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Abstract 

This paper develops an energy management approach for a multi-microgrid (MMG) taking into account 

multiple objectives involving plug-in electric vehicle (PEV), photovoltaic (PV) power, and a distribution 

static compensator (DSTATCOM) to improve power provision sharing. In the proposed approach, there is a 

pool of fuzzy microgrids granules that compete with each other to prolong their lives while monitored and 

evaluated by the specific fuzzy sets. In addition, based on the hourly reconfiguration of microgrids (MGs), 

granules learn to dispatch cost-effective resources. In order to promote an interactive service, a well-defined 

multi-objective approach is derived from fuzzy granulation analysis to improve power quality in MMGs. A 

combination of the meta-heuristic approach of genetic algorithm (GA) and particle swarm optimization 

(PSO) eliminates the computational difficulty of the non-linearity and uncertainty analysis of the system and 

improves the precision of the results. The proposed approach is successfully applied to a 69-bus MMG test 

with the results reported in terms of the stored energy improvement, daily voltage profile improvement, 

MMG operations, and cost reduction.  

 

 

Keywords: Energy Management, Multi-Microgrids, Fuzzy Logic, Plug-in Electric Vehicle (PEV), 

Distribution Static Compensator (DSTATCOM).  

 

1. Nomenclature 
I) Function 

EV%  Charging status of a parking lot 

(0/1) 

gU  Utility function of a power grid 

dU  Utility function of microgrids 

 t  Market price at time t 

V  Voltage magnitude 

cU  Constraint Function 

 i
gF t  Power distribution between the 

power grid and the ith microgrid 

at time   

 i
dF t  

Function for representing operation 

cost of ith microgrid at time  .  

PowerF  Power supply from RES to the ith 

microgrid  

DGC , SUC , SDC  Operation startup and shut down 

costs of DG 

 is t  Stored energy of the ith microgrid 

at time t 

 

II) Parameter 

STP , STQ  Active and Reactive power of sub-station 

, D DP Q  Active and Reactive power  

, ,i j n
LP  Active power flow from bus   to   for 

microgrid  

,G B  Conductance and susceptance of line 

EVSOE  SOE of a parking lot 

EV  Efficiently of parking lot converter 

EVE  Energy capacity of a parking lot 

arr EVSOE   SOE's associated with an arrival time  

dep EVSOE   SOE's associated with departure time 

a  Plug status of parking lot     

LossP  The upper limit for line active power 

losses 

Ω  Coefficient indicating the priority of MG 

buses 

http://dx.doi.org/10.22044/jadm.2018.6311.1746
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*V  Desired voltage magnitude 

I  Current magnitude 

 W indP  Wind power generation 

, L LP Q  Active and Reactive power consumptions 

of load 

,   p qr r  Wholesale electricity prices for active 

and reactive powers 

,
EV EV

P P   Charging and discharging powers of a 

parking lot 

 
DSQ  DSTATCOM reactive power 

PVP   PVs active power transfer 

PV  Power flow efficiently of PV inverter 

PVS  Apparent power of PV inverter 

 
PVA  PV panel surface area (m2). 

 
   , in inP Q  Imported active and reactive power from 

a substation 

   TapC  Tap adjustment cost 

 
inS  Substation apparent power flow 

III) Index and variable 

N  The total number of Microgrids 

sN  The total number of Microgrids that have 

a local energy storage system 

sN N  Total number of Microgrids that don‘t 

have a local energy storage system 
g  DG's index 

i  Index of microgrid 

j  Index of microgrid's bus 

t  Time index 

BN  Total number of buses 

m  The number of parameters in phenotype 

h  Index of individual 

a  Index of generation 

Tap  Tap position of ULTC. 

 

2. Introduction 

Microgrid (MG) is an alternative energy providing 

system that is an effective way to incorporate a 

high penetration of distributed resources at 

medium and low voltages in order to manage 

energy in modern industrial development. Based 

on the European concept of MGs, an MG can be 

defined as an active pattern that consists of several 

sources, controllable loads, and storage devices 

with a capacity up to a few hundreds of kilowatt 

(kW).  MGs operate both interconnected to the 

main power grid and islanded.   

Within a specific area, a number of nearby MGs 

form multi-microgrids (MMG).  MMG systems 

have been divided into AC MMG, which are the 

most common, DC MMG, or AC-DC MMG 

based on the connection of components to AC 

buses, DC buses, or both [1]. An MMG 

configuration is shown in figure 1. 

Scheduling of MMGs is a major operational 

challenge due to the demand response and 

renewable generation. However, the 

implementation of conventional scheduling 

algorithms, which are not capable of considering 

the stochastic nature of DERs, may lead to a 

mismatch in the forecast and realize the power 

and consequently impose extra costs to the 

microgrid.  

 
Figure 1. A Schematic representation of Multi-microgrid 

(a microgrid central controller (MGCC))[2]. 

Conventional scheduling algorithms cannot 

consider the stochastic nature of MG components, 

potentially producing errors in forecasting power, 

and imposing extra MG costs. For example, 

uncontrolled charging of PEVs at peak demands 

makes strict voltage drops. Power trading involves 

searching for the optimal amount of power to 

export and import within the MMG.  

Meta-heuristic approaches can capture complexity 

and uncertainty in the process such as in weather 

data or load data [3]. For MG energy 

management, Genetic Algorithm (GA) [4] and 

Particle Swarm Optimization (PSO) [2, 5] are 

applied. In [6], a cost-benefit approach is modeled 

by several Decision-Aid techniques. In this 

approach, the analysis of robustness is done. A 

market mechanism integrating urgent energy 

transactions and contracts is introduced in [7] to 

improve the value of urgent energy transactions in 

MMG systems. In [8], a multi-objective reactive 

power dispatch is solved using a modified 

harmony search algorithm. In [9],  the 

sequentially-coordinated operation electric energy 

and heat energy is introduced for optimal energy 

management in a cooperative MMG community. 

A market operator (MO) and a distribution 

network operator (DNO) are designed for MMG 

system in [10]. Using linear duality theory and 

Karush–Kuhn–Tucker in [11], a cost minimization 

deterministic model is formulated as a min-max 

robust counterpart for the MMG system. In [12], a 

multi-frequency control is proposed in the MMG 

system‘s back-to-back converter. 

 In this paper, we aim to provide an optimal and 

stable scheduling MMG design, recognizing the 

change points and the hidden nature of distributed 
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generation (DG) in the MG system. We aim to 

develop an approach to handle time-varying 

changes in the correlation structure of MGs while 

optimizing energy management, which is a time-

ordered structure. In fact, MGs are simultaneously 

tracked and monitored to obtain the optimal 

management of energy. 

The main contributions of this paper are as follow: 

 Development of an optimal approach for 

constructing reliable energy management 

considering a voltage-dependent load model.  

 Consideration of PEV fleets as support for 

MMG power demands.  

 Consideration of AC operational constraint  

 Accounting for the non-linearity in the 

characteristics of the MMG components and 

loads characteristics without facing 

computational challenges  

 Improvement of the voltage profile  

 Integration of DSTATCOM in the proposed 

energy management system 

 Consideration of both economic and power 

quality improvement    

 Optimization of the utility of MGs and the 

power grid 

 Flexibility stemming from the use of fuzzy  

granulation 

This paper‘s content is organized as described 

below. Section 3 details the proposed approach by 

formulating the problem. Section 4 describes and 

discusses the simulation results. Section 5 then 

states the research conclusions. 

 

3. Proposed Approach 

In this section, we first formulate MGs, followed 

by power grid and emergency demands, with the 

goal of optimizing both the economic and 

technical subjects. 

Assumption 1: Loads are assumed available for 

management purposes. 

Assumption 2: Power sharing is preferred 

between MGs rather than with power grid within 

MMG. 

This assumption leads to the lowest price results 

in comparison to exchanging with the main power 

grid.  

It should be noted that the connection/ 

disconnection of the microgrids to each other or to 

the main grid can be done using a normally open 

interconnecting static switch (ISS) [13] as shown 

in Figure 2. In this paper, we model the switching 

among microgrids as a local binary function 

illustrated by one for connecting case and zero for 

disconnecting. 

 
Figure 2. Connection of MGs with ISS [14]. 

 

3.1. Modeling Microgrid's Components and 

Constraints 

The investigated MGs includes PV unit, plug-in 

electric vehicle (PEV), DGs, and DSTATCOM.  

For PEV fleets constraints [15], we calculate the 

state of energy (SOE) for each fleet as follows: 

   
 i, j i, j

EV EVi. j i. j

EV EV i, j

EV

  P t 1 t
SOE t SOE t 1

E

  
                                                 

 i, j

EV

i, j i, j

EV EV

  P t 1 Δt

 E

 



   

 (1)     

 

We assume that MG operator can undertake the 

charging/discharging of PEV batteries task. It 

should be noted that the power of all PEVs is 

taken into account at the aggregator level. Now, 

we define the model of PV, ULTC, and 

DSTATCOM [16]. 

For PV units, we calculate the power by the 

following: 

 i. j i. j i, j i, j i, j

PV PV PV PV PVP t P   A   I     (2) 

Under load tap changer (ULTC) transformer, we 

have: 

   i. j 2 i. j 2 i. j 2

in in in(P t ) (Q t ) (S )   

 i. jTap Tap t Tap   

 

(3) 
    

For DSTATCOM, the reactive power set-point is 

restricted by the following: 

   i. j i. j i. j

DS DS DSQ t Q t Q    (4) 
    

For AC power flow, constraint includes: 
 

       

   

 
B

i. j i. j i. j i. j

ST DG Wind PV

i. j i. j

L D

N

i. j,n

L
n 1

n j

P t P t P t P t

P t P t

P t




  

 



  

(5) 
    

where 

 

   

        

           

i. j,n

L

i. j,n 2

i, j

i, j i,n i, j i,n

i. j,n

i, j i,n i, j i,n

P t

G t (V t

V t V t cos t t )

B t V t V t sin t t



  

  

 
 

(6) 
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 and,  

 i. j i, j i. jV V t V    (7) 
    

 i, j i. jI t I   (8) 
    

In addition, 

       
BN

i. j i. j i. j i. j,n

ST DG L L
n 1

n j

Q t Q t Q t Q t




     

(9) 
    

where 

 i. j,n

LQ t  

   i. j,n 2

i, jB t (V t   

        i, j i,n i, j i,nV t V t cos t t )    

           i. j,n

i, j i,n i, j i,nG t V t V t sin t t    

 

(10) 
    

 

3.2. Power Grid 

The total cost of microgrids is computed as 

follows: 

  i

N

d d

i 1

F F


  
 

(11) 
    

 We define the assessment measure as follows: 

 

 

after management

d  

ss before management

d  

F
a

F




  

 

(12) 
    

By considering    
i

N

g g

i 1

F t F t


  such as: 

 
igF t 0      microgrid  i  receives power  

 
igF t 0      microgrid  i  sells power    

 

(13) 
    

We define     g gU F t ,  t  as the utility function 

of the power grid.  Now, we need to maximize it: 

   
    

gi

g g
F t , t
max U F t ,  t  


  (14) 

    

In addition, by considering 

      
1 Nd d dU F t ,  ,F t , t   as the utility demand 

function, we maximize it: 

 
      

1 Nd d d
t

max U F t ,  ,F t , t  


   (15) 

 

3.3. Emergency Demand 

The emergency demand can be formulated using 

sorted energy   ( ), as follows: 

 

         
i ii i g d is t 1 s t F t F t V t        

si N  

 

(16) 
    

To describe the emergency demand, we define: 

 

   
 

s

gi

N

i
F t , t

i 1

max s t 1




  
 

(17) 
    

 i i isubject to  s s t 1 s    

It should be noted that 
i s 0  shows the minimum 

storage energy and 
is  is the maximum stored 

energy. 

 

3.4. Objective Function 

The aim is to minimize the daily scheduling 

modeled by the following: 

       

   

i

i i i i

d p ST q ST

t

i,g,t i,g,t i,g,t

DG SU DG

g
i. j i. j

Tap

F [r t P t r t Q t

(C C C

C (Tap t Tap t 1 ))]

 

  

  



  

 

(18) 
    

and 

 i i. j *

Qulity i, j i, j

t j

F V t V    (19) 
    

where we have 
i i

i

g d QulityF F F 0    as a constraint 

for 
si N N  . Note that the greater is the less 

voltage deviations are. 

To address the objective functions, we formulate 

the proposed system as follows: 
 

 
      

1 Nd d d
t

max U F t ,  ,F t , t  


    

(20) 
    

   
    

gi

g g
F t , t
max U F t ,  t  


   

(21) 
    

   
 

s

gi

N

i
F t , t

i 1

max s t 1




  
 

(22) 
    

subject to  

 i i i s s t 1 s    (23) 

i i

i

g d QulityF F F 0    for 
si N N   (24) 

 i. j i, j i. jV V t V   (25) 

DS

i.j i. jQ Q Q   (26) 

   i. j 2 i. j 2 i. j 2

in in in(P t ) (Q t ) (S )   (27) 

 

Assumption 3: PEVs‘ charge/discharge states are 

assumed to be independent of solar irradiance. 
 

3.5. Adaptive Optimization 

 It should be noted that an MG faces different 

uncertainties including those in the consumption, 

the distributed generation (DG) that makes 

deflections in energy generation and in the non-

linearity existing in the real system such as wind 

turbine and photovoltaic coefficients, which vary 

with wind conditions and photo as well as 

uncertainty in the exact geometry of the battery. 

To deal with the known and unknown uncertainty, 

our concern is providing the ability to adapt to 

different situations using fuzzy logic and heuristic 
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approaches. Fuzzy logic helps us less dependent 

on the precise model as well as knowledge about 

the situation involved.  

More specifically, the hidden nature of distributed 

generation that varies over time is a major 

problem; however, an approximate solution is 

helpful and can be satisfactorily applied to further 

development while monitoring by fuzzy 

membership functions. This is particularly useful 

during emergency demand and/or when the time 

is restricted. 

The proposed approach aims to minimize cost and 

improve quality by creating a pool of fuzzy 

granules of MGs‘structure and utilizing the results 

in energy management. Many process variables 

are tracked in this approach. The proposed 

approach is done online. However, to save the 
running time, a large space is used for the first 

execution of the algorithm and after that, the 

range of search is changed around the values 

obtained in the first execution.  Now, we detail the 

proposed approach. 

 A random microgrids‘structure population 

 1 i NM , ,M , ,M   is initially created: 

 

       

   

       

       

a a i i i i

h,m h,m p ST q ST

i.g,t i.g,t i.g,t i. j i. j

i DG SU DG DG
i i. j i. j i. j i. j

Wind L D ST

i. j i. j i. j

DG L EV i

x x : r t ,P t , r t ,Q t ,

 V t ,C ,C ,C P t ,
M

 P t ,P t ,P t ,Q t ,

Q t ,Q t ,SOE t ,s t

, ,

 
 
 

  
 
 
 

 

 (28) 
    

 

where a

(h,m)x is the thh  individual at the ths

generation and m  is the number of design 

parameters.  

The phenotype of the first chromosome 

 1 1 1

1 1,1 1,r 1,mM x , ,x , ,x    is chosen as the center 

      

1 1,1 1,r 1,mC c , ,c , ,c   . To capture changes in a 

continuous manner, we use Gaussian membership 

functions as follows 

 a a   2 2

r h,r h,r 1,r rx exp( (x c ) /      where   is the 

width of the membership function. In fact,   

controls the degree of specificity of the individual; 

in order to have an accurate estimation of each 

individual   is reduced or enlarged in reverse 

proportion to fitness as described below: 

          Ns
d d g i1 N i 1

r

max F t ,  ,F t , t ,F t , s t 1

1

e 


  

  
 
 
 

 
 

(29) 

    

The   and   are problem-dependent and have to 

be adjusted. If one of the constraints conflicts then 
0  . To solve this nonlinear multi-objective 

optimization, we use a combination of genetic 

algorithm (GA) and particle swarm optimization 

(PSO).  

Genetic Algorithms are most effective when the 

search space is little known. For solving any 

problem using GA, we choose a method to 

represent the solution of a given problem, such 

that we form an initial population of solutions and 

then evaluate each random solution based on a 

cost function. The cost function judges how well 

the random solution solves the problem. This is in 

the case of our problem. Therefore, here, we use 

GA. However, to overcome the deficiencies 

related to GA including the better balance 

between exploitation and exploration, we combine 

GA with the simple still applicable algorithm of 

PSO. 

In each generation after calculating the fitness of 

all individuals, the population is divided into two 

sections; each section is evolved by one of GA or 

PSO algorithms. These two algorithms are 

recombined and then, in the next generation, 

randomly divided and moving on the solution 

space by PSO or GA. This offers a better balance 

between the exploitation of the search space and 

the exploration of unvisited search areas. The 

flowchart of the proposed algorithm is shown in 

Figure 3. 

The continuous (real-coded) GA is used here. The 

steps of the applied GA section are as follows: 

Step 1: Encoding: Each vector M  is considered as 

an individual. There is a restriction on the range of 

  based on  . 

Step 2: Initialization: The N individuals, 
iM ‘s, are 

generated randomly. 

Step 3: Fitness assignment and Evaluation: The 

fitness is defined. (20) and (21). The evaluation 

process is a little different and is divided into two 

cases. 

 Case  I: When an obtained individual, constraints 

are not fulfilled, the fitness value is assigned small 

enough in order to discard this individual. 

Case II: When constraints are fulfilled: The 

fitness is determined.  

This step is repeated for the number of 

individuals. 

Step 4: Selection: To produce a new offspring for 

the next generation, two chromosomes with a 

roulette wheel selection method are chosen to be 

involved. 

Step 5: Crossover: The selected individuals are 

recombined through the linear heuristic crossover 

method to guarantee that the constraints are still 

satisfied. The best new offsprings are propagated. 

Step 6: Mutation: To make sure that GA searches 

the solution space freely, uniform mutation is 

used. The mutated gene from the search interval is 
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drawn randomly. 

 
Figure 3. Flowchart of the GA-PSO algorithm. 

Step 7:  Elitism: The best individuals in the 

population are retained in the next generation.  

Steps 3-7 go on until the number of generation is 

reached.   

For the applied PSO section, it should be 

reminded that particle swarm optimization uses a 

model of social interaction to find the global 

optimum. The social rules are controlled by 

particle trajectories. At each time step, fitness 

function representing a quality measure is 

calculated by the position of each particle, as 

input, which represents a solution to the problem. 
Varying velocity explores solution space. A 

swarm of particles moves through the problem 

space with the velocity update rule that takes into 

account the best solution. The velocity of the 

particle is updated by the following rule: 
 

(30) 
     

 
i i 1 1 pbest i

2 2 gbest i

v t 1 v t r c x x

r c x x

    

 
 

 

where, gbestx  is the global best position and pbestx  is 

the individual best position. 
i ix , v  

are the position 

and velocity of particle i, respectively. Parameters 

1 2r , r  are random numbers with a uniform 

distribution that goes from 0 to 1. Parameters 

1 2c  ,c  are the positive acceleration constants. To 

prevent fluctuations around the optimal value, the 

term friction factor known as the initial weight has 

been introduced as: 

(31) 
max

1 t
1 0.5

1 t


  


 

The last two terms are ‗cognition (self-knowing)‘ 

and ‗social knowledge‘ respectively. Scaling 

factors 
1 2

c  ,c  and 
1 2

r ,r are used to balance these 

two terms. Based on the updated velocities, each 

particle changes its position with the following 

rule: 

(32)          i i

i i i d dx t 1 x t v t 1 F t F t     

Furthermore, the combination of GA and PSO 

leads to a suitable hybrid method of cooperation. 

In the hybrid algorithm used here, a certain 

percent of the population in the next generation is 

occupied by PSO, and the remaining population is 

considered by the GA crossover operator  [17].  

 

4. Simulation 

4.1. Test System 

The proposed management approach is 

demonstrated through simulations with the PG 

and E 69-bus test distribution network. By 

locating three sectionalizing switches, we divide it 

into four microgrids. Different types of energy 

resources with the capacities and DSTATCOM 

are also added to the microgrids (Table 1). The 

number of AEVs is 200 vehicles that are equally 

divided among aggregators. When the system is 

working in the normal mode, these four 

microgrids are connected to the power grid and 

together. We model reactive sources as the fixed 

generation installed on certain buses. Figure 4 

shows the locations of the sectionalizing switches 

and energy consumption/generation units. The 

price levels, for on-peak, mid-peak, and off-peak 

periods, are adapted from  [18] (see Figure 5). 

 

4.2. Results 

Figure 6 shows the membership functions of 

fuzzy granules in the competitive pool before and 

after the update.  

At first, we analyze the microgrids separately, i.e., 

isolated mode. Figure 7 shows  i

dF t  for each 

microgrid with respect to the numbers of 

controllable units. As shown, the more 

controllable units the less daily costs.  

Now, we consider the whole multi-microgrid 

system in the grid-connected mode. The total 

operational cost is calculated using (17-19). The 

3D map of cost with respect to the number of 

controllable and time is shown in Figure 8. As 

shown, when the cost is zero or negative, it 

represents that energy management is 

selling/storing the energy within the time of using 

energy or buying. 



 Sabahi/ Journal of AI and Data Mining, Vol 8, No 4, 2020. 
 

487 

 

 

1

REV

Aggregate  Electrical Vehicle  Bus : AEV

DESR

DSR

67

69

DESR

DSR

35

59

28

REV

AEV

DSR

40 BM

36

39

CL

Controllable Load: CL

PV

42

Residential Electrical Vehicle Bus: REV

REV

AEV

CL

Biomass Generator: BM

Photovoltaic Voltage:PV

PV

56

WT

Wind Turbine: WT

AEV

DSRCL

WT

PV

WT

DESR

DSR
AEV

PV

BM
54

CL

MG4

CL

MG1

AEV

CL

58

MG2

REVWT
13

15
BM

WT

PV

MG3
WT DSR

BM
REV

PV

AEV

DSR

BM 27

DESR

Switch

Switch

Switch

DSTATCOM

DSTATCOM

PV

DSTATCOM

Figure 4. Schematic representation of Multi-microgrid 

system with its components. 

 
Table 1. Location of energy resources. 

Energy 

Resource  

Locations 

(Buses)  

Capacities (kW/kVAr)  

Wind Turbine  13,16,19,43,49,52  50,25,50,50,50,25  
PV Module  17,23,41,50,53,56  25,25,25,25,25,25  

Biomass DG  15,22,27,41,42,54  100,100,100,100,100,100  

Storage Units  11,27,31,48,52,64  50,50,50,50,50,50  
Reactive 

Sources  

5,19,26,33,52,65  50,50,50,50,50,50  

DSTATCOM 29, 47,60 30,30.30 

 

 

Figure 5. Hourly price of selling and buying electricity 

[18]. 

 
Figure 6.  Fuzzy granules relevant membership functions: 

at first (above) and after update (below). 

 

 

Figure 7. Variation of  i

dF t  against the number of 

controllable units in the isolated mode of microgrid  . 

 

Figure 8. Variation in d
F (t) verses the number of 

controllable units and time in grid-connected mode. 

Assumption 3: At each step, one controllable unit 

device comes under control. 

The spent calculation time for GA is calculated 

29.0738 and for the proposed approach is 20.4612 

for 100 runs. This shows that the proposed 

approach is fast in comparison. 

The state of connecting/disconnecting of MG1 

bandied in the network in the situation is 

described in Figure 9. State ―0‖ shows the 

disconnection and state ―1‖ shows the connection. 

In addition, the relevant energy exchange is 
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presented in Figure 10. As seen, when MG1 is 

connected to the network, in some hours, it 

provides energy for the network labeled by ―-‖ 

and in other hours it consumes the energy labeled 

by ―+‖. In hours 9-11, AM that is the peak of 

using energy, MG1 is disconnected, while in 14-

15 P.M that is another peak of using energy, it 

sells energy. Table 2 shows the hours of 

disconnection and connection with 

generating/consuming the energy of the different 

switching of four microgrids.  

 
Figure 9.  States of connection and disconnection of MG1. 

 

Figure 10. Energy consumption (+) and generation (-) of 

MG1. 

 

Table 2. The number of connection of microgrids. 
Microgri

d 

Connection Generation  Consumption 

MG1 7 3 4 

MG2 10 6 4 

MG3 7 4 3 

MG4 8 3 5 

 

The voltage profile of the multi-microgrid is 

depicted in Figure 11. As seen, voltage magnitude 

tends to       in the most of the buses. In buses 

31 and 68, throughout the day, the deviation of 

voltage from       is more in comparison.     

Figure 12 shows the aggregate EV parking lot 

discharges during the islanding of microgrids. 

Meanwhile, SOE remains at its minimum. 

The reactive power contributions of buses are 

described in Figure 13. Some buses, especially 

AEV aggregators, are in capacitive operating 

mode. Stored energy based on the proposed 

management approach of four microgrids is 

depicted in Figure 14 versus time and the number 

of microgrids. It is almost in the stored mode, 

especially at midnight. This injected reactive 

power improves the voltage profile. As the figure 

shows, the stored energy is not negative at any of 

24 hours. It reveals the effects of the proposed 

approach and applicability of energy management. 

MG1 generates sufficient power to satisfy the 

power shortages of other microgrids.  

 
 

 

Figure 11. Daily Voltage Profile. 

 
Figure 12. Charging Power of AEV. 

 

Figure 13. Reactive of Power Profile of Buses. 

 

 

Figure 14. Stored Energy of four microgrids. 
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5. Conclusion 

The multi-microgrid system design has been 

addressed in this paper. In the proposed approach, 

the solution is tackled through a fuzzy 

granulation. In order to solve the optimization 

problem, a fuzzy granulation GA is formulated 

that improves convergence speed and 

relationships between the independent decision 

variables.  

   Numerical studies over 69-bus are conducted 

which highlights the following points: 

 The energy consumption issue in some 

hours and/or in some microgrids is 

resolved due to capacitive reactive power 

behavior. 

 The dispatching pattern is improved. 

 The voltage profile is increased. 

It can be seen that the proposed approach is an 

effective tool for designing multi-microgrid in the 

smart network within a defined range of trade-

offs. 
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