H.5. Image Processing and Computer Vision
Mohammad Mahdi Nakhaie; Sasan Karamizadeh; Mohammad Ebrahim Shiri; Kambiz Badie
Abstract
Lung cancer is a highly serious illness, and detecting cancer cells early significantly enhances patients' chances of recovery. Doctors regularly examine a large number of CT scan images, which can lead to fatigue and errors. Therefore, there is a need to create a tool that can automatically detect and ...
Read More
Lung cancer is a highly serious illness, and detecting cancer cells early significantly enhances patients' chances of recovery. Doctors regularly examine a large number of CT scan images, which can lead to fatigue and errors. Therefore, there is a need to create a tool that can automatically detect and classify lung nodules in their early stages. Computer-aided diagnosis systems, often employing image processing and machine learning techniques, assist radiologists in identifying and categorizing these nodules. Previous studies have often used complex models or pre-trained networks that demand significant computational power and a long time to execute. Our goal is to achieve accurate diagnosis without the need for extensive computational resources. We introduce a simple convolutional neural network with only two convolution layers, capable of accurately classifying nodules without requiring advanced computing capabilities. We conducted training and validation on two datasets, LIDC-IDRI and LUNA16, achieving impressive accuracies of 99.7% and 97.52%, respectively. These results demonstrate the superior accuracy of our proposed model compared to state-of-the-art research papers.
Ali Yousefi; Kambiz Badie; Mohammad Mehdi Ebadzadeh; Arash Sharifi
Abstract
Recently, learning classifier systems are used to control physical robots, sensory robots, and intelligent rescue systems. The most important challenge in these systems, which are models of real environments, is its non-markov quality. Therefore, it is necessary to use memory to store system states in ...
Read More
Recently, learning classifier systems are used to control physical robots, sensory robots, and intelligent rescue systems. The most important challenge in these systems, which are models of real environments, is its non-markov quality. Therefore, it is necessary to use memory to store system states in order to make decisions based on a chain of previous states. In this research, a memory-based XCS is proposed to help use more effective rules in classifier by identifying efficient rules. The proposed model was implemented on five important maze maps and led to a reduction in the number of steps to reach the goal and also an increase in the number of successes in reaching the goal in these maps.
A. Torkaman; K. Badie; A. Salajegheh; M. H. Bokaei; Seyed F. Fatemi
Abstract
Recently, network representation has attracted many research works mostly concentrating on representing of nodes in a dense low-dimensional vector. There exist some network embedding methods focusing only on the node structure and some others considering the content information within the nodes. In this ...
Read More
Recently, network representation has attracted many research works mostly concentrating on representing of nodes in a dense low-dimensional vector. There exist some network embedding methods focusing only on the node structure and some others considering the content information within the nodes. In this paper, we propose HDNR; a hybrid deep network representation model, which uses a triplet deep neural network architecture that considers both the node structure and content information for network representation. In addition, the author's writing style is also considered as a significant feature in the node content information. Inspired by the application of deep learning in natural language processing, our model utilizes a deep random walk method to exploit inter-node structures and two deep sequence prediction methods to extract nodes' content information. The embedding vectors generated in this manner were shown to have the ability of boosting each other for learning optimal node representation, detecting more informative features and ultimately a better community detection. The experimental results confirm the effectiveness of this model for network representation compared to other baseline methods.