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This study introduces a novel classification framework based on
Deep Orthogonal Non-Negative Matrix Factorization (Deep ONMF),
which leverages scalogram representations of phonocardiogram
(PCG) signals to hierarchically extract structural features crucial for
detecting valvular heart diseases (VHDs). Scalograms, generated via
the Continuous Wavelet Transform (CWT), serve as the foundational
input to the proposed feature extraction pipeline, which integrates
them with Deep ONMF in a unified and segmentation-free
architecture. The resulting scalogram—Deep ONMF framework is
designed to hierarchically extract features through two
complementary perspectives: Scale-Domain Analysis (SDA) and
Temporal-Domain Analysis (TDA). These extracted features are then
classified using shallow classifiers, with Random Forest (RF)
achieving the best results, particularly when paired with SDA features
based on the Bump wavelet. Experimental evaluations on two public
PCG datasets—one with five heart sound classes and another with
binary classification—demonstrate the effectiveness of the proposed
method, achieving high classification accuracies of up to 98.40% and
97.23%, respectively, thereby confirming its competitiveness with
state-of-the-art techniques. The results suggest that the proposed
approach offers a practical and powerful solution for automated heart
sound analysis, with potential applications beyond VHD detection.
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1. Introduction

The Phonocardiogram (PCG) signal records the
heart's acoustic activity and is visually interpreted
via phonocardiography. Cardiovascular diseases
(CVDs) remain the leading cause of mortality
worldwide, highlighting the need for accurate and
timely diagnosis [1, 2]. As a non-invasive and cost-
effective modality, phonocardiography is vital for
early detection of heart diseases. Valvular heart
disease (VHD), caused by structural valve
abnormalities such as aortic stenosis (AS), mitral
regurgitation (MR), and mitral stenosis (MS),
alters the primary heart sounds S1 and S2, which
correspond to valve closures during the cardiac
cycle [3-6]. However, manual auscultation is often
insufficient, prompting interest in Al-based PCG

analysis [7]. Methods involving signal processing,
machine learning, and deep learning are
increasingly used for PCG classification [8], with
segmentation posing a significant challenge due to
the complexity of detecting heart sound phases [9,
10]. In this study, we propose a Deep Orthogonal
Non-negative Matrix Factorization (Deep ONMF)
approach for the effective extraction of
hierarchical features from scalogram
representations of PCG signals. Unlike traditional
methods that rely on explicit segmentation of heart
sounds, the proposed framework eliminates the
segmentation stage entirely, enabling direct
analysis of the raw PCG signal’s time-frequency
representation. The method comprises three main
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stages: data preparation, deep feature extraction
using the proposed Deep ONMF model, and
classification. In the feature extraction stage, the
scalograms are decomposed hierarchically from
two complementary perspectives: Scale-Domain
Analysis (SDA) and Temporal-Domain Analysis
(TDA), which respectively extract deep and
meaningful spectral and temporal patterns from the
signal. The extracted features are then used to
classify normal and four types of valvular heart
diseases using shallow classifiers. Experimental
results indicate that among the various classifiers
evaluated, RF and KNN achieved comparatively
better performance, with RF even surpassing
KNN, demonstrating the robustness of the
proposed  segmentation-free  approach  for
automated heart sound classification.

2. Related works

The automated detection of valvular heart diseases
(VHDs) from phonocardiogram (PCG) signals
generally involves three main stages: segmentation
of cardiac cycles, extraction of informative
features, and classification of heart conditions [3].
Li et al. [11] combined traditional feature
engineering techniques with deep learning
frameworks to differentiate between normal and
abnormal heart sounds. They utilized the Hidden
Semi-Markov Model (HSMM) for segmentation of
PCG signals, followed by the application of a
convolutional neural network (CNN) for feature
extraction. Their approach was evaluated on the
PhysioNet/CinC ~ Challenge 2016  dataset,
achieving average metrics of 86.8% accuracy, 87%
sensitivity, 86.6% specificity, and a Matthews
Correlation Coefficient (MCC) of 72.1%. Ghosh et
al. [3] performed heart sound segmentation by
extracting the envelope of the PCG signal using
Shannon energy, aiming to detect valvular
disorders on the publicly available Yaseen
database (Y-18) [12]. They applied the chirplet
transform to extract time-frequency domain
features, followed by the derivation of Local
Energy (LEN) and Local Entropy (LENT) features
from the time-frequency matrix. Their proposed
multi-class classification approach achieved an
overall accuracy of 98.33%. In contrast, Nawaz
Khan et al. [13] proposed a segmentation-free
framework  for  detecting heart rhythm
abnormalities using CNNs. Their models, trained
on the PhysioNet dataset with the aid of transfer
learning, demonstrated strong performance, with
the best model achieving 96.8% accuracy, 95.8%
sensitivity, 98% specificity, 98.29% precision, and
an Fl-score of 97.05%. Tiwari et al. [14]
developed a CNN-based model for heart sound
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classification using Mel Frequency Cepstral
Coefficients (MFCCs). They compared three types
of Discrete Cosine Transform (DCT) in the feature
extraction stage, reporting that DCT Type-I
yielded the best results with a loss value of 0.21
and classification accuracy of 95%. Al-Naami et
al. [15] introduced a method for detecting
abnormal valve sounds using spectral features and
an Adaptive Neuro-Fuzzy Inference System
(ANFIS). Their approach consisted of signal
preprocessing, feature extraction through Discrete
Fourier Transform (DFT) and Higher Order
Spectra (HOS), and training of the ANFIS
classifier. Under optimal conditions, the model
achieved 89% accuracy, 100% sensitivity, and
100% specificity.

Wavelet transform-based analysis techniques have
become widely adopted for processing non-
stationary signals, and they are considered
particularly suitable for analyzing PCG signals
[16]. In this context, study [17] focuses on the
classification of fundamental heart sounds (S1 and
S2) by utilizing Continuous Wavelet Transform
(CWT) scalograms in  conjunction  with
convolutional neural networks (CNNSs). The model
achieved a classification accuracy of 86% using
CNN, and when the CNN-extracted features were
classified with a support vector machine (SVM),
an accuracy of 85.9% was attained on the
PhysioNet dataset. In another study [18], the
authors employed Discrete Wavelet Transform
(DWT) for denoising, the Teager Energy Operator
(TEO) and autocorrelation for signal segmentation,
and CWT for feature extraction. This approach was
evaluated using the PhysioNet dataset, where it
achieved an accuracy of 91.19% with ResNet152
and 90.75% with VGG16 architectures. Paper [19]
proposed a classification method based on wavelet
transform and ensemble deep learning models.
Their method demonstrated high accuracy across
multiple datasets, including 98.57% on PhysioNet,
96.55% on Dataset A, and 89.19% on Dataset B of
the PASCAL Challenge. In [12], the authors
extracted features from PCG signals using both
Mel Frequency Cepstral Coefficients (MFCCs)
and DWT, aiming to improve classification
performance.

Similarly, in study [20], a combination of Wavelet
Packet Decomposition (WPD) and CWT was used
for the analysis of PCG signals, with a focus on
detecting valvular heart diseases (VHDs). Among
wavelet-based methods, the CWT is often
preferred for analyzing non-stationary biomedical
signals because it provides a more detailed time-
frequency representation. Unlike the DWT, which
uses a limited set of scales and positions, CWT can
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capture all possible scales of the mother wavelet.
This allows for more accurate analysis of the
signal. In contrast, the limited resolution of DWT
might miss important signal details and lead to less
reliable feature extraction [21].

3. Proposed method

In this study, Deep Orthogonal Non-negative
Matrix Factorization (Deep ONMF) is used to
extract deep  features from  scalogram
representations of PCG signals, effectively
utilizing scalograms as input to improve the
classification of normal and four types of heart
valve diseases. The proposed method consists of
three main stages: data preparation including
preprocessing of PCG signals and scalogram
generation, hierarchical feature extraction using
ONMF and classification. These stages are
illustrated in Figure 1.
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Figure 1. Flowchart of the proposed method.

3.1. Data preparation

PCG signals are first divided into two-second
segments with a one-second overlap. Since the
cardiac cycle lasts approximately 0.8 seconds and
some heart diseases occur within one of two
consecutive heart cycles [8], this approach ensures
the inclusion of at least two cardiac cycles within
each two-second sliding window, making it
suitable for detecting heart conditions. Next,
scalograms are computed to obtain a time-
frequency representation of each segment. Unlike
spectrograms, which use the Short-Time Fourier
Transform (STFT), scalograms rely on the
Continuous Wavelet Transform (CWT), providing
better time-frequency localization and capturing
transient cardiac events more effectively. The
scalogram representation PCG,(a, ) of a
continuous PCG signal can be expressed as shown
in equation (1):

1

PCG, (a, ) = j PCG(t)y (—ZL2)dt
Jau

1)
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Where « is the scaling parameter and should be

greater than 0; fis translation parameter; y7is

continuous mother wavelet. The computed
scalograms are then used as input for Deep ONMF
decomposition.

3.2. Hierarchical Feature Extraction Using
ONMF
Deep ONMF decomposes the scalogram matrix
into multiple hierarchical components. This
decomposition is performed layer by layer,
employing two complementary analyses: scale-
domain analysis (SDA) and temporal-domain
analysis (TDA). The SDA focuses on extracting
multiscale spectral patterns from the PCG signal,
while the TDA captures time-dependent
activations. Both analyses utilize a hierarchical
factorization scheme to extract meaningful
features across multiple levels.

e Scale-Domain Analysis (SDA). Scale-domain
analysis (SDA) is performed on the scalogram
of the PCG signal by factorizing the coefficient
matrix H. The scalogram of each PCG signal
frame, represented as X*T, where F is the
number of frequency bins (representing the
frequency resolution or scale) and T is the
number of time frames (representing the
temporal resolution), is used as input for the
decomposition process. First layer: The
factorization X ~ W/>*#H*T s applied,
where W, extracts primary spectral features
from the scalogram, and H; preserves
corresponding temporal information. Second
layer: The matrix H; is further decomposed as
H, ~ WHxazgd2xT = \where W, extracts
more refined spectral patterns from the
scalogram, and H, enhances the temporal
representation. This process continues up to
the L-th layer, H,_; ~ W@AL=1xdL gaLxT ang
W, captures the most detailed spectral features
from the scalogram. To integrate the spectral
features extracted from all layers into a single
representative matrix, the feature matrices
from each layer are multiplied, forming the
final spectral feature matrix Winieq , as
expressed in equation (2), Where d; denotes
the inner rank at each layer,l = 1,2, ..., L and
L represents the total number of layers.

(FxdL) _ (Fxd1) (d1xd2) (dL—-1xdL)
W(integ.) _[Wl XWZ X "'XWL ] (2)
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e Temporal-Domain Analysis (TDA).
Temporal-Domain  Analysis  (TDA) s
performed on the PCG signal by factorizing
the basis matrix W . In this approach, the

scalogram X F7) is decomposed in a
hierarchical manner. First layer: The

factorizatio X ~W, ™ YH** is performed.

Second layer: The matrix W, undergoes
further decomposition as

W, =W P92 {29 This process continues
up to the L-th layer, where

Wy W DHED  with H, capturing

increasingly refined temporal features from the
scalogram. The extracted temporal features
from all layers are then integrated into a single
matrix Hiteq., as given by equation (3).

dLxT dLxdL-1 d2xd1 dixT
H((integ.)) :[HIE )X"'XHé )le( )] (3)

In both processes, the matrices W, extract spectral
patterns at different levels, while H; refines
temporal structures in a hierarchical manner.
Typically, the ranks d,, d,, ..., and d; are chosen in

descending order (d, > d, >...>d, ) ensuring that

the initial layers extract fundamental and high-
variance features, while subsequent layers capture
finer details. This hierarchical structure enables the
identification of complex patterns at multiple
levels and facilitates dimensionality reduction
while preserving essential information. The
multiplicative combination of feature matrices
effectively compresses data into a lower-
dimensional space while retaining discriminative
features for heart sound classification. By
integrating the matrices from all layers into a single
matrix (Winteg. and Hipeeq), @ feature matrix is
generated for each frame. The overall procedure
for extracting spectral and temporal features using
the Deep ONMF model is outlined in Algorithm 1.

3.2.Classification

Classification plays a crucial role in diagnostic
systems, significantly impacting their overall
accuracy. Despite the growing prominence of deep
learning methods, shallow classifiers remain
valuable tools in various applications [7]. This
study utilizes several commonly employed shallow
classifiers for the detection of abnormal heart
sounds. The features extracted through the
proposed SDA and TDA were provided to
traditional  classifiers for a  multi-class
classification task (normal vs. four types of heart
valve diseases), including Linear Discriminant
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Analysis (LDA), Support Vector Machines
(SVM), Naive Bayes (NB), Random Forest (RF),
and k-Nearest Neighbors (KNN). Experimental
results indicate that among the classifiers tested,
RF and KNN achieved better performance
compared to the others.

Algorithm 1. Deep ONMF with SDA and TDA.

Pseudocode for Deep ONMF with SDA & TDA

Input: Non-negative Scalogram X € R™T; number of
layers L; layer ranks d; > d, >...> d,;; max _iter; threshold g;

Output: Spectral features W, € RFIL, Temporal
features Hingeg, € RIXT ;
Stage 1 — SDA: Initialize W, € RF™4, H, € R%*T: for | =2to L:
initialize W, € R%-1*% H, € R%*T; update W;, H, via projected
gradient with Nesterov until ||H,_; — W, H||% < &; finally,
compute Winteg = Wi W5 ... W,.
Stage 2 — TDA: Reuse Wi, Hi; for [ = 2 to L: initialize W, €
RF*4 H, € R4>4-1; update W;, Hyuntil ||[W,_, — W, H)||2 <
finally, compute Hinteg. = H H—y ... Hy.
Return: VVinteg.v Hinteg.

3.3. Dataset

In this study, two publicly available datasets were
used to evaluate the efficiency of the proposed
method. The first is the Yaseen and Kwon dataset
(Y-18), which was introduced by Yaseen and
Kwon [12] and is widely utilized for the detection
and classification of valvular heart disease (VHD).
It consists of 1,000 audio samples, categorized into
five heart sound classes: normal (N), mitral
regurgitation (MR), aortic stenosis (AS), mitral
stenosis (MS), and mitral valve prolapse (MVP).
Each class contains 200 recordings with a
sampling frequency of 8 kHz, 16-bit resolution,
and a bit rate of 128 kbps. The duration of each
recording is approximately 3 seconds, covering at
least three complete cardiac cycles [22].

In addition, the PhysioNet/CinC Challenge 2016
dataset [23] was used as the second dataset to
further assess the generalizability of the proposed
method. It comprises 3,126 heart sound recordings
collected from various clinical and non-clinical
settings, with durations ranging from 5 to 120
seconds. The recordings, obtained from key
auscultation sites (aortic, pulmonic, tricuspid,
mitral), are labeled as normal or abnormal, and are
standardized to a 2,000 Hz sampling rate in .wav
format.

4.Experimental setup

All experiments were conducted using MATLAB
2019b software. Similar to standard NMF, deep
ONMF employs an alternating optimization
scheme, iteratively updating each factor while
keeping the others fixed. Optimization is
performed using projected gradient steps with
Nesterov's acceleration to minimize the Frobenius
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norm of the reconstruction error. The stopping
criterion is defined as either a maximum of 100
iterations or a minimum reduction of 107 in the
objective function between successive iterations.
The default settings of MATLAB software were
also utilized for the classification process. To
assess the performance of the models, a 10-fold
cross-validation strategy was employed. The
dataset was partitioned into ten equal-sized
subsets; in each iteration, nine folds were used for
training while the remaining fold served as the test
set.

This process was repeated ten times, and the
average accuracy across all folds was computed to
ensure the robustness and generalizability of the
results. In this phase, the RF and KNN classifiers
were selected, as they previously demonstrated
superior  performance compared to other
classification algorithms.

5.Experimental Results

5.1. Optimal Selection of the Number of Layers
in Deep ONMF

The selection of parameters in deep matrix
factorization models is contingent upon the
specific application. The parameters of the deep
ONMF  model significantly influence its
performance in detecting abnormal heart sounds.
To optimize these parameters, a hyperparameter
tuning process was conducted, evaluating key
factors such as the number of layers and the
internal ranks in the Deep ONMEF structure.
Increasing the number of layers beyond a certain
threshold typically does not lead to the extraction
of additional meaningful information or novel
patterns. EXxisting research suggests that the
optimal number of layers rarely exceeds three.

To empirically validate this, a PCG signal
scalogram was processed through the proposed
SDA of the deep ONMF model, utilizing a six-
layer architecture.

Figure 2 illustrates the generated W matrices
across six layers (a) to (f), with internal ranks of 9,
8, 7, 6, 5 and 4. The consistent patterns observed
up to the third layer suggest that deeper ONMF
models with more than three layers may not yield
additional informative features. The selection of
ranks follows a descending order, as detailed in the
following.
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5.2. Optimal Selection of Internal Ranks in
Deep ONMF
Ranks were chosen such that

d =d _,-1d, ,=d_,-1..d,=d,-1and
L =3 as previously explained and

d, €{6,9,12,15,18,21, 24, 27,30} is considered.

Figure 3 illustrates the accuracy and computation
time trade-off for different first-layer rank values
(d4) using the first approach, a RF classifier, and
10-fold cross-validation on the Y-18 dataset.

Accuracy vs Rank and Computation Time
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Figure 3. Trade-off between Accuracy and
Computational Cost for Varying Ranks in Deep ONMF
by proposed SDA.
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Each bar represents a different d, value, with
accuracy indicated by color and computation time
on the y-axis. For instance, a rank of 6 corresponds
to a three-layer deep ONMF model with ranks of
6, 5, and 4 for the first, second, and third layers,
respectively. The results indicate that a first-layer
rank of 9 offers the best balance between accuracy
and computational efficiency within the desired
time constraint of below 60 minutes.

5.1. Evaluation on Multiple Datasets

To further assess the generalizability of the
proposed SDA and TDA methods, experiments
were conducted on two well-established
benchmark datasets, Y-18 and PhysioNet. These
evaluations aim to demonstrate the robustness and
effectiveness of the proposed approach across
different and diverse datasets. An optimized Deep
ONMF model—with three layers and internal
ranks of 9, 8, and 7—was employed to extract
hierarchical features. Using this configuration, a
comparative analysis was performed across several
wavelet functions to evaluate the proposed SDA
and TDA.

5.2. Performance Comparison of Wavelet
Functions

The wavelet functions assessed in this analysis
include the analytic Morlet wavelet (referred to as
amor), the Morse wavelet (morse), and the Bump
wavelet (bump). These wavelet functions were
employed to generate scalogram representations of
Phonocardiogram (PCG) signals. Each wavelet
offers unique characteristics that contribute to
capturing different temporal and frequency
information from the PCG signals, enabling an in-
depth evaluation of the classification methods.
The choice of wavelets—Morse, Bump, and
Analytic Morlet (Amor)—was informed by both
prior studies and the specific characteristics of
PCG signals. CWT is known for its superior time—
frequency resolution in analyzing non-stationary
biomedical signals compared to STFT and Wigner
distribution [24, 17]. Ergen et al. [25] identified the
Analytic Morlet wavelet as offering the most
reliable TFR for detecting heart abnormalities.
Morse and Bump wavelets also demonstrated
strong performance in PCG classification tasks in
recent studies [26, 16]. The performance of the
proposed methods was quantitatively assessed
using five evaluation metrics: Accuracy (Acc),
Sensitivity (Sen), Specificity (Spe), Precision

(Pre), and F1-Score (F1), all reported in
percentage. The selection of these wavelet
functions is crucial for understanding the

underlying frequency components and temporal

patterns within the heart sounds, which are vital for
accurate disease classification and analysis. Table
1 and Table 2 summarize the classification
performance of the proposed SDA method on two
datasets, Y-18 and PhysioNet, respectively. As
shown in Table 1, the results clearly indicate that
the Random Forest (RF) classifier consistently
outperforms k-Nearest Neighbors (KNN) across
all evaluated wavelet types. RF achieves higher
overall accuracy—ranging from 96.71% to
98.40% on the Y-18 dataset, and 94.65% to
97.23% on the PhysioNet dataset—alongside
superior sensitivity, specificity, and F1-score when
compared to KNN. These findings highlight RF’s
stronger capability in correctly classifying heart
sound signals while minimizing classification
errors. Although KNN demonstrates acceptable
performance in some cases, it remains less
competitive than RF in terms of both accuracy and
class balance. Regarding wavelet type, the Bump
wavelet yields the highest performance for both
classifiers. In particular, RF achieves its best
accuracy of 98.40% on Y-18 and 97.23% on
PhysioNet with the Bump wavelet. In contrast, the
Morse wavelet results in the weakest performance
for KNN on both datasets, with an accuracy of only
68.90% for Y-18 and 63.10% for PhysioNet, while
RF still maintains high classification performance
(98.11% and 95.27%, respectively).

Table 1. Classification Performance of Wavelet-Based
Scalograms using SDA on Y-18 Dataset.

Wavelet  Classifier ~ Acc Sen Spe Pre F1
Morse RF 98.11 9895 99.76  98.97 9893
KNN 68.90 6819 9621 81.01 7356
Amor RF 96.71 9895 9890 9552  97.15
KNN 6541 68.65 9584 78.69  73.06
Bump RF 9840 9836 99.88 99.50  98.90
KNN 75.37 7743  96.09 82.79 79.52

Table 2. Classification Performance of Wavelet-Based
Scalograms using SDA on PhysioNet Dataset.
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Wavelet  Classifier Acc Sen Spe Pre F1
Morse  RF 9527 9544 97.85 9490  95.10
KNN 63.10 6512 9256 76.85  70.32
Amor  RF 9465 9481 9742 9355 9450
KNN 61.82 64.27 91.84 7538  69.12
Bump  RF 97.23 9696 9850 97.33  96.89
KNN 7241 7403 9491 8021  77.28

The Morlet wavelet leads to intermediate

outcomes, where RF again outperforms KNN but
with slightly reduced accuracy compared to the
Bump and Morse wavelets—96.71% for Y-18 and
94.65% for PhysioNet. Comparing RF
performance with different wavelets, the Bump
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wavelet provides marginally better results than the
Morse wavelet in terms of overall accuracy on both
datasets (98.40% vs. 98.11% for Y-18 and 97.23%
vs. 95.27% for PhysioNet) and specificity (99.88%
vs. 99.76% for Y-18, 98.50% vs. 97.85% for
PhysioNet). However, the difference in F1-score
between them remains minimal (98.90% wvs.
98.93% for Y-18, and 96.89% vs. 95.10% for
PhysioNet), indicating that both configurations are
highly effective, with Bump having a slight
advantage in  overall performance and
generalizability across datasets. Tables 3 and 4
report the performance of the proposed TDA
method on the Y-18 and PhysioNet datasets,
respectively, both showing consistently weaker
results than SDA when scalograms are used as
input representations. Specifically, RF achieves
lower overall accuracies with TDA compared to
SDA, across all wavelet types. On the Y-18
dataset, the best TDA accuracy with RF is 97.55%
using the Bump wavelet, which is lower than
SDA’s 98.40%. On the PhysioNet dataset, TDA
with the Bump wavelet and RF achieves 95.11%,
again lower than SDA’s 97.23%. The same trend
is observed for KNN, with TDA consistently
showing lower performance across all evaluation
metrics compared to SDA for each wavelet and
dataset. This suggests that the spectral features
extracted via SDA are more informative and
discriminative for heart sound classification in this
setting. This suggests that the spectral features
extracted via SDA are more informative and
discriminative for heart sound classification in this
setting.

Table 3. Classification Performance of Wavelet-Based
Scalograms using TDA on Y-18 Dataset.

Wavelet Classifier  Acc Sen Spe Pre F1
Morse RF 97.21 97.88 98.16 97.23 9791
KNN 67.30 67.10 9523 80.98 72.34
Amor RF 9551  97.39 9745 9433 96.19
KNN 64.21 67.15 9434 7718 72.68
Bump RF 97.55 97.44 98.65 98.45 97.37
KNN 74.36 76.21 95.11 81.67 78.27

Table 4. Classification Performance of Wavelet-Based
Scalograms using TDA on PhysioNet Dataset.

Wavelet  Classifier  Acc Sen Spe Pre F1
Morse RF 9344 9403 96.91 93.85 93.72
KNN 60.25 61.22 90.11 7498 67.00
Amor RF 9288 93.16 96.10 92.17 92.62
KNN 58.90 60.02 89.80 73.11 66.07
Bump RF 9511 9530 97.62 96.00 95.47
KNN 70.16 7244 9357 78.96 75.33

5.3. Baseline Comparison with Deep Neural
Classifier

To further validate the effectiveness of the
proposed shallow classifiers, we conducted a
baseline comparison using a deep neural network.
A simple yet representative convolutional neural
network (CNN) was trained on the same set of
SDA- and TDA-based features extracted via the
proposed Deep ONMF method. The CNN
architecture consisted of two convolutional layers
(with 16 and 32 filters of size 3x3), each followed
by batch normalization, ReLU activation, and 2x2
max pooling. This was followed by a fully
connected layer with 64 units, a dropout layer (rate
= 0.5), and a softmax output layer for five-class
classification. Training was performed using the
Adam optimizer over 20 epochs with a mini-batch
size of 32. As in the previous section, the input
features were derived from scalograms generated
using the Bump wavelet, which had already shown
superior performance among wavelet types. The
results showed that despite being a deep model, the
CNN did not outperform the Random Forest
classifier, supporting the discriminative power and
efficiency of the proposed shallow models. The
average performance metrics of the CNN model
are summarized in Table 5.

Table 5. CNN Classification Results Using SDA and TDA
Features from Deep ONMF.

Feature
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Type Classifier ~ Acc Sen Spe Pre F1
SDA CNN 9400 9410 9848 94.64 94.25
TDA CNN 91.85 9200 97.60 9270 92.30
5.4. Evaluation of Time-Frequency
Representations: Scalogram VS,
SpectrogramError! Reference source not

found.Figure 4 presents a comparative evaluation
of the proposed model based on Deep ONMF using
SDA, with two different types of input
representations: scalogram and spectrogram. It is
important to note that the underlying model
architecture remains unchanged; only the input
representation varies between the two cases. This
comparison provides a detailed analysis of how
each type of time-frequency representation affects
classification accuracy and misclassification
patterns across the different heart disease classes.
By analyzing the confusion matrices for both
scalogram- and spectrogram-based inputs, Figure 4
highlights the crucial impact of input feature
representation on the performance of the proposed
model. In Figure 4 (a), where the scalogram is used
as the input representation, the model demonstrates
strong classification performance across all heart
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disease classes. For the Normal class, 199 out of
201 samples were correctly classified, with only 2
samples misclassified as MS. In the case of AS, the
model achieved perfect classification, correctly
identifying all 232 samples without any errors. For
MR, 182 samples were correctly classified, while
3 were misclassified as AS and 1 as MS. Regarding
the MS class, 195 out of 199 samples were
correctly identified, with 1 sample misclassified as
Normal (N) and 3 as AS. Finally, the model
achieved perfect classification for the MVP class,
correctly classifying all 185 samples. In Figure 4
(b), where the spectrogram is used as the input
representation, the classification performance of
the model shows greater variability across different
heart disease classes. For the Normal class, 178
samples were correctly classified, while 17 were
misclassified as MS, 4 as MR, and 2 as MVP. In
the case of AS, the model correctly classified 231
out of 232 samples, with only 1 sample
misclassified as MR. For the MR class, 165
samples were correctly identified, whereas 6 were
misclassified as AS, 7 as MS, and 8 as MVP.
Regarding MS, 143 samples were correctly
classified, but 27 were misclassified as N, 3 as AS,
10 as MR, and 16 as MVP. Finally, for the Mitral
Valve Prolapse (MVP) class, 157 samples were
correctly classified, with 12 misclassified as AS, 5
as MR, and 11 as MS.

Overall, the results demonstrate that the
scalogram-based model (Figure 4 (a)) provides
more consistent and reliable performance across all
classes, particularly in reducing misclassifications
in complex cases such as MS and MVP. This
highlights the superior effectiveness of scalogram
representations over spectrograms in capturing the
distinctive characteristics of PCG signals for heart
valve disease classification.

True Class

MS  MvP N AS MR
Predicted Class

N AS MR MsS MR

Predicted Class

Figure 4. Confusion Matrix for VHD Detection using the
Proposed SDA: (a) Scalogram, (b) Spectrogram Input.

5.2. Comparison with Recent Approaches

To evaluate the effectiveness of the proposed
method, its performance was compared with
several recent studies using the same or
comparable datasets. As summarized in Table 6,
prior works employed various feature extraction
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and classification strategies. These include the use
of Chirplet Z-transform spectrograms

with transfer learning [3], integration of
orthogonal NMF with CNN architectures [22],
hybrid combinations of DWT and MFCC with
SVM classifiers [12], and deep models such as
ResNet101, DenseNet201, DarkNet19, and
GoogLeNet based on CWT representations [26].
Additionally, lightweight CNN-RNN networks
enhanced with attention mechanisms were
proposed to improve noise robustness [27]. While
many of these methods achieve competitive
accuracy—often in the 97-98% range—their
performance is frequently tied to complex
preprocessing steps, segmentation requirements, or
computationally intensive models. However,
common challenges persist across these
approaches. Many rely on explicit segmentation of
cardiac cycles, which can be error-prone and
sensitive to signal variability. Others require deep
networks with numerous parameters, leading to
high computational overhead and reduced
interpretability. Additionally, handcrafted feature
pipelines may lack adaptability across datasets and
conditions. In contrast, the proposed method
introduces a novel Deep ONMF framework that
eliminates the need for segmentation and heavy
preprocessing. By directly leveraging CWT-based
scalograms and extracting hierarchical spectral and
temporal features through Scale-Domain and
Temporal-Domain Analysis, the model offers high
classification performance (98.40% accuracy with
Random Forest) using shallow classifiers. This not
only enhances interpretability and efficiency but
also makes the system more robust and easier to
deploy in real-world, resource-constrained
environments. Furthermore, the integration of
hierarchical decomposition enables the discovery
of multi-level discriminative features, contributing
to superior generalization across all five heart
sound classes.

6. Conclusion
The proposed method for classifying valvular heart
diseases (VHDs) using phonocardiogram (PCG)

signals  demonstrates  high  classification
performance while addressing key limitations of
conventional approaches. We validated the

generalizability of the method using two widely-
used benchmark datasets, confirming its
robustness across different recording conditions.
Unlike traditional methods that require precise
segmentation of heart sounds—a process that is
often error-prone and sensitive to noise—our
approach directly analyzes full PCG scalograms,
eliminating the need for segmentation and
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simplifying preprocessing. By applying Deep
Orthogonal Non-Negative Matrix Factorization
(Deep ONMF), the method extracts hierarchical
and interpretable features that capture both scale-
and time-domain characteristics, while the scale-
domain features consistently outperform the time-
domain features in classification. In addition, the
use of shallow classifiers enhances computational
efficiency. Notably, the Random Forest (RF)
classifier outperformed a standard Convolutional
Neural Network (CNN) on the same features,
reaching an accuracy of 98.40%. This highlights

both the quality of the extracted features and the
practicality of the model for real-time or low-
resource settings. Among the wavelet functions
used to generate scalograms, Morse and Bump
provided the best results, both exceeding 98%
across evaluation metrics, while Amor showed
slightly lower results. These findings position the
proposed method as a robust and interpretable tool
for automated heart sound analysis, with potential
for  broader application beyond VHD
classification.

Table 6. Comparison of the Proposed Method with Recent Approaches for VHD Classification using Y-18.

Reference Feature Extraction Technigue Classification Model Acc (%) Remarks
. Pre-trained Networks Used CZT transform for deep
[3] Chirplet Z;ra:cstfr %m:ag(q:ZT) based (PTNs) with Transfer 97 feature extraction and transfer
P 9 Learning (RBTL) learning
[22] Orthogonal Non-negative Matrix Convolutional Neural 98 C?\g}%gﬁiﬁ Em’;mggrggﬁlngor
Factorization (ONMF) Networks (CNNs) detection without segmentation
Discrete Wavelet Transform (DWT) - Used combined features of DWT
(12] + MFCC SVM Classifier 97.9 and MFCC with SVM classifier
[26] Continuous Wavelet Transform ResNet101, DenseNet201, 98 Used CWT for signal processing
(CWT) DarkNet19, GooglLeNet and deep models for classification
NRC-Net (Convolutional Proposed NRC-Net with CWT
[27] MFCC, STFT, CQT, CWT Recurrent Neural Network 97.4 and attention block for noise-
with Attention Block) robust classification
Proposed SDA features using
Our work Deep ONMF using SDA and TDA 98.40% BUMP wavelet achieved the
on Scalograms highest classification accuracy
with RF classifier
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