A.10. Power Management
F. Sabahi
Abstract
This paper develops an energy management approach for a multi-microgrid (MMG) taking into account multiple objectives involving plug-in electric vehicle (PEV), photovoltaic (PV) power, and a distribution static compensator (DSTATCOM) to improve power provision sharing. In the proposed approach, there ...
Read More
This paper develops an energy management approach for a multi-microgrid (MMG) taking into account multiple objectives involving plug-in electric vehicle (PEV), photovoltaic (PV) power, and a distribution static compensator (DSTATCOM) to improve power provision sharing. In the proposed approach, there is a pool of fuzzy microgrids granules that they compete with each other to prolong their lives while monitored and evaluated by the specific fuzzy sets. In addition, based on the hourly reconfiguration of microgrids (MGs), granules learn to dispatch cost-effective resources. To promote interactive service, a well-defined, multi-objective approach is derived from fuzzy granulation analysis to improve power quality in MMGs. A combination of the meta-heuristic approach of genetic algorithm (GA) and particle swarm optimization (PSO) eliminates the computational difficulty of the nonlinearity and uncertainty analysis of the system and improves the precision of the results. The proposed approach is successfully applied to a 69-bus MMG test with results reported in terms of stored energy improvement, daily voltage profile improvement, MMG operations, and cost reduction.
B. Hassanpour; N. Abdolvand; S. Rajaee Harandi
Abstract
The rapid development of technology, the Internet, and the development of electronic commerce have led to the emergence of recommender systems. These systems will assist the users in finding and selecting their desired items. The accuracy of the advice in recommender systems is one of the main challenges ...
Read More
The rapid development of technology, the Internet, and the development of electronic commerce have led to the emergence of recommender systems. These systems will assist the users in finding and selecting their desired items. The accuracy of the advice in recommender systems is one of the main challenges of these systems. Regarding the fuzzy systems capabilities in determining the borders of user interests, it seems reasonable to combine it with social networks information and the factor of time. Hence, this study, for the first time, tries to assess the efficiency of the recommender systems by combining fuzzy logic, longitudinal data and social networks information such as tags, friendship, and membership in groups. And the impact of the proposed algorithm for improving the accuracy of recommender systems was studied by specifying the neighborhood and the border between the users’ preferences over time. The results revealed that using longitudinal data in social networks information in memory-based recommender systems improves the accuracy of these systems.
H. Haghshenas Gorgani; A. R. Jahantigh Pak
Abstract
Identification of the factors affecting teaching quality of engineering drawing and interaction between them is necessary until it is determined which manipulation will improve the quality of teaching this course. Since the above issue is a Multi-Criteria Decision Making (MCDM) problem and on the other ...
Read More
Identification of the factors affecting teaching quality of engineering drawing and interaction between them is necessary until it is determined which manipulation will improve the quality of teaching this course. Since the above issue is a Multi-Criteria Decision Making (MCDM) problem and on the other hand, we are faced with human factors, the Fuzzy DEMATEL method is suggested for solving it. Also, because DEMATEL analysis does not lead to a weighting of the criteria, it is combined with the ANP and a hybrid fuzzy DEMATEL-ANP (FDANP) methodology is used. The results of investigating 7 Dimensions and 21 Criteria show that the quality of teaching this course increases, if the updated teaching methods and contents to be used, the evaluation policy to be tailored to the course, the course professor and his/her assistants be available to correct students' mistakes and there is also an interactive system based on student comments.
H.3.2.6. Games and infotainment
A.H. Khabbaz; A. Pouyan; M. Fateh; V. Abolghasemi
Abstract
This paper, presents an adapted serious game for rating social ability in children with autism spectrum disorder (ASD). The required measurements are obtained by challenges of the proposed serious game. The proposed serious game uses reinforcement learning concepts for being adaptive. It is based on ...
Read More
This paper, presents an adapted serious game for rating social ability in children with autism spectrum disorder (ASD). The required measurements are obtained by challenges of the proposed serious game. The proposed serious game uses reinforcement learning concepts for being adaptive. It is based on fuzzy logic to evaluate the social ability level of the children with ASD. The game adapts itself to the level of the autistic patient by reducing or increasing the challenges in the game via an intelligent agent during the play time. This task is accomplished by making more elements and reshaping them to a variety of real world shapes and redesigning their motions and speed. If autistic patient's communication level grows during the playtime, the challenges of game may become harder to make a dynamic procedure for evaluation. At each step or state, using fuzzy logic, the level of the player is estimated based on some attributes such as average of the distances between the fixed points gazed by the player, or number of the correct answers selected by the player divided by the number of the questioned objects. This paper offers the usage of dynamic AI difficulty system proposing a concept to enhance the conversation skills in autistic children. The proposed game is tested by participating of 3 autistic children. Each of them played the game in 5 turns. The results displays that the method is useful in the long-term.
H.5.10. Applications
S. Shoorabi Sani
Abstract
In this study, a system for monitoring the structural health of bridge deck and predicting various possible damages to this section was designed based on measuring the temperature and humidity with the use of wireless sensor networks, and then it was implemented and investigated. A scaled model of a ...
Read More
In this study, a system for monitoring the structural health of bridge deck and predicting various possible damages to this section was designed based on measuring the temperature and humidity with the use of wireless sensor networks, and then it was implemented and investigated. A scaled model of a conventional medium sized bridge (length of 50 meters, height of 10 meters, and with 2 piers) was examined for the purpose of this study. This method includes installing two sensor nodes with the ability of measuring temperature and humidity on both side of the bridge deck. The data collected by the system including temperature and humidity values are received by a LABVIEW-based software to be analyzed and stored in a database. Proposed SHM monitoring system is equipped by a novel method of using data mining techniques on the database of climatic conditions of past few years related to the location of the bridge to predict the occurrence and severity of future damages. In addition, this system has several alarm levels which are based on analysis of bridge conditions with fuzzy inference method, so it can issue proactive and precise warnings and alarms in terms of place of occurrence and severity of possible damages in the bridge deck to ensure total productive (TPM) and proactive maintenance. Very low costs, increased efficiency of the bridge service, and reduced maintenance costs makes this SHM system a practical and applicable system. The data and results related to all mentioned subjects were thoroughly discussed .
G.2. Models and Principles
D. Qian; L. Yu
Abstract
This work proposes a neural-fuzzy sliding mode control scheme for a hydro-turbine speed governor system. Considering the assumption of elastic water hammer, a nonlinear mode of the hydro-turbine governor system is established. By linearizing this mode, a sliding mode controller is designed. The linearized ...
Read More
This work proposes a neural-fuzzy sliding mode control scheme for a hydro-turbine speed governor system. Considering the assumption of elastic water hammer, a nonlinear mode of the hydro-turbine governor system is established. By linearizing this mode, a sliding mode controller is designed. The linearized mode is subject to uncertainties. The uncertainties are generated in the process of linearization. A radial basis function (RBF) neural network is introduced to compensate for the uncertainties. The update formulas for the neural networks are derived from the Lyapunov direct method. For the chattering phenomenon of the sliding mode control, a fuzzy logic inference system is adopted. In the sense of Lyapunov, the asymptotical stability of the system can be guaranteed. Compared with the internal mode control and the conventional PID control method, some numerical simulations verify the feasibility and robustness of the proposed scheme.