[1] P. Jain, S. C. P. Coogan, S. G. Subramanian, M. Crowley, S. Taylor, and M. D. Flannigan, "A review of machine learning applications in wildfire science and management",
Environmental Reviews, vol. 28, no. 4, pp. 478-505, 2020. [Online]. Available:
https://doi.org/10.1139/er-2020-0019. [Accessed: Feb. 22, 2025].
[2] T. Schoennagel, J. K. Balch, H. Brenkert-Smith, P. E. Dennison, B. J. Harvey, M. A. Krawchuk, N. Mietkiewicz, P. Morgan, M. A. Moritz, R. Rasker, M. G. Turner, and C. Whitlock, "Adapt to more wildfire in western North American forests as climate changes", Proceedings of the National Academy of Sciences, vol. 114, no. 18, pp. 4582-4590, 2017. [Online]. Available: https://doi.org/10.1073/pnas.1617464114. [Accessed: Feb. 22, 2025].
[3] G. Shi, H. Yan, W. Zhang, J. Dodson, H. Heijnis, and M. Burrows, "Rapid warming has resulted in more wildfires in northeastern Australia", Science of The Total Environment, vol. 771, p. 144888, 2021. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2020.144888.[Accessed: Feb. 22, 2025].
[4] J. San-Miguel-Ayanz, T. Durrant, R. Boca, P. Maianti, G. Libertà, T. A. Vivancos, D. J. F. Oom, A. Branco, D. D. De Rigo, D. Ferrari, H. Pfeiffer, R. Grecchi, D. Nuijten, T. Leray, "Forest Fires in Europe, Middle East and North Africa 2019", Publications Office of the European Union, Luxembourg, Rep. KJ-NA-30402-EN-N, 2020.
[5] J. S. S. Júnior, J. Pãulo, J. Mendes, D. Alves, and L. M. Ribeiro, "Automatic Calibration of Forest Fire Weather Index For Independent Customizable Regions Based on Historical Records", in Proceedings of the 2020 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE),1-8, 2020, Laguna Hills, CA, USA. Available: IEEE Xplore, https://doi.org/10.1109/AIKE48582.2020.00011. [Accessed: Feb. 22, 2025].
[6] J. S. S. Júnior, J. R. Paulo, J. Mendes, D. Alves, L. M. Ribeiro, and C. Viegas, "Automatic forest fire danger rating calibration: Exploring clustering techniques for regionally customizable fire danger classification",
Expert Systems with Applications, vol. 193, p. 116380, 2022. [Online]. Available:
https://doi.org/10.1016/j.eswa.2021.116380.[Accessed: Feb. 22, 2025].
[7] G. R. van der Werf, J. T. Randerson, L. Giglio, T. T. van Leeuwen, Y. Chen, B. M. Rogers, M. Mu, M. J. E. van Marle, D. C. Morton, G. J. Collatz, R. J. Yokelson, and P. S. Kasibhatla, " Global fire emissions estimates during 1997–2016",
Earth System Science Data, vol. 9, no. 2, pp. 697-720, 2017. [Online]. Available:
https://essd.copernicus.org/articles/9/697/2017/.[Accessed: Feb. 22, 2025].
[8] F. N. Robinne and F. Secretariat, "Impacts of disasters on forests, in particular forest fires," UNFFS, 2021.
[9] L. Vilà-Vilardell, W. S. Keeton, D. Thom, C. Gyeltshen, K. Tshering, and G. Gratzer, "Climate change effects on wildfire hazards in the wildland-urban-interface – Blue pine forests of Bhutan
", Forest Ecology and Management, vol. 461, p. 117927, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0378112719319024. [Accessed: Feb. 22, 2025].
[10] Aaba, A. “Wildfire Prediction Dataset (Satellite Images).
[11] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning", Nature, vol. 521, pp. 436–444, 2015. [Online]. Available:
https://doi.org/10.1038/nature14539. [Accessed: Feb. 22, 2025].
[12] S. Maggioros and N. Tsalkitzis, "Wildfire danger prediction optimization with transfer learning,"
arXiv, 2024, [online]. Available:
https://arxiv.org/abs/2403.12871. [Accessed: Feb. 22, 2025].
[13] R. Xu, H. Lin, K. Lu, L. Cao, and Y. Liu, "A forest fire detection system based on ensemble learning",
Forests, vol. 12, no. 2, p. 217, 2021. [Online]. Available:
https://doi.org/10.3390/f12020217. [Accessed: Feb. 22, 2025].
[14] Z. Jiao, Y. Zhang, L. Mu, J. Xin, S. Jiao, H. Liu, and D. Liu, "A YOLOv3-based Learning Strategy for Real-time UAV-based Forest Fire Detection", in Proceedings of the 2020 Chinese Control and Decision Conference (CCDC), 4963-4967, 2020, Hefei, China. Available: IEEE Xplore, https://doi.org/10.1109/CCDC49329.2020.9163816. [Accessed: Feb. 22, 2025].
[15] M. Rahul, S. S. Karnekanti, S. Attili, and S. N. Nenavath, "Early Detection of Forest Fire using Deep Learning", in Proceedings of the 2020 IEEE REGION 10 CONFERENCE (TENCON), 1136-1140, 2020, Osaka, Japan. Available: IEEE Xplore, https://doi.org/10.1109/TENCON50793.2020.9293722. [Accessed: 22 Feb. 2025].
[16] A. Namburu, P. Selvaraj, S. Mohan, S. Ragavanantham, and E. Tag Eldin, "Forest Fire Identification in UAV Imagery Using X-MobileNet,"
Electronics, vol. 12, no. 3, art. no. 733, Feb. 2023.[Online].Available:
https://doi.org/10.3390/electronics12030733[Accessed: Feb. 22, 2025].
[17] S. A. Sifat, S. A. Shoukat, et al., "PyroVision: A deep learning based model for wildfire detection in satellite imagery," in Proc. 6th Int. Conf. Electr. Eng. Inf. Commun. Technol. (ICEEICT), IEEE, 2024, pp. 705–710. [Online]. Available: https://doi.org/10.1109/ICEEICT62016.2024.10534576. [Accessed: Feb. 22, 2025].
[18] Z. Wu, C. Shen, and A. van den Hengel, "Wider or deeper: Revisiting the ResNet model for visual recognition",
Pattern Recognition, vol. 90, pp. 119-133, 2019. [Online]. Available:
https://doi.org/10.1016/j.patcog.2019.01.006.[Accessed: Feb. 22, 2025].
[20] A. Narin, C. Kaya, and Z. Pamuk, "Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks",
Pattern Analysis and Applications, vol. 24, no. 3, pp. 1207-1220, 2021. [Online]. Available:
https://doi.org/10.1007/s10044-021-00984-y. [Accessed: Feb. 22, 2025].
[21] A. A. Farhat, M. M. Darwish, and T. M. El-Gindy, "Resnet50 and logistic Gaussian map-based zero-watermarking algorithm for medical color images",
Neural Computing and Applications, vol. 36, no. 31, pp. 19707–19727, 2024. [Online]. Available:
https://doi.org/10.1007/s00521-024-101215. [Accessed: Feb. 22, 2025].
[22] A. Manzoor, W. Ahmad, M. Ehatisham-ul-Haq, A. Hannan, M. A. Khan, M. U. Ashraf, A. M. Alghamdi, and A. S. Alfakeeh, "Inferring emotion tags from object images using convolutional neural network",
Applied Sciences, vol. 10, no. 15, p. 5333, 2020. [Online]. Available:
https://doi.org/10.3390/app10155333. [Accessed: Feb. 22, 2025].
[23] M. Tan and Q. V. Le, "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks", in
Proceedings of the 36th International Conference on Machine Learning (ICML 2019), 6105-6114, 2019, Long Beach, CA, USA. [Online]. Available: PMLR
http://proceedings.mlr.press/v97/tan19a.html.[Accessed: 22 Feb. 2025].
[24] A. Iqbal, M. A. Jaffar, and R. Jahangir, "Enhancing brain tumour multi-classification using Efficient-Net B0-based intelligent diagnosis for Internet of Medical Things (IoMT) applications",
Information, vol. 15, no. 8, p. 489, 2024. [Online]. Available:
https://doi.org/10.3390/info15080489. [Accessed: Feb. 22, 2025].
[25] R. Sonavane, P. Ghonge, S. U. Patil, K. S. Sagale, and A. A. Maha, "Exploring ResNet101, InceptionV3, and Xception for Modi Script Character Classification",
International Journal of Intelligent Systems and Applications in Engineering, vol. 12, no. 17, pp. 117–124, 2024. [Online]. Available:
https://ijisae.org/index.php/IJISAE/article/view/4841. [Accessed: Feb. 22, 2025].
[26] A. Khan, M. A. Khan, M. Y. Javed, M. Alhaisoni, U. Tariq, S. Kadry, J.-I. Choi, and Y. Nam, "Human Gait Recognition Using Deep Learning and Improved Ant Colony Optimization",
Computers, Materials & Continua, vol. 70, no. 2, pp. 2113–2130, 2022. [Online]. Available:
https://doi.org/10.32604/cmc.2022.018270. [Accessed: Feb. 22, 2025].