر دقت شناسایی مدلاین رویکردها، ت

آموزش داده شده  CIC-IDS2017داده برد. این مدل با استفاده از مجموعهواحد حافظه بهره می 128با  LSTMشده است که از معماری ساده و بهینه

دهد که این سامانه توانایی بالایی در شناسایی حملات متنوعی ای طراحی گردیده است. نتایج ارزیابی عملکرد نشان میسازی در سرورهای لبهیادهو برای پ

و امتیاز  ٪۹۹.۹0، دقت کلی ٪۹۹.۹0توان به نرخ شناسایی های برجسته این سیستم میو سایر تهدیدات پیشرفته دارد. از ویژگی DoS ،DDoSهمچون 

F1  های یادگیری عمیق است. نتایج حاکی از آن های این پژوهش بررسی تأثیر ادغام پارامتر هرست با مدلاشاره کرد. یکی از نوآوری ٪۹8.۹۳معادل

های بخشد. یافتهود میبهب IoTاست که این ادغام، مقاومت مدل را در برابر نویز گوسی افزایش داده و عملکرد آن را در شناسایی تهدیدات در ترافیک 

تأکید  IoT هایهای مقاوم در برابر نویز برای تأمین امنیت سایبری شبکههای آماری پیشرفته و طراحی مدلگیری از ویژگیاین تحقیق بر اهمیت بهره

و  IoTهای در جهت ارتقای امنیت شبکهفرد خود، گامی مؤثر دهی سریع و راهبرد دفاعی منحصربهدارد. سامانه پیشنهادی با عملکرد دقیق، زمان پاسخ

های امنیتی در مقابله با تهدیدات پیچیده تواند راهکاری کارآمد برای توسعه سامانهشود. این پژوهش میهای هوشمند محسوب میحفاظت از زیرساخت

 سایبری باشد.
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