
An Efficient XCS-based Algorithm for Learning Classifier Systems in Real Environments

1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 11, No. 1, 2023, 13-27.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

 Research paper

An Efficient XCS-based Algorithm for Learning Classifier Systems in

Real Environments
Ali Yousefi

1
, Kambiz Badie

2*
, Mohammad Mehdi Ebadzadeh

3
 and Arash Sharifi

4

1. Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2. E-Content & E-Services Research Group, IT Research Faculty, ICT Research Institute, Tehran, Iran.
3. Department of Computer Engineering, Amirkabir University of Technology, Tehran, Iran.

4. Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Article Info Abstract

Article History:
Received 01 November 2022

Revised 25 November 2022

Accepted 24 December 2022

DOI:10.22044/jadm.2022.12358.2384

 Recently, learning classifier systems are used to control physical

robots, sensory robots, and intelligent rescue systems. The most

important challenge in these systems, which are models of real

environments, is its non-Markov quality. Therefore, it is necessary to

use memory to store system states in order to make decisions based on

a chain of previous states. In this research work, a memory-based

XCS is proposed to help use more effective rules in classifier by

identifying efficient rules. The proposed model is implemented on

five important maze maps, and leads to a reduction in the number of

steps to reach the goal and also an increase in the number of successes

in reaching the goal in these maps.

Keywords:
Learning Classifier Systems, XCS

Algorithm, Identification of Cycle

and Overlapping.

*Corresponding author:
k_Badie@itrc.ac.ir(K. Badie).

1. Introduction

Learning classifier systems (LCSs) are rule-based

systems that are mainly "if conditions, then act". In

these systems, an evolutionary algorithm or other

intuitive methods can be used to search the space of

the existing rules, and at the same time, a learning

process can be used to assign applications to the

existing rules, which leads the search process to

better rules [1, 2]. The term LCS was first

introduced by Holland et al. as an extension of

genetic algorithms [2]. Years later, he developed

Cognitive Systems Level 1 (CS-1) in collaboration

with Reitman [2]. Then he modified and

standardized his previous works. However, the

complex structure of the Dutch system prevented it

from being easily implemented. Later, Wilson

developed another type of LCS called XCS, where

the fitness of the rules was determined only by the

accuracy of their application [3]. LCSs have various

applications in real environments [1-4].

XCS algorithm in problems such as segmentation of

underwater images [7], knowledge extraction in

factors based on economic models [8-9],

understanding patterns in data [10], comparison of

exploration and extraction strategies in engineering

problems [11], anomaly detection based on

cooperative fuzzy algorithms [12], automatic testing

in organic computing systems [13], and competitive

environments based on learning-based factors [14]

is used. Another study presents the application of

LCS learning algorithm in simulating drivers' lane

selection behavior in microscopic simulation

models of toll plazas [15]. LCS is used to evolve a

set of ‘control rules’ for a number of Boolean

network instances [16].

The biggest challenges are using LCS systems in

real environments such as humanoid robots,

navigation systems in tortuous paths, learning

rescue robots, selecting appropriate environmental

features, and human-inspired scaling [26-34]. In all

these environments, the model systems must be

non-Markov (i.e. work with memory). In many real

LCS systems, due to the lack of sensory input in

some cases, the current state of the environment

cannot be determined by input alone. Therefore, the

response of the system to the environment is not

only determined by the current state and input but

also requires the previous states of the system. Such

Badie et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

14

a system needs memory to store system states, so

another condition called memory condition is used

in these classifiers. These memory conditions can

affect the system's power to decide on more

appropriate responses to input in ambiguous and

hidden situations. A stack-based turing machine can

be used. Ideally, such a machine would have an

infinite memory [35]. Considering the importance

of LCS in natural systems, the aim of the present

work is to develop a model of memory-based LCS

for a real-world system. Using the proposed

memory mechanism, the system uses the previous

states of the system along with its current state and

input to determine the best response to the input.

Our approach focuses on the concepts of discrete

response, non-Markov learning environment, and

cyclic conditions of the system. Obviously, since

natural environments are characterized by

extensibility and increasing complexity, scalability

is considered in our design by combining solutions

with an evolutionary algorithm suitable for

developing classifiers. This article is organized as

what follows. In Section 2, previous works on LCS

systems will be reviewed. Section 3 discusses the

proposed method to improve the performance of

XCS classifier systems. In this section, in addition

to explaining the proposed method for optimizing

the number of animation steps by identifying

effective conditions and measures and adding them

to the memory of the classifier system, how to use

the genetic algorithm in this type of memory will

also be explained. The proposed method that makes

animat use its history is described in Section 4.

Section 5 explains the implementation and

performance evaluation of the proposed method.

The final section provides conclusions as well as

suggestions for further research works.

2. Literature Review

Holland put forward the notion of LCS to develop

reinforcement learning or trial-and-error method.

He sought to know how an artificial intelligence

system could permanently adapt itself to the new

and existing experiences and how an optimum

system could be designed to represent knowledge

by using continuous and flexible learning based on

trial-and-error with increased rewards [37]. For this

purpose, he made use of a certain type of genetic

algorithms. The combination of evolutionary

process and reinforcement learning resulted in the

emergence of the CS-1 architecture.

In every discrete time cycle, CS-1 obtains an

encrypted binary description of the current state of

the environment. Then it determines a response

memory space called ‘message list’ on the basis of

the input, the previous action, and the current

content. This is illustrated in Figure 8. In this

system, the rule database consists of N rules in the

form of condition-assertion, each of which called a

classifier. The conditions are strings of three

encryption symbols in the form (#, 0, 1). The

symbol # acts as “all-purpose”, and allows the

condition to be “0” or “1”. For example, the

condition 1#1 matches both 101 and 111. The

assertion part of each rule consists of an action and

an internal message, which are both represented as

binary strings. All parts of a rule are initialized by

random values. Also a number of parameters come

along with each rule including age of the rule,

number of uses, and prediction of the reward for

being used (that is also used as a parameter of

fitness). Later on, Holland modified CS-1 and

explained what needed to be changed to achieve a

standard architecture. He named this new system

Learning Classifier System (LCS) [2].

The most significant improvement of CS-1 was the

fact that a reinforcement learning system was

introduced by analogy with the economic metaphor

“bucket brigade”, in which the application of a rule

was judged by the appointment of credit [37]. In

this method, those rules that acted in time cycles

and resulted in external reward were considered as

the middle individuals between the supply and

demand chains. Rules have a parameter called

‘strength’ that is indicative of their credit in this

chain. This parameter is both used to select actions

and discover new rules through the genetic

algorithm. In this model, the message list is

extended so that multiple rules can send their

assertions. The conditions of other rules do not have

a fixed structure for considering the current state of

environment, the content of message list, and the

final action. Instead, all conditions and assertions

have the same length, and the conditions can also

include a logical NOT. Assertions use the alphabet

used in conditions, i.e. [1], so that the information

may pass through a condition or string (external

input or internal message) which a rule matches in

the present of #.

Booker presented a type of Holland’s standard

system, and developed the idea of using genetic

algorithms for discovering the configuration of

problem space in order to separate the task of

learning this support structure from the unit of

appropriate actions for external rewards. For each of

these two, there exists a different LCS. The first

LCS receives an encoded binary description of the

environment with the aim of discovering and

An Efficient XCS-based Algorithm for Learning Classifier Systems in Real Environments

15

learning the appropriate rules within the general

visible items. This is equal to learning the

representation of the categories of subjects in the

environment. The matched rules not only send their

messages to the message list but also some of them

are passed as input to the second LCS. Therefore,

the second LCS is rewarded only when it uses these

classifications correctly according to its current

task.

Booker's innovations include detailed matching and

levels of stimulation of the rules; but his main idea

is to limit the process of discovering new rules to

only those active rules (and not all the rules in the

knowledge base) that have proved to be most

effective. In this system, parents are selected from

the message list [M]. Therefore, the rules are

prevented from being combined with generalities

that reveal many aspects of the problem. Booker

developed his idea based on stimulation of genetic

algorithm during learning, and allowed this process

to run at a constant rate like Holland’s

reinforcement learning. Importantly, in this model

of learning, rules contain an estimation of their

stability, which is indicative of their changes when

being rewarded. If the instability of a certain

percentage of the rules in [M] is greater than a

specified threshold, the fitness of stable rules will

increase and the genetic algorithm will run. As a

result, stable classifications are more interesting to

the genetic algorithm. XCS system makes use of

both fundamental genetics and stimulated genetics

with a stability threshold [39-41].

Above all, the message list had been removed and

the matched rules were classified based on actions

in the process of human chain to create the action

set [A]. In such a system, genetic algorithm is

sensitive to the action of rules and partially

resembles CS-1. The first parent is selected from

the knowledge base according to its strength,

whereas the second parent is selected from a subset

of the population with identical action. ANIMAT

controlled a simple agent in a two-dimensional

environment, which was able to sense the content of

eight positions in its environment and move in any

one of eight paths which was open. Wilson showed

that learning was possible, even to the extent that

the paths, which led to food reward discovered in

his project. However, he found out that the system

was unable to learn hurried classifications by

reinforcement. In order to stimulate an agent to

achieve a reward from an initial position through

the shortest path, he modified the structure of rules

in a way that an estimation of the number of further

steps required to receive the reward would be stored

and, on the basis of this estimation, the children of

each rule would be updated. In the action selection

unit, this idea was implemented through dividing

strength by distance. In addition, ANIMAT had a

re-combinative operator that replaced dissimilar bits

with # under the conditions of the parent to provide

a more useful generalization.

Later on, Wilson simplified ANIMAT by

developing his Zeroth-Level Classifier System

(ZCS) [42, 43]. The major modification in ZCS was

the fact that the human chain algorithm had been

modified in a way that time differential learning

could also be used.

Results from the evaluation of ZCS indicate that it

can have a good, but not ideal, performance [36, 40,

42]. In differential learning, Wilson used an

algorithm without policy called Q-learning along

with the main algorithm [51]. He suggested that a

fundamental genetic algorithm be used in the

explained form. Bull investigated this issue. It has

been shown that ZCS has a good performance in

some sample problems but it seems that it is

sensitive to some of its parameters. Also ZCS is

more efficient than XCS in some noisy

environments [21]. Although XCS and ZCS share

some of their fundamental features, they have a

number of basic differences [18].

After some changes in the architecture of ANIMAT

and before presenting ZCS, Wilson developed an

architecture specific to reinforcement learning, in

which immediate reward was considered.

BOOLE was a system used for binary decision-

making [36]. BOOLE borrows the mechanism

[] [] from ANIMAT but it eliminates the

message list [M]. Furthermore, the limitation in

selecting the second parent during the intercourse in

the genetic algorithm (i.e. the condition of having

the same action as the first parent) does not exist

anymore in BOOLE, which causes the parents’

strength to decrease through transfer to the children

by means of an inherent mechanism of ZCS. It has

been shown that strength decrease will compel more

general rules to update more quickly and receive

their rewards sooner [45]. Also in ZCS, rules that

exist in [M] and do not exist in [A] will lose their

strength with a certain tax rate.

Rules in the structure of Holland's LCS assumed the

form condition-action-payoff. The main difference

between Wilson's XCS and Holland's architecture

lies in the fact that criterion of fitness in the former

is accuracy of prediction instead of value of

prediction. Although XCS architecture resolved

Badie et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

16

problems such as generalization, but its lack of

internal message list or any other memory structure

like CS-1 caused it to be useful only for learning the

optimum policy in Markov systems. In such

systems, the optimum policy only depends on the

state of the sensory inputs and the agent can

perfectly determine the state of the environment by

means of these inputs. In many applications, the

sensory inputs provide the agent with partial

information about the current state of the

environment. Thus the agent is unable to identify

the state of the environment, and the classifier will

regard overlapping states as identical. In this case,

the classifier agent faces the problem of hidden state

or overlapping observations and the action issued

by the agent in response to the inputs will have a

low accuracy. Such a system is called a non-

Markov system, and the environment is said to be

partially observable. In an environment that is

partially observable, the classifier agent requires a

memory with which it could compensate for the

deficiency of sensory input data because the

optimum policy cannot be recognized only on the

basis of sensory inputs [46].

Holland's initial architecture includes an internal

message list. This list stores information, and can be

used as a temporary memory. However, research

findings show that Holland’s architecture are

usually not successful in non-Markov environments.

Various approaches to this issue have been so far

proposed.

A pioneering design was proposed by Wilson in

1995 [3] and implemented by Lanzi in 1998 [21].

They added an internal memory to the system in the

form of a register with one or a limited number of

bits. Then they developed their proposed

architecture by adding one condition and one action

that were used in sensing and imposing policies on

the internal register. Their system was called

XCSM. This architecture was used in real non-

Markov systems with overlapping sensory inputs.

The results of the work of Wilson and Lanzi

showed that XCSM was only efficient in simple

problems in which the inputs had two or at most

four overlapping states, but in other cases such as

the problems of twisty paths it could not converge

into the optimum solution. This motivation led

Lanzi to develop another version of XCSM, which

was called XCSMH. This new LCS made use of a

new policy for updating memory and utilized a

hierarchical strategy for selecting the appropriate

action in response to the input. Testing the

performance of XCSMH in twisty path problems

with different complexities showed that this system

could achieve a near-optimum solution in simple

problems.

Later, Hamzeh et al. proposed two classifier

systems with distributed architecture called PSXS

and RPXCS [46, 47]. In these systems, the overlap

of states is recognized, and the inputs are directed

toward XCSs with lower ranks. Low-rank XCSs are

equipped with history windows, and are each

responsible for one of the overlapping states. The

structure of the classifier in their systems is

extremely complicated. Their method has proven to

be successful in some of the standard tests.

In another study, Preen and Bull used Graph-based

Dynamic Genetic Programming (DGP) to represent

rules in XCS and XCSF (that was equivalent to a

random Boolean network). Their DGP-XCS and

DGP-XCSF can solve some twisty path problems

but their solution is not optimum [49].

Recently, Xang et al. have proposed a new method

of using memory in LCS systems to enhance the

performance of XCS [31]. In their method, an

internal message list is added to the system as the

memory list, which has a length equal to the strings

created by the identifiers. In this method, a small

number of memory-based classifiers are developed

to deal with the non-Markov states of the

environment. Also a condition developed in the

form of (memory, condition) is used along with a

mechanism for recognizing the overlap of states to

improve the performance of the classifier in hidden

states. The performance of XCSMD classifier is

closer to the optimum and higher than previous

classifiers in real environments. However, the real

problem in this method is memory wasting and the

overload caused by applying the memory condition

(to pass through overlapping states that cause

ambiguity). In this case, the development capability

of the system will face the problem of overload in

computation and memory as the environment grows

in size. In the context of more complicated systems,

therefore, the solutions will be distant from the

optimum solution. Today, classifier systems are

used as applied tools to solve a variety of difficult

problems. Sample learning without tagging, proper

algorithm selection based on reasoning, support

vector machine compaction for code fragment in

decision making systems are among applications of

these systems [50-53].

An Efficient XCS-based Algorithm for Learning Classifier Systems in Real Environments

17

3. Proposed Structure of LCS

The diagram of our proposed approach to LCS is

depicted in Figure 1. This algorithm adds three

modules to the XCS architecture.

Memory list: It is used for the non-Markov aspect

of the system. The structure of the list varies

depending on the environment in which the

classifier is used. In other words, the degree of the

complexity of the problem will determine the

boundaries of the memory. What is important is

that, due to the existence of cycles in the states of

most real systems, the stored states in the system's

memory are limited and the memory should be

assumed as limited.

Genetic algorithm (GA): It is used in two parts of

our proposed structure. The first part is concerned

with development of rules. Here, the population of

rules is developed in an efficient and controlled way

by using generalization and privatization through

genetic algorithm. Secondly, this algorithm is used

in the development and generalization of memory

states. While interacting with the module that

discovers cycles and overlapping states, this process

that runs periodically or in an event-oriented

manner will generalize the most used states and

control the usage of limited memory space.

Module for identification of overlapping states:
This module is necessary due to the fact that the

memory is limited and bounded. The performance

of this module can be either event-oriented or

periodical. However it is, the output of the module

is given to the genetic algorithm that controls the

memory required for storing the states through

generalization of frequently used states.

Figure 1. Proposed architecture for an LCS.

The three parts of the proposed architecture will be

elaborated in the following phases:

3.1. Selection of appropriate condition-action at

each step

The animat is sometimes located at a point where

there are some obstacles in the surroundings. In

Figure 2-a, for example, there are only three open

spots to pass around the animat (*). These spots are

marked in red. The remaining five spots are

obstructed. The animat can move by selecting

actions such as 000, 001, and 100; otherwise, it will

be stopped by an obstacle. Figure 2-b illustrates the

effect of the selected actions to take against the

environment as well as the animat's motion.

O O O O O O O O O O

O O
O . O O Q O Q Q O
O . O F . . O Q . O
O . O O O . O O . O
O . O O O . O O . O
O O
O O O O O O O O O O

Figure 2-a. Example of an animat in the environment.

7 0 1 111 000 001

6 2 110 010

5 4 3 101 100 011

Figure 2-b. Action performed on the environment and the

animat’s motion.

Figure 3 shows a detector and the animat's actions

in several steps of its motion in Figure 1. In step 1,

the action 011 is selected and performed. However,

there is an obstacle at the current position and the

animat will not move on. In step 2, the action 010 is

performed that again leads to an obstacle. In step 3,

the action 010 is again selected, which prevents the

animat from moving. However, in step 4, the action

100 is selected that causes the animat to move

downwards. Therefore, 100 is one of the actions

that causes movement with this input from the

detector. In step 11, once again the input of the

animat resembles that of the steps 1 to 4. In this

position, after having performed five different

actions on the environment, the animat moves

upwards by selecting 000. In step 14, the animat

repeats the action of step 1 that causes it to hit the

obstacle. Similarly, in step 18, it selects 010 that it

has already used in step 2. It is clear that this animat

will not use the results of previous steps to improve

its behavior.

The next table (figure 3) aims to show that an

animat should not select the same action when it

receives a repetitive input from the environment,

which did not lead to movement in the previous

Badie et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

18

steps. Instead, it should use actions that have led to

movement in the same position in previous steps. In

this example, the animat in step 11 should make use

of the action selected in step 4. How these

condition-actions could be identified will be

explained in the next section.
Action Condition Step#

011 000000011011000010010010 1

010 000000011011000010010010 2

010 000000011011000010010010 3

100 000000011011000010010010 4

010 000011011010000010010010 5

011 000011011010000010010010 6

010 000011011010000010010010 7

001 000011011010000010010010 8

110 000011011010000010010010 9

000 000011011010000010010010 10

101 000000011011000010010010 11

101 000000011011000010010010 12

101 000000011011000010010010 13

011 000000011011000010010010 14

101 000000011011000010010010 15

000 000000011011000010010010 16

100 010010000011000010010010 17

010 000000011011000010010010 18

001 000000011011000010010010 19

110 010010000011011000000010 20

110 010010000011000010010010 21

011 010010000011000010010010 22

010 010010000011000010010010 23

100 010010000011011000000010 24

101 010010000011011000000010 25

001 000000011011000010010010 26

111 010010000011011000000010 27

000 010010000011011000000010 28

010 010010000011011000000010 29

010 010010000010011011000010 30

001 010010000010010011000010 31

100 010010000010010011000010 32

010 010010000010010011000010 33

110 010010000010010010000010 34

Figure 3. Example of a detector and the animat's action in

34 steps.

3.2. Identification of condition-actions affecting

movement

This section describes how to identify a condition

and an action that cause the animat to move after

having tested more than one action. In each step,

both the condition and the action are stored. In

addition, if a previously met condition appears in a

step, the number of consecutive repetitions of this

condition will be stored. Next, if the current

condition does not differ from the previous one, the

previous condition and action will be identified as

the condition-action that affects the animat's

movement. Given the values in Figure 3, the

condition-action in step 4 has caused the animat to

move after three trials. Also the condition-action in

step 10 acts as an accurate classifier. If our only

criterion is the animat's movement as opposed to its

stop, this condition-action can be considered as an

accurate classifier in XCS.

Various methods can be developed to use these

condition-actions. For this purpose, two different

modes will be implemented and examined below.

3.3. Providing XCS with a memory for storing

effective condition-actions

In this method, a memory is allocated in XCS to the

storage of the obtained condition-actions. Figure 4

shows this memory, which is called c_a_memory.

This memory contains four fields, namely, fitness,

action, condition, and used. Used is a Boolean field.

This field marks condition-actions that were used to

achieve the food reward in each problem. At the end

of each problem, the value of the used field of the

utilized condition-actions is set to 1.

Used Fitness Action Condition

0 1 100 000000011011000010010010

0 1 000 000011011010000010010010

0 1 000 000000011011000010010010

0 1 001 000000011011000010010010

0 1 010 010010000011000010010010

0 1 101 010010000011011000000010

0 1 010 010010000011011000000010

Figure 4. Example of c_a_memory.

Depending on whether it has influenced the

animat’s achieving food, each condition-action

receives a value that is stored in fitness. This field is

a double-type field. How fitness is calculated will

be explained below.

The allocated memory has a limited space. This

memory acts as a FIFO queue. If it exceeds a

certain amount of space, one of the condition-

actions will be deleted. In the experiments in

Section 5, the size of this memory is determined as

100% of the maximum number of classifiers in [p]

and, in the experiments on Section 6, its size is

determined as 20% of this number.

3.3.1. Storage of condition-actions

When a condition-action is identified, it will be

stored in the memory. It should be noted that no

new classification will be added to the set [p]. The

condition-action is stored without any change (i.e.

without using #) in the memory.

3.3.2. Using memory in XCS

This memory lies between the inputs received from

detector and effector. The input received from

detector is first searched for possible matches in the

memory. If the input matches one of the conditions

in the memory, the action corresponding to that

condition will be sent to effector to be applied to the

environment.

If the input does not match any condition, the

default steps of XCS will be performed on it. If the

input matches several conditions, one of the

conditions will be selected at random. This function

An Efficient XCS-based Algorithm for Learning Classifier Systems in Real Environments

19

returns the number of the line in the memory that

contains the desired condition-action.

Now we will examine a specific case that may

occur for the animat. For example, suppose the

following position of the animat:
O O O O O O O
O
O O O O O O O

If its move to the right is stored in the memory as

the effective condition-action, in the next step the

animat will again move to the right by checking the

memory and matching the input against the existing

condition. This action will be done until the animat

has reached the rightmost square.
O O O O O O O
O
O O O O O O O

In this step, as the input does not match any existing

condition, the animat will use the default XCS and

move to the left:
O O O O O O O
O

O O O O O O O

In this step, the memory is searched to find a match

for the input. Since the previous condition-action is

found, the animat will once again move to the right.

This indicates that the animat has fallen into a loop.

O O O O O O O
O

O O O O O O O

For this reason, this memory will be used with a

probability of 0.5. Thus the same conditions can be

added to the memory with different actions.

3.4. Calculation of fitness

The initial value of this variable for each condition-

action is set to 1. In each problem, if the food

reward is achieved by a certain condition-action in

the memory, the used parameter of that condition-

action will be set to 1. In the end (i.e. either the

maximum number of steps have been taken or the

food has been reached), if the animat has achieved

the food, 1 will be divided by all condition-actions

that have been used in achieving the food and the

obtained values will be multiplied by the previous

fitness values. The following equation is used to

calculate fitness:

1
*

 used condition - actions
Fitness Fitness

all

(1)

3.5. Adding condition-actions to memory of [P]

If the animat has achieved the food, all the

condition-actions whose used value is 1 are added

to the set [p] as a new classifier. First, Cover

command is used to set some bits of the condition to

and, next, these new classifiers are added to [p].

Then if the number of the classifiers of [p] exceeds

the maximum number defined, some of the

classifiers are removed using an inherent strategy in

XCS.

3.6. Using genetic algorithm for producing a new

condition-action

If the size of c_a_memory exceeds a certain

amount, the genetic algorithm is used to create new

condition-actions. First, the entire memory content

is sorted according to the fitness value in an

ascending order. Next, a new c_a_memory half the

size of the total memory is created. The genetic

algorithm is executed on two parents with identical

actions. 12 bits are taken from the first parent and

12 bits from the second parent to produce a child.

The produced child is added to the c_a_memory and

replaces the condition-action that has the smallest

Fitness value. Also this new child is added to [p] as

a new classifier after the Cover operation is

performed on it.

3.7. Searching memory for input

The input from detector is first searched for in the

memory. If the input matches one of the conditions

in the memory, the corresponding action will be

selected with a certain probability to be performed

on the environment. If there are more than one

condition matching the input, the condition with the

highest Fitness will be selected. Finally, if there is

not match, the conventional XCS method will be

used for the next move.

4. Limited_memory

The innovation aspect of this research work

compared with the basic XCS is summarized in the

following three points. Firstly, in this research

work, for the first time in the states of the learning

classifier systems, limited memory has been used to

store a set of states depending on the type of

problem and the complexity of the system, and this

shows the efficiency of the system in not using

unlimited space. Secondly: overlap and cycle

detection in repetitive pairs (condition-action) is

obtained according to the input history from

environmental sensors and the history of other

previous actions using a non-Markov system. The

results of the article confirm the improvement in the

number of problems leading to the goal and

reducing the number of steps to reach the final

states in the maze maps problems. Thirdly: the

simultaneous use of evolutionary algorithms such as

genetic algorithm improves the development and

generalizability of categories as well as the

scalability of such problems. Limited_memory

Badie et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

20

stores the last moves. In this memory, the

conditions received by the sensors from the

environment as well as their corresponding actions

will be stored. Figure 5 illustrates a memory that

contains the last 15 moves of an animat. Window is

a small memory that, in each move, stores the last

 actions of the animat. To identify the required

action, the animat first searches for its window in

the Limited_memory. If a specified number of bits

from m conditions in window match the contents of

the Limited_memory, the last action will be selected

for the animat.

Figure 5. Limited_memory and window.

Before the motion begins, both Limited_memory

and window are empty. As long as

Limited_memory is smaller than twice the size of

Window, no search is conducted. Therefore, the size

of Limited_memory should be at least twice the size

of Window, in which case only one comparison is

made between the two memories.

Figure 6. Minimum size of memories.

In Figure 6, the size of Limited_memory is 10 and

the size of window is 5. According to the figure,

when the memory size reaches 10, a comparison

becomes possible between the two memories.

4.1. General flowchart of XCS and c_a_memory

Figure 7-a shows the flowchart of the proposed

method, and Figure 7-b shows the corresponding

algorithm. These figures explain one step of the

animat. The input of this algorithm consists of

c_a_memory, Limited_memory, and window. The

output is the next move to be done in the

environment. The command used to perform the

appropriate action on the environment is

Environment→perform (action). The functions used

in the algorithm are described below.

limited_memory.size () is used to calculate the size

of limited_memory. window.size () is used to

calculate the size of Window. c_a_memory.size ()

calculates the size of c_a_memory. Random ()

generates a random number between 0 and 1.

search_detector_c_a_memory () searches

c_a_memory for the input from Detector.

insert_new_entry_c_a_memory() adds a condition-

action line to c_a_memory. insert_classifier () adds

a new classifier to [p]. As Limited_memory reaches

a certain size, this memory is examined by window

with a probability of 0.5. If window matches the

contents of Limited_memory and the corresponding

action is performed on the environment, the value

of previous_search will be set to 1. Therefore, if the

animat has selected an action in the previous step by

means of Limited_memory, it is given a chance in

the current step to search Limited_memory for its

window memory (line 1).

All the bits of window are examined with all

possible states in Limited_memory. In every state

that matches more than 80% of the bits, the last

action is performed on the environment and, after

the execution of line 5 in the algorithm, one step of

the animat is completed. In Figure 6, for example,

there are six different states. In all cases where the

existing condition does not hold, c_a_memory is

used to find the most effective action. If the input is

matched by one of the conditions in this memory

and the obtained probability is less than 0.5, the

action in the memory is performed on the

environment (lines 8-10); otherwise, XCS will be

used to determine the action and the function for

finding the effective condition-action will be

executed (lines 12-13). If the animat has not

achieved the food, the next step will repeat the

search for the input in the memory. However, if it

has achieved the food and used, at least one of the

condition-actions of the memory, the fitness of

those condition-actions will be calculated. The

condition-actions will be then added as new

classifiers to the set [p] (lines 15-22). Finally, the

algorithm checks whether the memory has exceeded

a certain size X (line 23).

An Efficient XCS-based Algorithm for Learning Classifier Systems in Real Environments

21

The value of X in the proposed system is set to

Maximum_number_of_ [p] * 0.03.

If this condition is true, the condition-actions in

the memory will be sorted according to their

Fitness value (line 24). Next, using genetic

algorithm, a child is produced from two parents

with identical actions and replaced by the

condition-action that has the smallest Fitness

value (line 25). Production of condition-actions

continues for half of the memory size and the

condition-actions are then added to [p] as

classifiers (line 26).

4. Implementation and Evaluation

This section reports on the implementation of the

proposed method on the following maps. The

evaluation criteria include the number of times the

animat achieves the food in 10000 problems, the

average number of steps in 10000 problems, and

the average number of times the animat achieves

the food in 10000 problems. The results are

calculated as the average of 10 executions. The

size of c_a_memory is 3% of the maximum

number of the classifiers in [p]. Given that on

these maps the maximum number of steps to

Figure7-a. Flowchart of the proposed method

Badie et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

22

achieve the food is not large, memory size is

considered as small as possible so that new

classifiers could be more easily added to [p]. To

evaluate method in different environments, the

maps were selected based on the complexity of

their environments. The complexity of the maps

increases progressively.

Input:

Function

Output:

Limited_Memory

Window

c_a_memory

limited_memory.size() : size of limited_memory

window.size(): size of window
c_a_memory.size(): size of c_a_memory

random(): create a random between 0 to 1

search_detector_c_a_memory(): search
detector(input) in c_a_memory()

insert_new_entry_c_a_memory(): insert a new

entry in c_a_memory
insert_classifier(): insert a new classifier to [p]

Next step of animat

 Begin

1 If limited_memory.size() >= window_size*2
&&(random() > 0.5 || previous_search==1) do

2 Max_matched= maximum number of bits of

 entry which matched with detector
3 If max_matched > 80% && random()<0.5 do

4 Environment→perform(limited_memory
 [max_offset].action)

5 Goto Line 28
6 End if

7 End if

8 search = search detector in c_a_memory()

9 If search && random()<0.5 do

10 Environment→perform(c_a_memory[search].

 action)

11 Else

12 Environment→perform(XCS.action)

13 Insert XCS.action as new entry in c_a_memory
14 End If

15 If Environment->reward() == 1000 && used != 0

do // reach food && number of used c-a >0
16 For i=0;i<c_a_memory.size() do

17 If c_a_memory[i].used == 1do

18 c_a_memory[i].fitness +=
 (c_a_memory[i].fitness * (1/used)) //

 calculate Fitness

19 insert_classifier(c_a_memory[i]) // add
new classifiers to [p]

20 End If

21 End For

22 End If

23 If c_a_memory.size() > X do

24 Sort c_a_memory
25 GA

26 insert n/2 of c_a_memory to [p]

27 End if

28 End

Figure 7-b. Pseudo-code for one step of the motion in the

proposed method.

3.2. Benchmark problem 1 (Woods1: [p] =800)

Woods1 map is illustrated in Figure 8. In this

map, the maximum number of classifiers in [p] is

800.

Also the maximum number of steps to reach the

food is 5. The size of Limited_memory is 4 and

the size of Window is 2. Figure 9 illustrates the

results of the implementation of the proposed

method as well as XCS.

Figure 8. Woods1 map.

a) Number of steps required to achieve the food on

Woods1.

 b) Average number of problems ending in food on

Woods1.

c) Average number of the animat's steps in 10000

problems on Woods1.

Figure 9. Results of implementation on Woods1.

3.3. Benchmark problem 2 (Maze7: [p] =1600)

In this map, the maximum number of classifiers in

[p] is 1600. Also the maximum number of steps to

reach the food is 20. The size of Limited_memory

is 15 and the size of Window is 5. Figure 10

shows Maze7 map, and Figure 11 shows the

0

1

2

3

4

5

6

1
5

5
7

1
1

13
1

6
69

2
2

25
2

7
81

3
3

37
3

8
93

4
4

49
5

0
05

5
5

61
6

1
17

6
6

73
7

2
29

7
7

85
8

3
41

8
8

97
9

4
53N

u
m

b
er

 o
f

St
ep

s
to

 G
o

al

Number of Problems

xcs Limited_memory

5622.5

6130

5200

5400

5600

5800

6000

6200

xcs Limited_memory

A
ve

ra
ge

 N
u

m
b

er
 o

f
P

ro
b

le
m

s
R

ea
ch

ed
 t

o

Fo
o

d

3.2357

2.998745

2.8

2.9

3

3.1

3.2

3.3

xcs Limited_memory

A
ve

ra
ge

 N
u

m
b

er
 o

f
St

ep
s

An Efficient XCS-based Algorithm for Learning Classifier Systems in Real Environments

23

results of the implementation of the method in

10000 problems.

Figure 10. Maze7 map.

a) Number of steps required to achieve the food on

Maze7.

b) Average number of problems ending in food on Maze7.

c) Average number of the animat's steps in 10000

problems on Maze7.

Figure 11. Results of implementation on Maze7.

3.4. Benchmark problem 3(MazeF4: [p] =1600)

In this map, which is shown in Figure 12, the

maximum number of classifiers in [p] is 1600.

Also the maximum number of steps to reach the

food is 20. The size of Limited_memory is 15 and

the size of Window is 5. The plots in Figure 13

show the results of the implementation of the

proposed method on MazeF4.

Figure 12. MazeF4 map.

a) Number of steps required to achieve the food on

MazeF4.

b) Average number of problems ending in food on

MazeF4.

c) Average number of the animat's steps in 10000

problems on MazeF4.

Figure 13. Results of implementation on MazeF4.

3.5. Benchmark problem 4 (Maze10: [p] =2800)

In this map, the maximum number of classifiers in

[p] is 2800. Figure 14 shows Maze10 map. Also

the maximum number of steps to reach the food is

20. The size of Limited_memory is 15 and the

size of Window is 5. The plots in Figure 15 show

0

5

10

15

20

25

1
5

5
7

1
1

13
1

6
69

2
2

25
2

7
81

3
3

37
3

8
93

4
4

49
5

0
05

5
5

61
6

1
17

6
6

73
7

2
29

7
7

85
8

3
41

8
8

97
9

4
53N
u

m
b

er
 o

f
St

ep
s

to
 G

o
al

Number of Problems

xcs Limited_memory

2517.5

3756.1

0

500

1000

1500

2000

2500

3000

3500

4000

xcs Limited_memory

A
ve

ra
ge

 N
u

m
b

er
 o

f
P

ro
b

le
m

s
R

ea
ch

ed
 t

o
 F

o
o

d

16.3213

14.62269

13.5

14

14.5

15

15.5

16

16.5

xcs Limited_memory

A
ve

ra
ge

 N
u

m
b

er
 o

f
St

ep
s

0

5

10

15

20

25

1
5

5
7

1
1

13
1

6
69

2
2

25
2

7
81

3
3

37
3

8
93

4
4

49
5

0
05

5
5

61
6

1
17

6
6

73
7

2
29

7
7

85
8

3
41

8
8

97
9

4
53N

u
m

b
er

 o
f

St
ep

s
to

 G
o

al

Number of Problems

xcs Limited_memory

2387.8

3378.9

0

500

1000

1500

2000

2500

3000

3500

4000

xcs Limited_memory

A
ve

ra
ge

 N
u

m
b

er
 o

f
P

ro
b

le
m

s
R

ea
ch

ed
 t

o
 F

o
o

d

16.50619

15.35596

14.5

15

15.5

16

16.5

17

xcs Limited_memory

A
ve

ra
ge

 N
u

m
b

er
 o

f
St

ep
s

Badie et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

24

the results of the implementation of the proposed

method on Maze10.

Figure 14. Maze10 map.

a) Number of steps required to achieve the food on

Maze10.

b) Average number of problems ending in food on

Maze10.

c) Average number of the animat's steps in 10000

problems on Maze10.

Figure 15. Results of implementation on Maze10.

3.6. Benchmark problem 5 (Woods102:

[p]=2800)

In this map, the maximum number of classifiers in

[p] is 2800. Also the maximum number of steps to

reach the food is 20. The size of Limited_memory

is 15 and the size of Window is 5. Figure 16

shows Woods102 map. The plots in Figure 17

show the results of the implementation of the

proposed method as well as XCS on Woods102.

Figure 16. Woods102 map.

a) Number of steps required to achieve the food on

Woods102.

b) Average number of problems ending in food on

Woods102.

c) Average number of the animat's steps in 10000

problems on Woods102.

Figure 17. Results of implementation on Woods102.

According to the results, increase in the number of

problems would decrease the number of steps

0

5

10

15

20

25

1
4

7
8

9
5

5
1

4
32

1
9

09
2

3
86

2
8

63
3

3
40

3
8

17
4

2
94

4
7

71
5

2
48

5
7

25
6

2
02

6
6

79
7

1
56

7
6

33
8

1
10

8
5

87
9

0
64

9
5

41

N
u

m
b

er
 o

f
St

ep
s

to
 G

o
al

Number of Problems

xcs

Limited_memory

1163.8

2393.4

0

500

1000

1500

2000

2500

3000

xcs Limited_memory

A
ve

ra
ge

 N
u

m
b

er
 o

f
P

ro
b

le
m

s
R

ea
ch

ed
 t

o
 F

o
o

d

18.45881

16.9308

16

16.5

17

17.5

18

18.5

19

xcs Limited_memory

A
ve

ra
ge

 N
u

m
b

er
 o

f
St

ep
s

14

15

16

17

18

19

20

1
5

5
7

1
1

13
1

6
69

2
2

25
2

7
81

3
3

37
3

8
93

4
4

49
5

0
05

5
5

61
6

1
17

6
6

73
7

2
29

7
7

85
8

3
41

8
8

97
9

4
53N

u
m

b
er

 o
f

St
ep

s
to

 G
o

al

Number of Problems

xcs Limited_memory

1994.4

2528.5

0

500

1000

1500

2000

2500

3000

xcs Limited_memory

A
ve

ra
ge

 N
u

m
b

er
 o

f
P

ro
b

le
m

s
R

ea
ch

ed
 t

o
 F

o
o

d

17.57839

16.72446

16.2

16.4

16.6

16.8

17

17.2

17.4

17.6

17.8

xcs Limited_memory

A
ve

ra
ge

 N
u

m
b

er
 o

f
St

ep
s

An Efficient XCS-based Algorithm for Learning Classifier Systems in Real Environments

25

required by the animat to achieve the food. The

reason is that by applying genetic algorithm to the

memory in each problem, its c_a_memory has

improved and the classifiers can act more

efficiently on the next steps. In Maze10 map in

Figure 17-a, for example, increasing the number

of problems has not caused XCS algorithm to

show any remarkable change in the number of

steps to achieve the food. Instead, in the proposed

method, increasing the number of problems has

significantly decreased the steps to achieve the

food. On the other hand, the proposed method

requires fewer steps than XCS to achieve the food.

In Woods102, for example, the average number of

steps is 16.7 in the proposed method while it is

17.6 in XCS.

Another criterion that is of great importance in

maze problems is the average number of problems

in which the animat has been able to achieve the

food. Our implementation results suggest that, in

all the maps, the proposed method has made the

animat achieve the food in more problems. In

Woods1, for example, XCS has achieved the food

only in 5622 problems out of 10000 problems

while the proposed method has achieved the food

in 6130 problems. This difference is observed in

all the maps.

The last criterion is the average number of steps

that an animat takes to achieve the food. Here,

too, the proposed method of memory usage has

been able to reduce the number of the animat’s

steps. In Maze10, the results of which are shown

in Figure 17-c, the average number of steps are

16.9 in the proposed method and 18.45 in XCS. In

other words, our method has decreased the

number of steps by 8.4%.

The plots describing the number of steps for

achieving the food have fluctuations over the

10000 problems. These fluctuations can be partly

explained by the fact that the beginning point of

the animat and the initial classifiers in [p] were

selected randomly. The animat's beginning point

could be any empty point on the map. Therefore,

the initial distance of the animat from the food

varied from one problem to another. On the other

hand, the set [p] was initially empty and, based on

the functioning of XCS, a number of random

classifiers were created using Cover operation.

Thus the classifiers may have been different in the

animat's motion towards the food.

Concerning the forward motion of the animat as

opposed to its remaining in place or being stopped

by obstacles, the proposed method has improved

the efficiency, speed, and performance of the

animat. Given the limitations set for the animat, it

can take a certain number of steps to achieve the

food. Therefore, if the steps do not include being

stopped by obstacles, the animat can traverse a

longer path in search of food, which in turn

increases the time of achieving food.

4. Conclusion

Achieving the goal in real environments such as

winding problems faces a challenge due to

different degrees of overlap in the movement path

and the lack of sensory inputs in some cases. To

solve such a challenge, in this article, a new

memory-based XCS algorithm was used, which

acted as a non-Markovian system and was able to

identify and maintain optimal rules in overlapping

states. In this algorithm, a limited chain of final

system states that has led to success in previous

experiments is also maintained by relying on

limited memory. This algorithm was implemented

on 5 famous maze problems. The increase in the

number of problems leading to the goal and the

decrease in the number of steps and steps to reach

the goal in this new algorithm compared to the

basic XCS algorithm indicate the high efficiency

of the new method. The limitation of the amount

of memory that can be used in real learning

classifier systems in solving complex problems is

the dependence of the memory model used on the

type of application of learning classifier systems

in solving various problems, among the

limitations raised in this article. Considering the

static nature of the problem environment for

future work, the readers are suggested to make the

winding problem environment dynamic in order to

increase the flexibility and generalizability of the

problem by designing more optimal XCS

algorithms based on memory.

References
[1] Lanzi, Pier L. "Learning classifier systems: from

foundations to applications.", No. 1813. Springer

Science & Business Media, 2000.

[2] J. Holland, L. Booker, M. Colombetti, M. Dorigo,

D. Goldberg, S. Forrest et al., "What Is a Learning

Classifier System?," In Learning Classifier Systems.

vol. 1813, Springer Berlin Heidelberg, pp. 3-32, 2000.

[3] S. W. Wilson, "Classifier fitness based on

accuracy," Evol. Comput., vol. 3, pp. 149-175, 1995.

[4] Bernadó-Mansilla, Ester, and Josep M. Garrell-

Guiu. "Accuracy-based learning classifier systems:

models, analysis and applications to classification

tasks." Evolutionary computation, vol .11, no. 3 pp.

209-238, 2003.

Badie et al./ Journal of AI and Data Mining, Vol. 11, No. 1, 2023

26

[5] J. H. Holmes, P. L. Lanzi, W. Stolzmann, and S. W.

Wilson, "Learning classifier systems: New models,

successful applications," Information Processing

Letters, vol. 82, pp. 23-30, 2002.

[6] M. Shariat Panahi, A. Karkhaneh Yousefi, and M.

Khorshidi, "Combining accuracy and success-rate to

improve the performance of eXtended Classifier

System (XCS) for data-mining and control

applications," Engineering Applications of Artificial

Intelligence, vol. 26, pp. 1930-1935, 2013.

[7] Irfan, Muhammad et al. "Enhancing learning

classifier systems through convolutional autoencoder to

classify underwater images." Soft Computing , vol . 25,

no . 15, pp. 10423-10440, 2021.

[8] Irfan, Muhammad et al. "Knowledge extraction and

retention based continual learning by using

convolutional autoencoder-based learning classifier

system." Information Sciences 591, pp. 287-305, 2022

[9] Kato, Jefferson Satoshi, and Adriana Sbicca.

"Bounded Rationality, Group Formation and the

Emergence of Trust: An Agent-Based Economic

Model. " Computational Economics, pp. 1-29, 2021.

[10] Liu, Yi. Learning Classifier Systems for

Understanding Patterns in Data. Diss. Open Access Te

Herenga Waka-Victoria University of Wellington,

2021.

[11] Hansmeier, Tim, and Marco Platzner. "An

experimental comparison of explore/exploit strategies

for the learning classifier system XCS." Proceedings of

the Genetic and Evolutionary Computation Conference

Companion. 2021.

[12] Guendouzi, Wassila, and Abdelmadjid Boukra. "A

new differential evolution algorithm for cooperative

fuzzy rule mining: application to anomaly detection.

" Evolutionary Intelligence, pp. 1-12, 2021.

[13] Hochberger, Christian, Lars Bauer, and Thilo

Pionteck. Architecture of Computing Systems.

Springer International Publishing, 2021.

[14] Büttner, Johannes, and Sebastian Von Mammen.

"Training a Reinforcement Learning Agent based on

XCS in a Competitive Snake Environment." 2021

IEEE Conference on Games (CoG). IEEE, 2021.

[15] B. Bartin, "Use of learning classifier systems in

microscopic toll plaza simulation models," IET

Intelligent Transport Systems, vol. 13, pp. 860-869,

2019.

[16] M. R. Karlsen and S. Moschoyiannis, "Evolution

of control with learning classifier systems," Applied

network science, vol. 3, pp. 1-36, 2018.

[17] M. Butz and D. Goldberg, "Generalized State

Values in an Anticipatory Learning Classifier System,"

in Anticipatory Behavior in Adaptive Learning

Systems. vol. 2684, M. Butz, O. Sigaud, and P. Gérard,

Eds., ed: Springer Berlin Heidelberg, pp. 282-301,

2003.

[18] M. V. Butz, T. Kovacs, P. L. Lanzi, and S. W.

Wilson, "Toward a theory of generalization and

learning in XCS," Evolutionary Computation, IEEE

Transactions on, vol. 8, pp. 28-46, 2004.

[19] P. Gérard and O. Sigaud, "YACS: Combining

Dynamic Programming with Generalization in

Classifier Systems," in Advances in Learning Classifier

Systems. vol. 1996, P. Luca Lanzi, W. Stolzmann, and

S. Wilson, Eds., ed: Springer Berlin Heidelberg, pp.

52-69, 2001.

[20] J. H. Holland, "Escaping brittleness: the

possibilities of general-purpose learning algorithms

applied to parallel rule-based systems," in Computation

& intelligence, F. L. George, Ed., ed: American

Association for Artificial Intelligence, pp. 275-304,

1995.

[21] P. L. Lanzi, "An analysis of generalization in the

xcs classifier system," Evol. Comput., vol. 7, pp. 125-

149, 1999.

[22] P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E.

Goldberg, "Generalization in the XCSF Classifier

System: Analysis, Improvement, and Extension," Evol.

Comput., vol. 15, pp. 133-168, 2007.

[23] M. Iqbal, W. Browne, and M. Zhang, "XCSR with

Computed Continuous Action," in AI 2012: Advances

in Artificial Intelligence. vol. 7691, M. Thielscher and

D. Zhang, Eds., ed: Springer Berlin Heidelberg, pp.

350-361, 2012.

[24] M. Iqbal, W. N. Browne, and Z. Mengjie,

"Reusing Building Blocks of Extracted Knowledge to

Solve Complex, Large-Scale Boolean Problems,"

Evolutionary Computation, IEEE Transactions on, vol.

18, pp. 465-480, 2013.

[25] F. Freschi and M. Repetto, "Multi-objective

optimization by a modified artificial immune system

algorithm," presented at the Proceedings of the 4th

international conference on Artificial Immune Systems,

Banff, Alberta, Canada, 2005.

[26] H. Asadul Rehman, M. Iqbal, I. Younas, and M.

Bashir, "Learning Regular Expressions using XCS-

based Classifier System," International Journal of

Pattern Recognition and Artificial Intelligence, vol. 34,

no. 10, p. 2051011, 2019.

[27] J. Khan, A. Alam, J. Hussain, and Y.-K. Lee,

"EnSWF: effective features extraction and selection in

conjunction with ensemble learning methods for

document sentiment classification," Applied

Intelligence, vol. 49, pp. 3123-3145, Aug 2019.

[28] K. Shafi and H. A. Abbass, "A survey of learning

classifier systems in games," IEEE Computational

Intelligence Magazine, vol. 12, pp. 42-55, 2017.

[29] I. M. Alvarez, W. N. Browne, and M. Zhang,

"Human-inspired scaling in learning classifier systems:

Case study on the n-bit multiplexer problem set," in

Proceedings of the Genetic and Evolutionary

Computation Conference , pp. 429-436, 2016.

An Efficient XCS-based Algorithm for Learning Classifier Systems in Real Environments

27

[30] M. Tubishat, M. A. M. Abushariah, N. Idris, and I.

Aljarah, "Improved whale optimization algorithm for

feature selection in Arabic sentiment analysis," Applied

Intelligence, vol. 49, pp. 1688-1707, May 2019.

[31] Z. Zang, D. Li, and J. Wang, "Learning classifier

systems with memory condition to solve non-Markov

problems," Soft Computing, vol. 19, pp. 1679-1699,

June 2015.

[32] A. L. Thomaz and C. Breazeal, "Teachable robots:

Understanding human teaching behavior to build more

effective robot learners," Artificial Intelligence, vol.

172, pp. 716-737, 2008.

[33] L. M. Saksida, S. M. Raymond, and D. S.

Touretzky, "Shaping robot behavior using principles

from instrumental conditioning," Robotics and

Autonomous Systems, vol. 22, pp. 231-249, 1997.

[34] M. Dorigo and M. Colombetti, "Robot shaping:

developing autonomous agents through learning,"

Artificial Intelligence, vol. 71, pp. 321-370, 1994.

[35] D. Cliff and S. Ross, "Adding temporary memory

to ZCS," Adapt. Behav., Vol. 3, pp. 101-150, 1994.

[36] S. Wilson, "Classifier systems and the animat

problem," Machine Learning, vol. 2, pp. 199-228, Nov

1987.

[37] G. E. P. Box, "Evolutionary operation: a method

for increasing industrial productivity," Applied

statistics : a journal of the Royal Statistical Society,

vol. 6, pp. 81-101, 1957.

[38] L. B. Booker, "Intelligent behavior as an

adaptation to the task environment," University of

Michigan, 1982.

[39] L. B. Booker, "Improving the Performance of

Genetic Algorithms in Classifier Systems," presented at

the Proceedings of the 1st International Conference on

Genetic Algorithms, 1985.

[40] L. B. Booker, "Classifier systems that learn

internal world models,"Mach. Lang., vol. 3, pp. 161-

192, 1988.

[41] L. B. Booker, "Triggered Rule Discovery in

Classifier Systems," presented at the Proceedings of the

3rd International Conference on Genetic Algorithms,

1989.

[42] S. W. Wilson, "Zcs: A zeroth level classifier

system," Evol. Comput., vol. 2, pp. 1-18, 1994.

[43] R. S. Sutton and A. G. Barto, "Toward a modern

theory of adaptive networks: expectation and

prediction," Psychol Rev, vol. 88, pp. 135-70, 1981.

[44] S. W. Wilson, "Classifiers that approximate

functions," vol. 1, pp. 211-234, 2002.

[45] L. Bull, "Two Simple Learning Classifier

Systems," in Foundations of Learning Classifier

Systems. Vol. 183, L. Bull and T. Kovacs, Eds., ed:

Springer Berlin Heidelberg, pp. 63-89, 2005.

[46] L. Bull, "A brief history of learning classifier

systems: from CS-1 to XCS and its variants,"

Evolutionary Intelligence, pp. 1-16, Jan 2015.

[47] A. Hamzeh, S. Hashemi, A. Sami, and A.

Rahmani, "A Recursive Classifier System for Partially

Observable Environments," Fundam. Inform., vol. 97,

pp. 15-40, 2009.

[48] LaterA. Hamzeh and A. Rahmani, "A New

Architecture for Learning Classifier Systems to Solve

POMDP Problems," Fundam. Inform., vol. 84, pp. 329-

351, 2008.

[49] R. Preen and L. Bull, "Discrete and fuzzy

dynamical genetic programming in the XCSF learning

classifier system," Soft Computing, vol. 18, pp. 153-

167, Jan 2014.

[50] T. Ke, L. Jing, H. Lv, L. Zhang, and Y. Hu,

"Global and local learning from positive and unlabeled

examples,"Applied Intelligence, vol. 48, pp. 2373-

2392, August 2018.

[51] L. Lu, Q. Lin, H. Pei, and P. Zhong, "The aLS-

SVM based multi-task learning classifiers,"Applied

Intelligence, vol. 48, pp. 2393-2407, August 2018.

[52] I. M. Alvarez, W. N. Browne, and M. Zhang,

"Compaction for Code Fragment Based Learning

Classifier Systems," Cham, pp. 41-53, 2016.

[53] M. Moradi and J. Hamidzadeh, "Ensemble-based

Top-k Recommender System Considering Incomplete

Data," Journal of AI and Data Mining, vol. 7, no. 3, pp.

393-402, 2019.

 .2041سال ،اول شماره هم،دوره یازد ،کاویمجله هوش مصنوعی و داده و همکاران بدیع

 محیط های واقعی های طبقه بند یادگیر درسیستمبرای XCS یک الگوریتم کارآمد مبتنی بر

 4آرش شریفی و 3، محمدمهدی عبادزاده،*2کامبیز بدیع، 1علی یوسفی

 ن.ایرا تهران، اسلامی، دانشگاه آزاد واحد علوم و تحقیقات،برق و کامپیوتر، ، دانشکده مکانیک،مهندسی کامپیوتر گروه 1

 ن.ت و فناوری اطلاعات، تهران، ایراپژوهشکده فناوری اطلاعات، پژوهشگاه ارتباطا 2

 ، تهران، ایران.دانشگاه صنعتی امیرکبیر 3

 تهران، ایران. دانشگاه آزاد اسلامی، تحقیقات،و دانشکده مکانیک، برق و کامپیوتر، واحد علوم 4

 10/21/1411 پذیرش؛ 12/22/1411 بازنگری؛ 42/22/1411 ارسال

 چکیده:

 در چالش ترینمهم. شودمی استفاده هوشمند نجات هایسیستم و حسی هایربات فیزیکی، هایربات کنترل برای یادگیر بند طبقه هایسیستم از اخیراً

 سیستم هایحالت ذخیره برای حافظه از است لازم بنابراین. است آن مارکوفی غیر کیفیت هستند، واقعی های محیط از هاییمدل که هاسیستم این

 از استفاده به کمک برای حافظه بر مبتنی XCS یک ،مقاله این در. کرد گیریتصمیم قبلی هایحالت از ایزنجیره اساس بر بتوان تا شود استفاده

 کاهش به منجر و شده سازی پیاده ماز مهم نقشه پنج روی بر پیشنهادی مدل. است شده پیشنهاد کارآمد قوانین شناسایی با بندی طبقه در مؤثرتر قوانین

 .شود می ها نقشه این در هدف به رسیدن های موفقیت تعداد افزایش همچنین و هدف به رسیدن مراحل تعداد

 .همپوشانی و چرخه شناسایی ،XCS الگوریتم ،یادگیر بند طبقه هایسیستم :کلمات کلیدی

