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 Recently, learning classifier systems are used to control physical 

robots, sensory robots, and intelligent rescue systems. The most 

important challenge in these systems, which are models of real 

environments, is its non-Markov quality. Therefore, it is necessary to 

use memory to store system states in order to make decisions based on 

a chain of previous states. In this research work, a memory-based 

XCS is proposed to help use more effective rules in classifier by 

identifying efficient rules. The proposed model is implemented on 

five important maze maps, and leads to a reduction in the number of 

steps to reach the goal and also an increase in the number of successes 

in reaching the goal in these maps. 
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1. Introduction 

Learning classifier systems (LCSs) are rule-based 

systems that are mainly "if conditions, then act". In 

these systems, an evolutionary algorithm or other 

intuitive methods can be used to search the space of 

the existing rules, and at the same time, a learning 

process can be used to assign applications to the 

existing rules, which leads the search process to 

better rules [1, 2]. The term LCS was first 

introduced by Holland et al. as an extension of 

genetic algorithms [2]. Years later, he developed 

Cognitive Systems Level 1 (CS-1) in collaboration 

with Reitman [2]. Then he modified and 

standardized his previous works. However, the 

complex structure of the Dutch system prevented it 

from being easily implemented. Later, Wilson 

developed another type of LCS called XCS, where 

the fitness of the rules was determined only by the 

accuracy of their application [3]. LCSs have various 

applications in real environments [1-4]. 

XCS algorithm in problems such as segmentation of 

underwater images [7], knowledge extraction in 

factors based on economic models [8-9], 

understanding patterns in data [10], comparison of 

exploration and extraction strategies in engineering 

problems [11], anomaly detection based on 

cooperative fuzzy algorithms [12], automatic testing 

in organic computing systems [13], and competitive 

environments based on learning-based factors [14] 

is used. Another study presents the application of 

LCS learning algorithm in simulating drivers' lane 

selection behavior in microscopic simulation 

models of toll plazas [15]. LCS is used to evolve a 

set of ‘control rules’ for a number of Boolean 

network instances [16].  

The biggest challenges are using LCS systems in 

real environments such as humanoid robots, 

navigation systems in tortuous paths, learning 

rescue robots, selecting appropriate environmental 

features, and human-inspired scaling [26-34]. In all 

these environments, the model systems must be 

non-Markov (i.e. work with memory). In many real 

LCS systems, due to the lack of sensory input in 

some cases, the current state of the environment 

cannot be determined by input alone. Therefore, the 

response of the system to the environment is not 

only determined by the current state and input but 

also requires the previous states of the system. Such 
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a system needs memory to store system states, so 

another condition called memory condition is used 

in these classifiers. These memory conditions can 

affect the system's power to decide on more 

appropriate responses to input in ambiguous and 

hidden situations. A stack-based turing machine can 

be used. Ideally, such a machine would have an 

infinite memory [35]. Considering the importance 

of LCS in natural systems, the aim of the present 

work is to develop a model of memory-based LCS 

for a real-world system. Using the proposed 

memory mechanism, the system uses the previous 

states of the system along with its current state and 

input to determine the best response to the input. 

Our approach focuses on the concepts of discrete 

response, non-Markov learning environment, and 

cyclic conditions of the system. Obviously, since 

natural environments are characterized by 

extensibility and increasing complexity, scalability 

is considered in our design by combining solutions 

with an evolutionary algorithm suitable for 

developing classifiers. This article is organized as 

what follows. In Section 2, previous works on LCS 

systems will be reviewed. Section 3 discusses the 

proposed method to improve the performance of 

XCS classifier systems. In this section, in addition 

to explaining the proposed method for optimizing 

the number of animation steps by identifying 

effective conditions and measures and adding them 

to the memory of the classifier system, how to use 

the genetic algorithm in this type of memory will 

also be explained. The proposed method that makes 

animat use its history is described in Section 4. 

Section 5 explains the implementation and 

performance evaluation of the proposed method. 

The final section provides conclusions as well as 

suggestions for further research works. 

 

2. Literature Review  

Holland put forward the notion of LCS to develop 

reinforcement learning or trial-and-error method. 

He sought to know how an artificial intelligence 

system could permanently adapt itself to the new 

and existing experiences and how an optimum 

system could be designed to represent knowledge 

by using continuous and flexible learning based on 

trial-and-error with increased rewards [37]. For this 

purpose, he made use of a certain type of genetic 

algorithms. The combination of evolutionary 

process and reinforcement learning resulted in the 

emergence of the CS-1 architecture. 

In every discrete time cycle, CS-1 obtains an 

encrypted binary description of the current state of 

the environment. Then it determines a response 

memory space called ‘message list’ on the basis of 

the input, the previous action, and the current 

content. This is illustrated in Figure 8. In this 

system, the rule database consists of N rules in the 

form of condition-assertion, each of which called a 

classifier. The conditions are strings of three 

encryption symbols in the form (#, 0, 1). The 

symbol # acts as “all-purpose”, and allows the 

condition to be “0” or “1”. For example, the 

condition 1#1 matches both 101 and 111. The 

assertion part of each rule consists of an action and 

an internal message, which are both represented as 

binary strings. All parts of a rule are initialized by 

random values. Also a number of parameters come 

along with each rule including age of the rule, 

number of uses, and prediction of the reward for 

being used (that is also used as a parameter of 

fitness). Later on, Holland modified CS-1 and 

explained what needed to be changed to achieve a 

standard architecture. He named this new system 

Learning Classifier System (LCS) [2]. 

The most significant improvement of CS-1 was the 

fact that a reinforcement learning system was 

introduced by analogy with the economic metaphor 

“bucket brigade”, in which the application of a rule 

was judged by the appointment of credit [37]. In 

this method, those rules that acted in time cycles 

and resulted in external reward were considered as 

the middle individuals between the supply and 

demand chains. Rules have a parameter called 

‘strength’ that is indicative of their credit in this 

chain. This parameter is both used to select actions 

and discover new rules through the genetic 

algorithm. In this model, the message list is 

extended so that multiple rules can send their 

assertions. The conditions of other rules do not have 

a fixed structure for considering the current state of 

environment, the content of message list, and the 

final action. Instead, all conditions and assertions 

have the same length, and the conditions can also 

include a logical NOT. Assertions use the alphabet 

used in conditions, i.e. [1], so that the information 

may pass through a condition or string (external 

input or internal message) which a rule matches in 

the present of #. 

Booker presented a type of Holland’s standard 

system, and developed the idea of using genetic 

algorithms for discovering the configuration of 

problem space in order to separate the task of 

learning this support structure from the unit of 

appropriate actions for external rewards. For each of 

these two, there exists a different LCS.  The first 

LCS receives an encoded binary description of the 

environment with the aim of discovering and 
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learning the appropriate rules within the general 

visible items. This is equal to learning the 

representation of the categories of subjects in the 

environment. The matched rules not only send their 

messages to the message list but also some of them 

are passed as input to the second LCS. Therefore, 

the second LCS is rewarded only when it uses these 

classifications correctly according to its current 

task.  

Booker's innovations include detailed matching and 

levels of stimulation of the rules; but his main idea 

is to limit the process of discovering new rules to 

only those active rules (and not all the rules in the 

knowledge base) that have proved to be most 

effective. In this system, parents are selected from 

the message list [M]. Therefore, the rules are 

prevented from being combined with generalities 

that reveal many aspects of the problem. Booker 

developed his idea based on stimulation of genetic 

algorithm during learning, and allowed this process 

to run at a constant rate like Holland’s 

reinforcement learning. Importantly, in this model 

of learning, rules contain an estimation of their 

stability, which is indicative of their changes when 

being rewarded. If the instability of a certain 

percentage of the rules in [M] is greater than a 

specified threshold, the fitness of stable rules will 

increase and the genetic algorithm will run. As a 

result, stable classifications are more interesting to 

the genetic algorithm. XCS system makes use of 

both fundamental genetics and stimulated genetics 

with a stability threshold [39-41]. 

Above all, the message list had been removed and 

the matched rules were classified based on actions 

in the process of human chain to create the action 

set [A]. In such a system, genetic algorithm is 

sensitive to the action of rules and partially 

resembles CS-1. The first parent is selected from 

the knowledge base according to its strength, 

whereas the second parent is selected from a subset 

of the population with identical action. ANIMAT 

controlled a simple agent in a two-dimensional 

environment, which was able to sense the content of 

eight positions in its environment and move in any 

one of eight paths which was open. Wilson showed 

that learning was possible, even to the extent that 

the paths, which led to food reward discovered in 

his project. However, he found out that the system 

was unable to learn hurried classifications by 

reinforcement. In order to stimulate an agent to 

achieve a reward from an initial position through 

the shortest path, he modified the structure of rules 

in a way that an estimation of the number of further 

steps required to receive the reward would be stored 

and, on the basis of this estimation, the children of 

each rule would be updated. In the action selection 

unit, this idea was implemented through dividing 

strength by distance. In addition, ANIMAT had a 

re-combinative operator that replaced dissimilar bits 

with # under the conditions of the parent to provide 

a more useful generalization. 

Later on, Wilson simplified ANIMAT by 

developing his Zeroth-Level Classifier System 

(ZCS) [42, 43]. The major modification in ZCS was 

the fact that the human chain algorithm had been 

modified in a way that time differential learning 

could also be used. 

Results from the evaluation of ZCS indicate that it 

can have a good, but not ideal, performance [36, 40, 

42]. In differential learning, Wilson used an 

algorithm without policy called Q-learning along 

with the main algorithm [51]. He suggested that a 

fundamental genetic algorithm be used in the 

explained form. Bull investigated this issue. It has 

been shown that ZCS has a good performance in 

some sample problems but it seems that it is 

sensitive to some of its parameters. Also ZCS is 

more efficient than XCS in some noisy 

environments [21]. Although XCS and ZCS share 

some of their fundamental features, they have a 

number of basic differences [18]. 

After some changes in the architecture of ANIMAT 

and before presenting ZCS, Wilson developed an 

architecture specific to reinforcement learning, in 

which immediate reward was considered.  

BOOLE was a system used for binary decision-

making [36]. BOOLE borrows the mechanism 

[ ]  [ ] from ANIMAT but it eliminates the 

message list [M]. Furthermore, the limitation in 

selecting the second parent during the intercourse in 

the genetic algorithm (i.e. the condition of having 

the same action as the first parent) does not exist 

anymore in BOOLE, which causes the parents’ 

strength to decrease through transfer to the children 

by means of an inherent mechanism of ZCS. It has 

been shown that strength decrease will compel more 

general rules to update more quickly and receive 

their rewards sooner [45]. Also in ZCS, rules that 

exist in [M] and do not exist in [A] will lose their 

strength with a certain tax rate. 

Rules in the structure of Holland's LCS assumed the 

form condition-action-payoff. The main difference 

between Wilson's XCS and Holland's architecture 

lies in the fact that criterion of fitness in the former 

is accuracy of prediction instead of value of 

prediction. Although XCS architecture resolved 
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problems such as generalization, but its lack of 

internal message list or any other memory structure 

like CS-1 caused it to be useful only for learning the 

optimum policy in Markov systems. In such 

systems, the optimum policy only depends on the 

state of the sensory inputs and the agent can 

perfectly determine the state of the environment by 

means of these inputs. In many applications, the 

sensory inputs provide the agent with partial 

information about the current state of the 

environment. Thus the agent is unable to identify 

the state of the environment, and the classifier will 

regard overlapping states as identical. In this case, 

the classifier agent faces the problem of hidden state 

or overlapping observations and the action issued 

by the agent in response to the inputs will have a 

low accuracy. Such a system is called a non-

Markov system, and the environment is said to be 

partially observable. In an environment that is 

partially observable, the classifier agent requires a 

memory with which it could compensate for the 

deficiency of sensory input data because the 

optimum policy cannot be recognized only on the 

basis of sensory inputs [46].  

Holland's initial architecture includes an internal 

message list. This list stores information, and can be 

used as a temporary memory. However, research 

findings show that Holland’s architecture are 

usually not successful in non-Markov environments. 

Various approaches to this issue have been so far 

proposed.  

A pioneering design was proposed by Wilson in 

1995 [3] and implemented by Lanzi in 1998 [21]. 

They added an internal memory to the system in the 

form of a register with one or a limited number of 

bits. Then they developed their proposed 

architecture by adding one condition and one action 

that were used in sensing and imposing policies on 

the internal register. Their system was called 

XCSM. This architecture was used in real non-

Markov systems with overlapping sensory inputs. 

The results of the work of Wilson and Lanzi 

showed that XCSM was only efficient in simple 

problems in which the inputs had two or at most 

four overlapping states, but in other cases such as 

the problems of twisty paths it could not converge 

into the optimum solution. This motivation led 

Lanzi to develop another version of XCSM, which 

was called XCSMH. This new LCS made use of a 

new policy for updating memory and utilized a 

hierarchical strategy for selecting the appropriate 

action in response to the input. Testing the 

performance of XCSMH in twisty path problems 

with different complexities showed that this system 

could achieve a near-optimum solution in simple 

problems.  

Later, Hamzeh et al. proposed two classifier 

systems with distributed architecture called PSXS 

and RPXCS [46, 47]. In these systems, the overlap 

of states is recognized, and the inputs are directed 

toward XCSs with lower ranks. Low-rank XCSs are 

equipped with history windows, and are each 

responsible for one of the overlapping states. The 

structure of the classifier in their systems is 

extremely complicated. Their method has proven to 

be successful in some of the standard tests.  

In another study, Preen and Bull used Graph-based 

Dynamic Genetic Programming (DGP) to represent 

rules in XCS and XCSF (that was equivalent to a 

random Boolean network). Their DGP-XCS and 

DGP-XCSF can solve some twisty path problems 

but their solution is not optimum [49].  

Recently, Xang et al. have proposed a new method 

of using memory in LCS systems to enhance the 

performance of XCS [31]. In their method, an 

internal message list is added to the system as the 

memory list, which has a length equal to the strings 

created by the identifiers. In this method, a small 

number of memory-based classifiers are developed 

to deal with the non-Markov states of the 

environment. Also a condition developed in the 

form of (memory, condition) is used along with a 

mechanism for recognizing the overlap of states to 

improve the performance of the classifier in hidden 

states. The performance of XCSMD classifier is 

closer to the optimum and higher than previous 

classifiers in real environments. However, the real 

problem in this method is memory wasting and the 

overload caused by applying the memory condition 

(to pass through overlapping states that cause 

ambiguity). In this case, the development capability 

of the system will face the problem of overload in 

computation and memory as the environment grows 

in size. In the context of more complicated systems, 

therefore, the solutions will be distant from the 

optimum solution. Today, classifier systems are 

used as applied tools to solve a variety of difficult 

problems. Sample learning without tagging, proper 

algorithm selection based on reasoning, support 

vector machine compaction for code fragment in 

decision making systems are among applications of 

these systems [50-53]. 
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3. Proposed Structure of LCS  

The diagram of our proposed approach to LCS is 

depicted in Figure 1. This algorithm adds three 

modules to the XCS architecture.  

Memory list: It is used for the non-Markov aspect 

of the system. The structure of the list varies 

depending on the environment in which the 

classifier is used. In other words, the degree of the 

complexity of the problem will determine the 

boundaries of the memory. What is important is 

that, due to the existence of cycles in the states of 

most real systems, the stored states in the system's 

memory are limited and the memory should be 

assumed as limited. 

Genetic algorithm (GA): It is used in two parts of 

our proposed structure. The first part is concerned 

with development of rules. Here, the population of 

rules is developed in an efficient and controlled way 

by using generalization and privatization through 

genetic algorithm. Secondly, this algorithm is used 

in the development and generalization of memory 

states. While interacting with the module that 

discovers cycles and overlapping states, this process 

that runs periodically or in an event-oriented 

manner will generalize the most used states and 

control the usage of limited memory space.  

Module for identification of overlapping states: 
This module is necessary due to the fact that the 

memory is limited and bounded. The performance 

of this module can be either event-oriented or 

periodical. However it is, the output of the module 

is given to the genetic algorithm that controls the 

memory required for storing the states through 

generalization of frequently used states.  
 

 
 

Figure 1. Proposed architecture for an LCS. 

 

The three parts of the proposed architecture will be 

elaborated in the following phases:  

 

3.1. Selection of appropriate condition-action at 

each step 

The animat is sometimes located at a point where 

there are some obstacles in the surroundings. In 

Figure 2-a, for example, there are only three open 

spots to pass around the animat (*). These spots are 

marked in red. The remaining five spots are 

obstructed. The animat can move by selecting 

actions such as 000, 001, and 100; otherwise, it will 

be stopped by an obstacle. Figure 2-b illustrates the 

effect of the selected actions to take against the 

environment as well as the animat's motion. 
 

O O O O O O O O O O 

O . . . . . . . . O 
O . O O Q O Q Q  O 
O . O F . . O Q . O 
O . O O O . O O . O 
O . O O O . O O . O 
O . . . . . . . . O 
O O O O O O O O O O 

Figure 2-a. Example of an animat in the environment. 

 

7 0 1  111 000 001 

6  2  110  010 

5 4 3  101 100 011 

Figure 2-b. Action performed on the environment and the 

animat’s motion. 

 

Figure 3 shows a detector and the animat's actions 

in several steps of its motion in Figure 1. In step 1, 

the action 011 is selected and performed. However, 

there is an obstacle at the current position and the 

animat will not move on. In step 2, the action 010 is 

performed that again leads to an obstacle. In step 3, 

the action 010 is again selected, which prevents the 

animat from moving. However, in step 4, the action 

100 is selected that causes the animat to move 

downwards. Therefore, 100 is one of the actions 

that causes movement with this input from the 

detector. In step 11, once again the input of the 

animat resembles that of the steps 1 to 4. In this 

position, after having performed five different 

actions on the environment, the animat moves 

upwards by selecting 000. In step 14, the animat 

repeats the action of step 1 that causes it to hit the 

obstacle. Similarly, in step 18, it selects 010 that it 

has already used in step 2. It is clear that this animat 

will not use the results of previous steps to improve 

its behavior. 

The next table (figure 3) aims to show that an 

animat should not select the same action when it 

receives a repetitive input from the environment, 

which did not lead to movement in the previous 
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steps. Instead, it should use actions that have led to 

movement in the same position in previous steps. In 

this example, the animat in step 11 should make use 

of the action selected in step 4. How these 

condition-actions could be identified will be 

explained in the next section. 
Action Condition Step# 

011 000000011011000010010010 1 

010 000000011011000010010010 2 

010 000000011011000010010010 3 

100 000000011011000010010010 4 

010 000011011010000010010010 5 

011 000011011010000010010010 6 

010 000011011010000010010010 7 

001 000011011010000010010010 8 

110 000011011010000010010010 9 

000 000011011010000010010010 10 

101 000000011011000010010010 11 

101 000000011011000010010010 12 

101 000000011011000010010010 13 

011 000000011011000010010010 14 

101 000000011011000010010010 15 

000 000000011011000010010010 16 

100 010010000011000010010010 17 

010 000000011011000010010010 18 

001 000000011011000010010010 19 

110 010010000011011000000010 20 

110 010010000011000010010010 21 

011 010010000011000010010010 22 

010 010010000011000010010010 23 

100 010010000011011000000010 24 

101 010010000011011000000010 25 

001 000000011011000010010010 26 

111 010010000011011000000010 27 

000 010010000011011000000010 28 

010 010010000011011000000010 29 

010 010010000010011011000010 30 

001 010010000010010011000010 31 

100 010010000010010011000010 32 

010 010010000010010011000010 33 

110 010010000010010010000010 34 

 

Figure 3. Example of a detector and the animat's action in 

34 steps. 

3.2. Identification of condition-actions affecting 

movement 

This section describes how to identify a condition 

and an action that cause the animat to move after 

having tested more than one action. In each step, 

both the condition and the action are stored. In 

addition, if a previously met condition appears in a 

step, the number of consecutive repetitions of this 

condition will be stored. Next, if the current 

condition does not differ from the previous one, the 

previous condition and action will be identified as 

the condition-action that affects the animat's 

movement. Given the values in Figure 3, the 

condition-action in step 4 has caused the animat to 

move after three trials. Also the condition-action in 

step 10 acts as an accurate classifier. If our only 

criterion is the animat's movement as opposed to its 

stop, this condition-action can be considered as an 

accurate classifier in XCS.  

Various methods can be developed to use these 

condition-actions. For this purpose, two different 

modes will be implemented and examined below. 

 

3.3. Providing XCS with a memory for storing 

effective condition-actions 

In this method, a memory is allocated in XCS to the 

storage of the obtained condition-actions. Figure 4 

shows this memory, which is called c_a_memory.  

This memory contains four fields, namely, fitness, 

action, condition, and used. Used is a Boolean field. 

This field marks condition-actions that were used to 

achieve the food reward in each problem. At the end 

of each problem, the value of the used field of the 

utilized condition-actions is set to 1.  
 

Used Fitness Action Condition 

0 1 100 000000011011000010010010 

0 1 000 000011011010000010010010 

0 1 000 000000011011000010010010 

0 1 001 000000011011000010010010 

0 1 010 010010000011000010010010 

0 1 101 010010000011011000000010 

0 1 010 010010000011011000000010 

Figure 4. Example of c_a_memory. 

 

Depending on whether it has influenced the 

animat’s achieving food, each condition-action 

receives a value that is stored in fitness. This field is 

a double-type field. How fitness is calculated will 

be explained below. 

The allocated memory has a limited space. This 

memory acts as a FIFO queue. If it exceeds a 

certain amount of space, one of the condition-

actions will be deleted. In the experiments in 

Section 5, the size of this memory is determined as 

100% of the maximum number of classifiers in [p] 

and, in the experiments on Section 6, its size is 

determined as 20% of this number. 

3.3.1. Storage of condition-actions 

When a condition-action is identified, it will be 

stored in the memory. It should be noted that no 

new classification will be added to the set [p]. The 

condition-action is stored without any change (i.e. 

without using #) in the memory. 

 

3.3.2. Using memory in XCS 

This memory lies between the inputs received from 

detector and effector. The input received from 

detector is first searched for possible matches in the 

memory. If the input matches one of the conditions 

in the memory, the action corresponding to that 

condition will be sent to effector to be applied to the 

environment. 

If the input does not match any condition, the 

default steps of XCS will be performed on it. If the 

input matches several conditions, one of the 

conditions will be selected at random. This function 
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returns the number of the line in the memory that 

contains the desired condition-action.  

Now we will examine a specific case that may 

occur for the animat. For example, suppose the 

following position of the animat: 
O O O O O O O 
O . . . .  . 
O O O O O O O 

 

If its move to the right is stored in the memory as 

the effective condition-action, in the next step the 

animat will again move to the right by checking the 

memory and matching the input against the existing 

condition. This action will be done until the animat 

has reached the rightmost square. 
O O O O O O O 
O  . . . . . 
O O O O O O O 

 

In this step, as the input does not match any existing 

condition, the animat will use the default XCS and 

move to the left: 
O O O O O O O 
O .  . . . . 

O O O O O O O 
 

In this step, the memory is searched to find a match 

for the input. Since the previous condition-action is 

found, the animat will once again move to the right. 

This indicates that the animat has fallen into a loop. 
 

O O O O O O O 
O  . . . . . 

O O O O O O O 
       

For this reason, this memory will be used with a 

probability of 0.5. Thus the same conditions can be 

added to the memory with different actions. 

 

3.4. Calculation of fitness 

The initial value of this variable for each condition-

action is set to 1. In each problem, if the food 

reward is achieved by a certain condition-action in 

the memory, the used parameter of that condition-

action will be set to 1. In the end (i.e. either the 

maximum number of steps have been taken or the 

food has been reached), if the animat has achieved 

the food, 1 will be divided by all condition-actions 

that have been used in achieving the food and the 

obtained values will be multiplied by the previous 

fitness values. The following equation is used to 

calculate fitness: 

1
*

 used condition - actions
Fitness Fitness

all

 
   

 
 

(1) 

 

3.5. Adding condition-actions to memory of [P] 

If the animat has achieved the food, all the 

condition-actions whose used value is 1 are added 

to the set [p] as a new classifier. First, Cover 

command is used to set some bits of the condition to 

# and, next, these new classifiers are added to [p]. 

Then if the number of the classifiers of [p] exceeds 

the maximum number defined, some of the 

classifiers are removed using an inherent strategy in 

XCS. 

 

3.6. Using genetic algorithm for producing a new 

condition-action 

If the size of c_a_memory exceeds a certain 

amount, the genetic algorithm is used to create new 

condition-actions. First, the entire memory content 

is sorted according to the fitness value in an 

ascending order. Next, a new c_a_memory half the 

size of the total memory is created. The genetic 

algorithm is executed on two parents with identical 

actions. 12 bits are taken from the first parent and 

12 bits from the second parent to produce a child. 

The produced child is added to the c_a_memory and 

replaces the condition-action that has the smallest 

Fitness value. Also this new child is added to [p] as 

a new classifier after the Cover operation is 

performed on it. 

 

3.7. Searching memory for input 

The input from detector is first searched for in the 

memory. If the input matches one of the conditions 

in the memory, the corresponding action will be 

selected with a certain probability to be performed 

on the environment. If there are more than one 

condition matching the input, the condition with the 

highest Fitness will be selected. Finally, if there is 

not match, the conventional XCS method will be 

used for the next move. 

 

4. Limited_memory 

The innovation aspect of this research work 

compared with the basic XCS is summarized in the 

following three points. Firstly, in this research 

work, for the first time in the states of the learning 

classifier systems, limited memory has been used to 

store a set of states depending on the type of 

problem and the complexity of the system, and this 

shows the efficiency of the system in not using 

unlimited space. Secondly: overlap and cycle 

detection in repetitive pairs (condition-action) is 

obtained according to the input history from 

environmental sensors and the history of other 

previous actions using a non-Markov system. The 

results of the article confirm the improvement in the 

number of problems leading to the goal and 

reducing the number of steps to reach the final 

states in the maze maps problems. Thirdly: the 

simultaneous use of evolutionary algorithms such as 

genetic algorithm improves the development and 

generalizability of categories as well as the 

scalability of such problems. Limited_memory 
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stores the last   moves. In this memory, the 

conditions received by the sensors from the 

environment as well as their corresponding actions 

will be stored. Figure 5 illustrates a memory that 

contains the last 15 moves of an animat. Window is 

a small memory that, in each move, stores the last 

  actions of the animat. To identify the required 

action, the animat first searches for its window in 

the Limited_memory. If a specified number of bits 

from m conditions in window match the contents of 

the Limited_memory, the last action will be selected 

for the animat. 

 

Figure 5. Limited_memory and window. 

Before the motion begins, both Limited_memory 

and window are empty. As long as 

Limited_memory is smaller than twice the size of 

Window, no search is conducted. Therefore, the size 

of Limited_memory should be at least twice the size 

of Window, in which case only one comparison is 

made between the two memories.  

 
Figure 6. Minimum size of memories. 

In Figure 6, the size of Limited_memory is 10 and 

the size of window is 5. According to the figure, 

when the memory size reaches 10, a comparison 

becomes possible between the two memories.  

 

4.1. General flowchart of XCS and c_a_memory 

Figure 7-a shows the flowchart of the proposed 

method, and Figure 7-b shows the corresponding 

algorithm. These figures explain one step of the 

animat. The input of this algorithm consists of 

c_a_memory, Limited_memory, and window. The 

output is the next move to be done in the 

environment. The command used to perform the 

appropriate action on the environment is 

Environment→perform (action). The functions used 

in the algorithm are described below. 

limited_memory.size () is used to calculate the size 

of limited_memory. window.size () is used to 

calculate the size of Window. c_a_memory.size () 

calculates the size of c_a_memory. Random () 

generates a random number between 0 and 1. 

search_detector_c_a_memory () searches 

c_a_memory for the input from Detector.  

insert_new_entry_c_a_memory() adds a condition-

action line to c_a_memory. insert_classifier () adds 

a new classifier to [p]. As Limited_memory reaches 

a certain size, this memory is examined by window 

with a probability of 0.5. If window matches the 

contents of Limited_memory and the corresponding 

action is performed on the environment, the value 

of previous_search will be set to 1. Therefore, if the 

animat has selected an action in the previous step by 

means of Limited_memory, it is given a chance in 

the current step to search Limited_memory for its 

window memory (line 1).  

All the bits of window are examined with all 

possible states in Limited_memory. In every state 

that matches more than 80% of the bits, the last 

action is performed on the environment and, after 

the execution of line 5 in the algorithm, one step of 

the animat is completed. In Figure 6, for example, 

there are six different states. In all cases where the 

existing condition does not hold, c_a_memory is 

used to find the most effective action. If the input is 

matched by one of the conditions in this memory 

and the obtained probability is less than 0.5, the 

action in the memory is performed on the 

environment (lines 8-10); otherwise, XCS will be 

used to determine the action and the function for 

finding the effective condition-action will be 

executed (lines 12-13).  If the animat has not 

achieved the food, the next step will repeat the 

search for the input in the memory. However, if it 

has achieved the food and used, at least one of the 

condition-actions of the memory, the fitness of 

those condition-actions will be calculated. The 

condition-actions will be then added as new 

classifiers to the set [p] (lines 15-22). Finally, the 

algorithm checks whether the memory has exceeded 

a certain size X (line 23).  
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The value of X in the proposed system is set to 

Maximum_number_of_ [p] * 0.03. 

If this condition is true, the condition-actions in 

the memory will be sorted according to their 

Fitness value (line 24). Next, using genetic 

algorithm, a child is produced from two parents 

with identical actions and replaced by the 

condition-action that has the smallest Fitness 

value (line 25). Production of condition-actions 

continues for half of the memory size and the 

condition-actions are then added to [p] as 

classifiers (line 26). 

4. Implementation and Evaluation 

This section reports on the implementation of the 

proposed method on the following maps. The 

evaluation criteria include the number of times the 

animat achieves the food in 10000 problems, the 

average number of steps in 10000 problems, and 

the average number of times the animat achieves 

the food in 10000 problems. The results are 

calculated as the average of 10 executions. The 

size of c_a_memory is 3% of the maximum 

number of the classifiers in [p]. Given that on 

these maps the maximum number of steps to 

Figure7-a. Flowchart of the proposed method 
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achieve the food is not large, memory size is 

considered as small as possible so that new 

classifiers could be more easily added to [p]. To 

evaluate method in different environments, the 

maps were selected based on the complexity of 

their environments. The complexity of the maps 

increases progressively. 
  

 

 

Input: 

 

 
 

Function 

 
 

 

 
 

 

 
 

 

Output: 

Limited_Memory 

Window 

c_a_memory 
 

limited_memory.size() : size of limited_memory 

window.size(): size of window 
c_a_memory.size(): size of c_a_memory 

random(): create a random between 0 to 1 

search_detector_c_a_memory(): search 
detector(input) in c_a_memory() 

insert_new_entry_c_a_memory(): insert a new 

entry in c_a_memory 
insert_classifier(): insert a new classifier to [p] 

 

Next step of animat 
 

 Begin  

1  If limited_memory.size() >= window_size*2 
&&(random() > 0.5 || previous_search==1) do 

2        Max_matched= maximum number of bits of  

            entry which matched with detector 
3        If max_matched > 80% && random()<0.5 do 

4                                   Environment→perform(limited_memory  
            [max_offset].action)  

5             Goto Line 28 
6       End if 

7  End if 

8  search = search detector in c_a_memory() 

9  If search  && random()<0.5 do 

10          Environment→perform(c_a_memory[search]. 

        action) 

11  Else 

12       Environment→perform(XCS.action) 

13       Insert XCS.action as new entry in c_a_memory 
14  End If 

15  If Environment->reward() == 1000 && used != 0 

do // reach food && number of used c-a >0 
16       For i=0;i<c_a_memory.size() do 

17            If c_a_memory[i].used == 1do 

18                 c_a_memory[i].fitness +=  
              (c_a_memory[i].fitness * (1/used)) //  

                calculate Fitness 

19                 insert_classifier(c_a_memory[i]) // add 
new classifiers to [p] 

20            End If 

21       End For 

22  End If 

23  If c_a_memory.size() > X do 

24       Sort c_a_memory 
25       GA 

26       insert n/2 of c_a_memory to [p] 

27  End if 

28 End  

Figure 7-b. Pseudo-code for one step of the motion in the 

proposed method. 

3.2. Benchmark problem 1 (Woods1: [p] =800) 

Woods1 map is illustrated in Figure 8. In this 

map, the maximum number of classifiers in [p] is 

800.  

Also the maximum number of steps to reach the 

food is 5. The size of Limited_memory is 4 and 

the size of Window is 2. Figure 9 illustrates the 

results of the implementation of the proposed 

method as well as XCS. 

 
Figure 8. Woods1 map. 

 

 
a) Number of steps required to achieve the food on 

Woods1. 

 b) Average number of problems ending in food on 

Woods1. 

 

 
c) Average number of the animat's steps in 10000 

problems on Woods1. 

Figure 9. Results of implementation on Woods1. 

3.3. Benchmark problem 2 (Maze7: [p] =1600) 

In this map, the maximum number of classifiers in 

[p] is 1600. Also the maximum number of steps to 

reach the food is 20. The size of Limited_memory 

is 15 and the size of Window is 5. Figure 10 

shows Maze7 map, and Figure 11 shows the 
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results of the implementation of the method in 

10000 problems. 
 

 
Figure 10. Maze7 map. 

 

 
a) Number of steps required to achieve the food on 

Maze7. 

 
b) Average number of problems ending in food on Maze7. 

 

c) Average number of the animat's steps in 10000 

problems on Maze7. 

Figure 11. Results of implementation on Maze7. 

3.4. Benchmark problem 3(MazeF4: [p] =1600) 

In this map, which is shown in Figure 12, the 

maximum number of classifiers in [p] is 1600. 

Also the maximum number of steps to reach the 

food is 20. The size of Limited_memory is 15 and 

the size of Window is 5. The plots in Figure 13 

show the results of the implementation of the 

proposed method on MazeF4. 
 

 
Figure 12. MazeF4 map. 

 

 
a) Number of steps required to achieve the food on 

MazeF4. 

 
b) Average number of problems ending in food on 

MazeF4. 

 
c) Average number of the animat's steps in 10000 

problems on MazeF4. 

Figure 13. Results of implementation on MazeF4. 

3.5. Benchmark problem 4 (Maze10: [p] =2800) 

In this map, the maximum number of classifiers in 

[p] is 2800. Figure 14 shows Maze10 map. Also 

the maximum number of steps to reach the food is 

20. The size of Limited_memory is 15 and the 

size of Window is 5. The plots in Figure 15 show 
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the results of the implementation of the proposed 

method on Maze10.  

 
Figure 14. Maze10 map. 

 
a) Number of steps required to achieve the food on 

Maze10. 

 
b) Average number of problems ending in food on 

Maze10. 

 
c) Average number of the animat's steps in 10000 

problems on Maze10. 

Figure 15. Results of implementation on Maze10. 

3.6. Benchmark problem 5 (Woods102: 

[p]=2800) 

In this map, the maximum number of classifiers in 

[p] is 2800. Also the maximum number of steps to 

reach the food is 20. The size of Limited_memory 

is 15 and the size of Window is 5. Figure 16 

shows Woods102 map. The plots in Figure 17 

show the results of the implementation of the 

proposed method as well as XCS on Woods102.  

 
Figure 16. Woods102 map. 

 
a) Number of steps required to achieve the food on 

Woods102. 

 

b)  Average number of problems ending in food on 

Woods102. 

 
c) Average number of the animat's steps in 10000 

problems on Woods102. 

Figure 17. Results of implementation on Woods102. 

 

According to the results, increase in the number of 

problems would decrease the number of steps 
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required by the animat to achieve the food. The 

reason is that by applying genetic algorithm to the 

memory in each problem, its c_a_memory has 

improved and the classifiers can act more 

efficiently on the next steps. In Maze10 map in 

Figure 17-a, for example, increasing the number 

of problems has not caused XCS algorithm to 

show any remarkable change in the number of 

steps to achieve the food. Instead, in the proposed 

method, increasing the number of problems has 

significantly decreased the steps to achieve the 

food. On the other hand, the proposed method 

requires fewer steps than XCS to achieve the food. 

In Woods102, for example, the average number of 

steps is 16.7 in the proposed method while it is 

17.6 in XCS.  

Another criterion that is of great importance in 

maze problems is the average number of problems 

in which the animat has been able to achieve the 

food. Our implementation results suggest that, in 

all the maps, the proposed method has made the 

animat achieve the food in more problems. In 

Woods1, for example, XCS has achieved the food 

only in 5622 problems out of 10000 problems 

while the proposed method has achieved the food 

in 6130 problems. This difference is observed in 

all the maps. 

The last criterion is the average number of steps 

that an animat takes to achieve the food. Here, 

too, the proposed method of memory usage has 

been able to reduce the number of the animat’s 

steps. In Maze10, the results of which are shown 

in Figure 17-c, the average number of steps are 

16.9 in the proposed method and 18.45 in XCS. In 

other words, our method has decreased the 

number of steps by 8.4%. 

The plots describing the number of steps for 

achieving the food have fluctuations over the 

10000 problems. These fluctuations can be partly 

explained by the fact that the beginning point of 

the animat and the initial classifiers in [p] were 

selected randomly. The animat's beginning point 

could be any empty point on the map. Therefore, 

the initial distance of the animat from the food 

varied from one problem to another. On the other 

hand, the set [p] was initially empty and, based on 

the functioning of XCS, a number of random 

classifiers were created using Cover operation. 

Thus the classifiers may have been different in the 

animat's motion towards the food. 

Concerning the forward motion of the animat as 

opposed to its remaining in place or being stopped 

by obstacles, the proposed method has improved 

the efficiency, speed, and performance of the 

animat. Given the limitations set for the animat, it 

can take a certain number of steps to achieve the 

food. Therefore, if the steps do not include being 

stopped by obstacles, the animat can traverse a 

longer path in search of food, which in turn 

increases the time of achieving food. 

4. Conclusion 

Achieving the goal in real environments such as 

winding problems faces a challenge due to 

different degrees of overlap in the movement path 

and the lack of sensory inputs in some cases. To 

solve such a challenge, in this article, a new 

memory-based XCS algorithm was used, which 

acted as a non-Markovian system and was able to 

identify and maintain optimal rules in overlapping 

states. In this algorithm, a limited chain of final 

system states that has led to success in previous 

experiments is also maintained by relying on 

limited memory. This algorithm was implemented 

on 5 famous maze problems. The increase in the 

number of problems leading to the goal and the 

decrease in the number of steps and steps to reach 

the goal in this new algorithm compared to the 

basic XCS algorithm indicate the high efficiency 

of the new method. The limitation of the amount 

of memory that can be used in real learning 

classifier systems in solving complex problems is 

the dependence of the memory model used on the 

type of application of learning classifier systems 

in solving various problems, among the 

limitations raised in this article. Considering the 

static nature of the problem environment for 

future work, the readers are suggested to make the 

winding problem environment dynamic in order to 

increase the flexibility and generalizability of the 

problem by designing more optimal XCS 

algorithms based on memory. 
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 چکیده:

 در چالش ترینمهم. شودمی استفاده هوشمند نجات هایسیستم و حسی هایربات فیزیکی، هایربات کنترل برای یادگیر بند طبقه هایسیستم از اخیراً

 سیستم هایحالت ذخیره برای حافظه از است لازم بنابراین. است آن مارکوفی غیر کیفیت هستند، واقعی های محیط از هاییمدل که هاسیستم این

 از استفاده به کمک برای حافظه بر مبتنی XCS یک ،مقاله این در. کرد گیریتصمیم قبلی هایحالت از ایزنجیره اساس بر بتوان تا شود استفاده

 کاهش به منجر و شده سازی پیاده ماز مهم نقشه پنج روی بر پیشنهادی مدل. است شده پیشنهاد کارآمد قوانین شناسایی با بندی طبقه در مؤثرتر قوانین

 .شود می ها نقشه این در هدف به رسیدن های موفقیت تعداد افزایش همچنین و هدف به رسیدن مراحل تعداد

 .همپوشانی و چرخه شناسایی ،XCS الگوریتم ،یادگیر بند طبقه هایسیستم :کلمات کلیدی

 


