[1] El-Dahshan, E.-S. A., El-Bakry, H. M., & Al-Saadi, Y. (2021). PCG signals for biometric authentication systems: an in-depth review. Computer Science Review, 41, 100420.
[2] Ismail, S., & Ismail, B. (2023). PCG signal classification using a hybrid multi round transfer learning classifier. Biocybernetics and Biomedical Engineering, 43(1), 313–334.
[3] Ghosh, S. K., Sinha, D., & Ghosh, R. (2020). Automated detection of heart valve diseases using chirplet transform and multiclass composite classifier with PCG signals. Computers in Biology and Medicine, 118, 103632.
[4] Abbas, S., Ismail, B., Al-Mashaqbeh, I. A., & Khan, M. A. (2024). Artificial intelligence framework for heart disease classification from audio signals. Scientific Reports, vol. 14, no. 1, 3123.
[5] Milani, M. G. M., Abas, P. E., & De Silva, L. C. (2022). A critical review of heart sound signal segmentation algorithms. Smart Health, 24, 100283.
[6] Randhawa, S. K., & Singh, M. (2015). Classification of heart sound signals using multi-modal features. Procedia Computer Science, vol. 58, pp. 165–171.
[7] Zeng, W., Zhao, X., Hu, Y., & Lu, H. (2023). Abnormal heart sound detection from unsegmented phonocardiogram using deep features and shallow classifiers. Multimedia Tools and Applications, vol. 82, no. 17, pp. 26859–26883.
[8] Ismail, S., Khan, K. N., & Ismail, B. (2023). PCG classification through spectrogram using transfer learning. Biomedical Signal Processing and Control, vol. 79, 104075.
[9] Sabouri, Z., Yousefi, M. R., & Shamsollahi, M. B. (2023). Effective features in the diagnosis of cardiovascular diseases through phonocardiogram. Multidimensional Systems and Signal Processing, vol. 34, no. 3, pp. 595–632.
[10] Narváez, P., Gutierrez, S., & Percybrooks, W. S. (2020). Automatic segmentation and classification of heart sounds using modified empirical wavelet transform and power features. Applied Sciences, vol. 10, no. 14, 4791.
[11] Li, F., Chen, X., Qiu, T., & Wang, Z. (2020). Classification of heart sounds using convolutional neural network. Applied Sciences, vol. 10, no. 11, 3956.
[12] Yaseen, G.-Y. S., & Kwon, S. (2018). Classification of heart sound signal using multiple features. Applied Sciences, vol. 8, no. 12, 2344.
[13] Khan, K. N., Ismail, S., & Lee, Y. (2021). Deep learning based classification of unsegmented phonocardiogram spectrograms leveraging transfer learning. Physiological Measurement, vol. 42, no. 9, 095003.
[14] Tiwari, S., Sapra, V., & Jain, A. (2020). Heartbeat sound classification using Mel-frequency cepstral coefficients and deep convolutional neural network. In Advances in Computational Techniques for Biomedical Image Analysis (pp. 115–131). Academic Press.
[15] Al-Naami, B., Al-Ani, A., & Jalab, H. A. (2020). A framework classification of heart sound signals in PhysioNet challenge 2016 using high order statistics and adaptive neuro-fuzzy inference system. IEEE Access, 8, 224852–224859.
[16] Sugiyarto, A. W., Abadi, A. M., & Sumarna, S. (2021). Classification of heart disease based on PCG signal using CNN. TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 19, no. 5, pp. 1697–1706.
[17] Meintjes, A., Lowe, A., & Legget, M. (2018). Fundamental heart sound classification using the continuous wavelet transform and convolutional neural networks. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1094–1097). IEEE.
[18] Gelpud, J., Ortega, J. D., Segura, M. P., & Castellanos-Dominguez, G. (2021). Deep learning for heart sounds classification using scalograms and automatic segmentation of PCG signals. In Advances in Computational Intelligence (pp. 384–395). Springer.
[19] Lee, J.-A., & Kwak, K.-C. (2023). Heart sound classification using wavelet analysis approaches and ensemble of deep learning models. Applied Sciences, vol. 13, no. 21, 11942.
[20] Abdollahpur, M., Faez, K., & Khadivi, M. (2017). Detection of pathological heart sounds. Physiological Measurement, vol. 38, no. 8, pp. 1616–1632.
[21] Singh, S. A., Meitei, T. G., & Majumder, S. (2020). Short PCG classification based on deep learning. In Deep Learning Techniques for Biomedical and Health Informatics (pp. 141–164). Academic Press.
[22] Torre-Cruz, J., Perez-Diaz, J. L., Aguilar-Ruiz, J. S., & Rosado-Muñoz, A. (2023). Detection of valvular heart diseases combining orthogonal non-negative matrix factorization and convolutional neural networks in PCG signals. Journal of Biomedical Informatics, 145, 104475.
[23] Shervegar, Vishwanath Madhava. "Heart sound classification technique for early CVD detection using improved wavelet time scattering and discriminant analysis classifiers." Informatics and Health 2.1 (2025): 49-62.
[24] Mekahlia, M. S., Fezari, M., & Aliouat, A. (2022). PCG classification using scalogram and CNN with DAG architecture. International Journal of Informatics and Applied Mathematics, vol. 5, no. 1, pp. 62–73.
[25] Ergen, B., Tatar, Y., & Gulcur, H. O. (2012). Time–frequency analysis of phonocardiogram signals using wavelet transform: A comparative study. Computer methods in biomechanics and biomedical engineering, vol. 15, no. 4, pp. 371-81.
[26] Wang, M., Liu, J., & Tang, Q. (2022). Transfer learning models for detecting six categories of phonocardiogram recordings. Journal of Cardiovascular Development and Disease, vol. 9, no. 3, 86.
[27] Shuvo, S. B., Majumder, S., & Alam, M. T. (2023). NRC-Net: Automated noise robust cardio net for detecting valvular cardiac diseases using optimum transformation method with heart sound signals. Biomedical Signal Processing and Control, 86, 10527.