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  This study introduces a novel classification framework based on 

Deep Orthogonal Non-Negative Matrix Factorization (Deep ONMF), 

which leverages scalogram representations of phonocardiogram 

(PCG) signals to hierarchically extract structural features crucial for 

detecting valvular heart diseases (VHDs). Scalograms, generated via 

the Continuous Wavelet Transform (CWT), serve as the foundational 

input to the proposed feature extraction pipeline, which integrates 

them with Deep ONMF in a unified and segmentation-free 

architecture. The resulting scalogram–Deep ONMF framework is 

designed to hierarchically extract features through two 

complementary perspectives: Scale-Domain Analysis (SDA) and 

Temporal-Domain Analysis (TDA). These extracted features are then 

classified using shallow classifiers, with Random Forest (RF) 

achieving the best results, particularly when paired with SDA features 

based on the Bump wavelet. Experimental evaluations on two public 

PCG datasets—one with five heart sound classes and another with 

binary classification—demonstrate the effectiveness of the proposed 

method, achieving high classification accuracies of up to 98.40% and 

97.23%, respectively, thereby confirming its competitiveness with 

state-of-the-art techniques. The results suggest that the proposed 

approach offers a practical and powerful solution for automated heart 

sound analysis, with potential applications beyond VHD detection. 

 

Keywords: 
 Phonocardiogram (PCG), 

Valvular Heart Disease (VHD), 

Deep Orthogonal Non-Negative 

Matrix Factorization (Deep 

ONMF), Scalogram, Time–

Frequency Analysis.  

 

*Corresponding author: 
h.marvi@shahroodut.ac.ir (H. Marvi). 

1. Introduction

The Phonocardiogram (PCG) signal records the 

heart's acoustic activity and is visually interpreted 

via phonocardiography. Cardiovascular diseases 

(CVDs) remain the leading cause of mortality 

worldwide, highlighting the need for accurate and 

timely diagnosis [1, 2]. As a non-invasive and cost-

effective modality, phonocardiography is vital for 

early detection of heart diseases. Valvular heart 

disease (VHD), caused by structural valve 

abnormalities such as aortic stenosis (AS), mitral 

regurgitation (MR), and mitral stenosis (MS), 

alters the primary heart sounds S1 and S2, which 

correspond to valve closures during the cardiac 

cycle [3–6]. However, manual auscultation is often 

insufficient, prompting interest in AI-based PCG 

analysis [7]. Methods involving signal processing, 

machine learning, and deep learning are 

increasingly used for PCG classification [8], with 

segmentation posing a significant challenge due to 

the complexity of detecting heart sound phases [9, 

10]. In this study, we propose a Deep Orthogonal 

Non-negative Matrix Factorization (Deep ONMF) 

approach for the effective extraction of 

hierarchical features from scalogram 

representations of PCG signals. Unlike traditional 

methods that rely on explicit segmentation of heart 

sounds, the proposed framework eliminates the 

segmentation stage entirely, enabling direct 

analysis of the raw PCG signal’s time-frequency 

representation. The method comprises three main 
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stages: data preparation, deep feature extraction 

using the proposed Deep ONMF model, and 

classification. In the feature extraction stage, the 

scalograms are decomposed hierarchically from 

two complementary perspectives: Scale-Domain 

Analysis (SDA) and Temporal-Domain Analysis 

(TDA), which respectively extract deep and 

meaningful spectral and temporal patterns from the 

signal. The extracted features are then used to 

classify normal and four types of valvular heart 

diseases using shallow classifiers. Experimental 

results indicate that among the various classifiers 

evaluated, RF and KNN achieved comparatively 

better performance, with RF even surpassing 

KNN, demonstrating the robustness of the 

proposed segmentation-free approach for 

automated heart sound classification. 
 

2. Related works 

The automated detection of valvular heart diseases 

(VHDs) from phonocardiogram (PCG) signals 

generally involves three main stages: segmentation 

of cardiac cycles, extraction of informative 

features, and classification of heart conditions [3]. 

Li et al. [11] combined traditional feature 

engineering techniques with deep learning 

frameworks to differentiate between normal and 

abnormal heart sounds. They utilized the Hidden 

Semi-Markov Model (HSMM) for segmentation of 

PCG signals, followed by the application of a 

convolutional neural network (CNN) for feature 

extraction. Their approach was evaluated on the 

PhysioNet/CinC Challenge 2016 dataset, 

achieving average metrics of 86.8% accuracy, 87% 

sensitivity, 86.6% specificity, and a Matthews 

Correlation Coefficient (MCC) of 72.1%. Ghosh et 

al. [3] performed heart sound segmentation by 

extracting the envelope of the PCG signal using 

Shannon energy, aiming to detect valvular 

disorders on the publicly available Yaseen 

database (Y-18) [12]. They applied the chirplet 

transform to extract time-frequency domain 

features, followed by the derivation of Local 

Energy (LEN) and Local Entropy (LENT) features 

from the time-frequency matrix. Their proposed 

multi-class classification approach achieved an 

overall accuracy of 98.33%. In contrast, Nawaz 

Khan et al. [13] proposed a segmentation-free 

framework for detecting heart rhythm 

abnormalities using CNNs. Their models, trained 

on the PhysioNet dataset with the aid of transfer 

learning, demonstrated strong performance, with 

the best model achieving 96.8% accuracy, 95.8% 

sensitivity, 98% specificity, 98.29% precision, and 

an F1-score of 97.05%. Tiwari et al. [14] 

developed a CNN-based model for heart sound 

classification using Mel Frequency Cepstral 

Coefficients (MFCCs). They compared three types 

of Discrete Cosine Transform (DCT) in the feature 

extraction stage, reporting that DCT Type-I 

yielded the best results with a loss value of 0.21 

and classification accuracy of 95%. Al-Naami et 

al. [15] introduced a method for detecting 

abnormal valve sounds using spectral features and 

an Adaptive Neuro-Fuzzy Inference System 

(ANFIS). Their approach consisted of signal 

preprocessing, feature extraction through Discrete 

Fourier Transform (DFT) and Higher Order 

Spectra (HOS), and training of the ANFIS 

classifier. Under optimal conditions, the model 

achieved 89% accuracy, 100% sensitivity, and 

100% specificity. 

Wavelet transform-based analysis techniques have 

become widely adopted for processing non-

stationary signals, and they are considered 

particularly suitable for analyzing PCG signals 

[16]. In this context, study [17] focuses on the 

classification of fundamental heart sounds (S1 and 

S2) by utilizing Continuous Wavelet Transform 

(CWT) scalograms in conjunction with 

convolutional neural networks (CNNs). The model 

achieved a classification accuracy of 86% using 

CNN, and when the CNN-extracted features were 

classified with a support vector machine (SVM), 

an accuracy of 85.9% was attained on the 

PhysioNet dataset. In another study [18], the 

authors employed Discrete Wavelet Transform 

(DWT) for denoising, the Teager Energy Operator 

(TEO) and autocorrelation for signal segmentation, 

and CWT for feature extraction. This approach was 

evaluated using the PhysioNet dataset, where it 

achieved an accuracy of 91.19% with ResNet152 

and 90.75% with VGG16 architectures. Paper [19] 

proposed a classification method based on wavelet 

transform and ensemble deep learning models. 

Their method demonstrated high accuracy across 

multiple datasets, including 98.57% on PhysioNet, 

96.55% on Dataset A, and 89.19% on Dataset B of 

the PASCAL Challenge. In [12], the authors 

extracted features from PCG signals using both 

Mel Frequency Cepstral Coefficients (MFCCs) 

and DWT, aiming to improve classification 

performance.  

Similarly, in study [20], a combination of Wavelet 

Packet Decomposition (WPD) and CWT was used 

for the analysis of PCG signals, with a focus on 

detecting valvular heart diseases (VHDs). Among 

wavelet-based methods, the CWT is often 

preferred for analyzing non-stationary biomedical 

signals because it provides a more detailed time-

frequency representation. Unlike the DWT, which 

uses a limited set of scales and positions, CWT can 
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capture all possible scales of the mother wavelet. 

This allows for more accurate analysis of the 

signal. In contrast, the limited resolution of DWT 

might miss important signal details and lead to less 

reliable feature extraction [21]. 

 

3. Proposed method 

In this study, Deep Orthogonal Non-negative 

Matrix Factorization (Deep ONMF) is used to 

extract deep features from scalogram 

representations of PCG signals, effectively 

utilizing scalograms as input to improve the 

classification of normal and four types of heart 

valve diseases. The proposed method consists of 

three main stages: data preparation including 

preprocessing of PCG signals and scalogram 

generation, hierarchical feature extraction using 

ONMF and classification. These stages are 

illustrated in Figure 1. 

 

 

 
Figure 1. Flowchart of the proposed method. 

3.1.  Data preparation 

PCG signals are first divided into two-second 

segments with a one-second overlap. Since the 

cardiac cycle lasts approximately 0.8 seconds and 

some heart diseases occur within one of two 

consecutive heart cycles [8], this approach ensures 

the inclusion of at least two cardiac cycles within 

each two-second sliding window, making it 

suitable for detecting heart conditions. Next, 

scalograms are computed to obtain a time-

frequency representation of each segment. Unlike 

spectrograms, which use the Short-Time Fourier 

Transform (STFT), scalograms rely on the 

Continuous Wavelet Transform (CWT), providing 

better time-frequency localization and capturing 

transient cardiac events more effectively. The 

scalogram representation 𝑃𝐶𝐺𝑤(𝛼, 𝛽) of a 

continuous PCG signal can be expressed as shown 

in equation (1):

 

1
( , ) ( ) ( )w

t
PCG PCG t dt


  








   

 

(1) 

 

  

Where  is the scaling parameter and should be 

greater than 0;  is translation parameter;  is 

continuous mother wavelet. The computed 

scalograms are then used as input for Deep ONMF 

decomposition.  

 

3.2. Hierarchical Feature Extraction Using 

ONMF 

Deep ONMF decomposes the scalogram matrix 

into multiple hierarchical components. This 

decomposition is performed layer by layer, 

employing two complementary analyses: scale-

domain analysis (SDA) and temporal-domain 

analysis (TDA). The SDA focuses on extracting 

multiscale spectral patterns from the PCG signal, 

while the TDA captures time-dependent 

activations. Both analyses utilize a hierarchical 

factorization scheme to extract meaningful 

features across multiple levels. 

 Scale-Domain Analysis (SDA). Scale-domain 

analysis (SDA) is performed on the scalogram 

of the PCG signal by factorizing the coefficient 

matrix 𝐻. The scalogram of each PCG signal 

frame, represented as 𝑋𝐹×𝑇 , where 𝐹  is the 

number of frequency bins (representing the 

frequency resolution or scale) and 𝑇  is the 

number of time frames (representing the 

temporal resolution), is used as input for the 

decomposition process. First layer: The 

factorization 𝑋 ≈ 𝑊1
𝐹×𝑑1𝐻1

𝑑1×𝑇 is applied, 

where  𝑊1  extracts primary spectral features 

from the scalogram, and 𝐻1  preserves 

corresponding temporal information. Second 

layer: The matrix 𝐻1 is further decomposed as 

𝐻1 ≈ 𝑊2
𝑑1×𝑑2𝐻2

𝑑2×𝑇  , where 𝑊2  extracts 

more refined spectral patterns from the 

scalogram, and 𝐻₂  enhances the temporal 

representation. This process continues up to 

the L-th layer, 𝐻𝐿−1 ≈ 𝑊𝐿
𝑑𝐿−1×𝑑𝐿𝐻𝐿

𝑑𝐿×𝑇, and 

𝑊𝐿  captures the most detailed spectral features 

from the scalogram. To integrate the spectral 

features extracted from all layers into a single 

representative matrix, the feature matrices 

from each layer are multiplied, forming the 

final spectral feature matrix 𝑊𝑖𝑛𝑡𝑒𝑔. , as 

expressed in equation (2), Where 𝑑𝑙  denotes 

the inner rank at each layer, 𝑙 = 1,2, … , 𝐿 and 

𝐿 represents the total number of layers. 

 
( ) ( 1) ( 1 2) ( 1

.

× )

( ) 1

× × ×

2[ ]× ...××F dL F d d d dL dL

integ LW W W W   (2) 
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 Temporal-Domain Analysis (TDA). 

Temporal-Domain Analysis (TDA) is 

performed on the PCG signal by factorizing 

the basis matrix 𝑊 . In this approach, the 

scalogram
( )×F TX is decomposed in a 

hierarchical manner. First layer: The 

factorizatio
( 1) ( 1 )× ×

1 1

F d d TX W H is performed. 

Second layer: The matrix 𝑊₁  undergoes 

further decomposition as 
( 2) ( 2 1)×

1 2 2

×F d d dW W H . This process continues 

up to the L-th layer, where 
( ) ( 1)

1)

× ×

(

F dL dL dL

L L LW W H 

  , with 𝐻𝑙  capturing 

increasingly refined temporal features from the 

scalogram. The extracted temporal features 

from all layers are then integrated into a single 

matrix 𝐻𝑖𝑛𝑡𝑒𝑔., as given by equation (3). 

  
 

×( ) ( 1) ( 2 1) ( 1 )

( .)

× ×

2

×

1[ ].. ××. ×dL T dL dL d d d T

integ LH H H H   (3) 

In both processes, the matrices 𝑊𝑙 extract spectral 

patterns at different levels, while 𝐻𝑙 refines 

temporal structures in a hierarchical manner. 

Typically, the ranks 𝑑1, 𝑑2, …, and 𝑑𝐿 are chosen in 

descending order 1 2( ... )Ld d d ensuring that 

the initial layers extract fundamental and high-

variance features, while subsequent layers capture 

finer details. This hierarchical structure enables the 

identification of complex patterns at multiple 

levels and facilitates dimensionality reduction 

while preserving essential information. The 

multiplicative combination of feature matrices 

effectively compresses data into a lower-

dimensional space while retaining discriminative 

features for heart sound classification. By 

integrating the matrices from all layers into a single 

matrix (𝑊𝑖𝑛𝑡𝑒𝑔. and 𝐻𝑖𝑛𝑡𝑒𝑔.), a feature matrix is 

generated for each frame. The overall procedure 

for extracting spectral and temporal features using 

the Deep ONMF model is outlined in Algorithm 1. 

 

3.2. Classification  

Classification plays a crucial role in diagnostic 

systems, significantly impacting their overall 

accuracy. Despite the growing prominence of deep 

learning methods, shallow classifiers remain 

valuable tools in various applications [7]. This 

study utilizes several commonly employed shallow 

classifiers for the detection of abnormal heart 

sounds. The features extracted through the 

proposed SDA and TDA were provided to 

traditional classifiers for a multi-class 

classification task (normal vs. four types of heart 

valve diseases), including Linear Discriminant 

Analysis (LDA), Support Vector Machines 

(SVM), Naive Bayes (NB), Random Forest (RF), 

and k-Nearest Neighbors (KNN). Experimental 

results indicate that among the classifiers tested, 

RF and KNN achieved better performance 

compared to the others. 
 

Algorithm 1. Deep ONMF with SDA and TDA. 

Pseudocode for Deep ONMF with SDA & TDA 

Input: Non-negative Scalogram X ∈  ℝF×T; number of 

layers L; layer ranks 𝑑₁ >  𝑑₂ > . . . > 𝑑𝐿; max_iter; threshold ε;  

Output: Spectral features 𝑊𝑖𝑛𝑡𝑒𝑔. ∈  ℝF×dL, Temporal 

features 𝐻𝑖𝑛𝑡𝑒𝑔. ∈  ℝ𝑑𝐿×𝑇 ;   

Stage 1 – SDA: Initialize 𝑊1 ∈ ℝF×d₁, 𝐻𝑙 ∈ ℝ𝑑1×T; for l = 2 to L: 

initialize  𝑊𝑙 ∈ ℝ𝑑𝑙−1×𝑑𝑙,  𝐻𝑙 ∈ ℝ𝑑𝑙×𝑇; update 𝑊𝑙, 𝐻𝑙 via projected 

gradient with Nesterov until ||𝐻𝑙−1  − 𝑊𝑙  𝐻𝑙||𝐹
2 < ε; finally, 

compute 𝑊𝑖𝑛𝑡𝑒𝑔. = 𝑊₁ 𝑊₂ . . . 𝑊𝐿. 

Stage 2 – TDA: Reuse W₁, H₁; for 𝑙 =  2 to L: initialize 𝑊𝑙 ∈
 ℝ𝐹×𝑑𝑙, 𝐻𝑙 ∈ ℝ𝑑𝑙×𝑑𝑙−1; update 𝑊𝑙, 𝐻𝑙until ||𝑊𝑙−1  − 𝑊𝑙  𝐻𝑙||𝐹

2 < ε;  

finally, compute 𝐻𝑖𝑛𝑡𝑒𝑔. = 𝐻𝐿𝐻𝐿−1 … 𝐻1. 

Return: 𝑊𝑖𝑛𝑡𝑒𝑔., 𝐻𝑖𝑛𝑡𝑒𝑔. 

 

3.3. Dataset  

In this study, two publicly available datasets were 

used to evaluate the efficiency of the proposed 

method. The first is the Yaseen and Kwon dataset 

(Y-18), which was introduced by Yaseen and 

Kwon [12] and is widely utilized for the detection 

and classification of valvular heart disease (VHD). 

It consists of 1,000 audio samples, categorized into 

five heart sound classes: normal (N), mitral 

regurgitation (MR), aortic stenosis (AS), mitral 

stenosis (MS), and mitral valve prolapse (MVP). 

Each class contains 200 recordings with a 

sampling frequency of 8 kHz, 16-bit resolution, 

and a bit rate of 128 kbps. The duration of each 

recording is approximately 3 seconds, covering at 

least three complete cardiac cycles [22].  

In addition, the PhysioNet/CinC Challenge 2016 

dataset [23] was used as the second dataset to 

further assess the generalizability of the proposed 

method. It comprises 3,126 heart sound recordings 

collected from various clinical and non-clinical 

settings, with durations ranging from 5 to 120 

seconds. The recordings, obtained from key 

auscultation sites (aortic, pulmonic, tricuspid, 

mitral), are labeled as normal or abnormal, and are 

standardized to a 2,000 Hz sampling rate in .wav 

format. 

 

4. Experimental setup 

All experiments were conducted using MATLAB 

2019b software. Similar to standard NMF, deep 

ONMF employs an alternating optimization 

scheme, iteratively updating each factor while 

keeping the others fixed. Optimization is 

performed using projected gradient steps with 

Nesterov's acceleration to minimize the Frobenius 
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norm of the reconstruction error. The stopping 

criterion is defined as either a maximum of 100 

iterations or a minimum reduction of 10−6 in the 

objective function between successive iterations. 

The default settings of MATLAB software were 

also utilized for the classification process. To 

assess the performance of the models, a 10-fold 

cross-validation strategy was employed. The 

dataset was partitioned into ten equal-sized 

subsets; in each iteration, nine folds were used for 

training while the remaining fold served as the test 

set.  

This process was repeated ten times, and the 

average accuracy across all folds was computed to 

ensure the robustness and generalizability of the 

results. In this phase, the RF and KNN classifiers 

were selected, as they previously demonstrated 

superior performance compared to other 

classification algorithms. 

 

5.Experimental Results 

5.1. Optimal Selection of the Number of Layers 

in Deep ONMF 

The selection of parameters in deep matrix 

factorization models is contingent upon the 

specific application. The parameters of the deep 

ONMF model significantly influence its 

performance in detecting abnormal heart sounds. 

To optimize these parameters, a hyperparameter 

tuning process was conducted, evaluating key 

factors such as the number of layers and the 

internal ranks in the Deep ONMF structure. 

Increasing the number of layers beyond a certain 

threshold typically does not lead to the extraction 

of additional meaningful information or novel 

patterns. Existing research suggests that the 

optimal number of layers rarely exceeds three. 

To empirically validate this, a PCG signal 

scalogram was processed through the proposed 

SDA of the deep ONMF model, utilizing a six-

layer architecture.  

Figure 2 illustrates the generated 𝑊 matrices 

across six layers (a) to (f), with internal ranks of 9, 

8, 7, 6, 5 and 4. The consistent patterns observed 

up to the third layer suggest that deeper ONMF 

models with more than three layers may not yield 

additional informative features. The selection of 

ranks follows a descending order, as detailed in the 

following. 

 

Figure 2. Matrix W related to: (a) the First Layer, (b) the 

Second Layer, (c) the Third Layer, (d) the Fourth Layer, 

(e) the Fifth Layer and (f) the Sixth Layer by the 

proposed SDA of the Deep ONMF model. 

 

5.2. Optimal Selection of Internal Ranks in 

Deep ONMF 

Ranks were chosen such that 

1 1 2 2 11, 1,..., 1L L L Ld d d d d d         and 

3L   as previously explained and  
  

 1 6,9,12,15,18,21,24,27,30d  is considered.      

Figure 3 illustrates the accuracy and computation 

time trade-off for different first-layer rank values 

(𝑑1) using the first approach, a RF classifier, and 

10-fold cross-validation on the Y-18 dataset. 

     
 Figure 3. Trade-off between Accuracy and 

Computational Cost for Varying Ranks in Deep ONMF 

by proposed SDA. 
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Each bar represents a different 𝑑1 value, with 

accuracy indicated by color and computation time 

on the y-axis. For instance, a rank of 6 corresponds 

to a three-layer deep ONMF model with ranks of 

6, 5, and 4 for the first, second, and third layers, 

respectively. The results indicate that a first-layer 

rank of 9 offers the best balance between accuracy 

and computational efficiency within the desired 

time constraint of below 60 minutes. 

 

5.1. Evaluation on Multiple Datasets 

To further assess the generalizability of the 

proposed SDA and TDA methods, experiments 

were conducted on two well-established 

benchmark datasets, Y-18 and PhysioNet. These 

evaluations aim to demonstrate the robustness and 

effectiveness of the proposed approach across 

different and diverse datasets. An optimized Deep 

ONMF model—with three layers and internal 

ranks of 9, 8, and 7—was employed to extract 

hierarchical features. Using this configuration, a 

comparative analysis was performed across several 

wavelet functions to evaluate the proposed SDA 

and TDA. 

 

5.2. Performance Comparison of Wavelet 

Functions 

The wavelet functions assessed in this analysis 

include the analytic Morlet wavelet (referred to as 

amor), the Morse wavelet (morse), and the Bump 

wavelet (bump). These wavelet functions were 

employed to generate scalogram representations of 

Phonocardiogram (PCG) signals. Each wavelet 

offers unique characteristics that contribute to 

capturing different temporal and frequency 

information from the PCG signals, enabling an in-

depth evaluation of the classification methods.  

The choice of wavelets—Morse, Bump, and 

Analytic Morlet (Amor)—was informed by both 

prior studies and the specific characteristics of 

PCG signals. CWT is known for its superior time–

frequency resolution in analyzing non-stationary 

biomedical signals compared to STFT and Wigner 

distribution [24, 17]. Ergen et al. [25] identified the 

Analytic Morlet wavelet as offering the most 

reliable TFR for detecting heart abnormalities. 

Morse and Bump wavelets also demonstrated 

strong performance in PCG classification tasks in 

recent studies [26, 16]. The performance of the 

proposed methods was quantitatively assessed 

using five evaluation metrics: Accuracy (Acc), 

Sensitivity (Sen), Specificity (Spe), Precision 

(Pre), and F1-Score (F1), all reported in 

percentage. The selection of these wavelet 

functions is crucial for understanding the 

underlying frequency components and temporal 

patterns within the heart sounds, which are vital for 

accurate disease classification and analysis. Table 

1 and Table 2 summarize the classification 

performance of the proposed SDA method on two 

datasets, Y-18 and PhysioNet, respectively. As 

shown in Table 1, the results clearly indicate that 

the Random Forest (RF) classifier consistently 

outperforms k-Nearest Neighbors (KNN) across 

all evaluated wavelet types. RF achieves higher 

overall accuracy—ranging from 96.71% to 

98.40% on the Y-18 dataset, and 94.65% to 

97.23% on the PhysioNet dataset—alongside 

superior sensitivity, specificity, and F1-score when 

compared to KNN. These findings highlight RF’s 

stronger capability in correctly classifying heart 

sound signals while minimizing classification 

errors. Although KNN demonstrates acceptable 

performance in some cases, it remains less 

competitive than RF in terms of both accuracy and 

class balance. Regarding wavelet type, the Bump 

wavelet yields the highest performance for both 

classifiers. In particular, RF achieves its best 

accuracy of 98.40% on Y-18 and 97.23% on 

PhysioNet with the Bump wavelet. In contrast, the 

Morse wavelet results in the weakest performance 

for KNN on both datasets, with an accuracy of only 

68.90% for Y-18 and 63.10% for PhysioNet, while 

RF still maintains high classification performance 

(98.11% and 95.27%, respectively).  

Table 1. Classification Performance of Wavelet-Based 

Scalograms using SDA on Y-18 Dataset. 

Wavelet Classifier Acc Sen Spe Pre F1 

Morse RF 98.11 98.95 99.76 98.97 98.93 

 KNN 68.90 68.19 96.21 81.01 73.56 

Amor RF 96.71 98.95 98.90 95.52 97.15 

 KNN 65.41 68.65 95.84 78.69 73.06 

Bump RF 98.40 98.36 99.88 99.50 98.90 

 KNN 75.37 77.43 96.09 82.79 79.52 

  

Table 2. Classification Performance of Wavelet-Based 

Scalograms using SDA on PhysioNet Dataset. 

Wavelet Classifier Acc Sen Spe Pre F1 

Morse RF 95.27 95.44 97.85 94.90 95.10 

 KNN 63.10 65.12 92.56 76.85 70.32 

Amor RF 94.65 94.81 97.42 93.55 94.50 

 KNN 61.82 64.27 91.84 75.38 69.12 

Bump RF 97.23 96.96 98.50 97.33 96.89 

 KNN 72.41 74.03 94.91 80.21 77.28 

The Morlet wavelet leads to intermediate 

outcomes, where RF again outperforms KNN but 

with slightly reduced accuracy compared to the 

Bump and Morse wavelets—96.71% for Y-18 and 

94.65% for PhysioNet. Comparing RF 

performance with different wavelets, the Bump 
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wavelet provides marginally better results than the 

Morse wavelet in terms of overall accuracy on both 

datasets (98.40% vs. 98.11% for Y-18 and 97.23% 

vs. 95.27% for PhysioNet) and specificity (99.88% 

vs. 99.76% for Y-18, 98.50% vs. 97.85% for 

PhysioNet). However, the difference in F1-score 

between them remains minimal (98.90% vs. 

98.93% for Y-18, and 96.89% vs. 95.10% for 

PhysioNet), indicating that both configurations are 

highly effective, with Bump having a slight 

advantage in overall performance and 

generalizability across datasets. Tables 3 and 4 

report the performance of the proposed TDA 

method on the Y-18 and PhysioNet datasets, 

respectively, both showing consistently weaker 

results than SDA when scalograms are used as 

input representations. Specifically, RF achieves 

lower overall accuracies with TDA compared to 

SDA, across all wavelet types. On the Y-18 

dataset, the best TDA accuracy with RF is 97.55% 

using the Bump wavelet, which is lower than 

SDA’s 98.40%. On the PhysioNet dataset, TDA 

with the Bump wavelet and RF achieves 95.11%, 

again lower than SDA’s 97.23%. The same trend 

is observed for KNN, with TDA consistently 

showing lower performance across all evaluation 

metrics compared to SDA for each wavelet and 

dataset. This suggests that the spectral features 

extracted via SDA are more informative and 

discriminative for heart sound classification in this 

setting. This suggests that the spectral features 

extracted via SDA are more informative and 

discriminative for heart sound classification in this 

setting. 

Table 3. Classification Performance of Wavelet-Based 

Scalograms using TDA on Y-18 Dataset. 

Wavelet Classifier Acc Sen Spe Pre F1 

Morse RF 97.21 97.88 98.16 97.23 97.91 

 KNN 67.30 67.10 95.23 80.98 72.34 

Amor RF 95.51 97.39 97.45 94.33 96.19 

 KNN 64.21 67.15 94.34 77.18 72.68 

Bump RF 97.55 97.44 98.65 98.45 97.37 

 KNN 74.36 76.21 95.11 81.67 78.27 
 

Table 4. Classification Performance of Wavelet-Based 

Scalograms using TDA on PhysioNet Dataset. 

Wavelet Classifier Acc Sen Spe Pre F1 

Morse RF 93.44 94.03 96.91 93.85 93.72 

 KNN 60.25 61.22 90.11 74.98 67.00 

Amor RF 92.88 93.16 96.10 92.17 92.62 

 KNN 58.90 60.02 89.80 73.11 66.07 

Bump RF 95.11 95.30 97.62 96.00 95.47 

 KNN 70.16 72.44 93.57 78.96 75.33 

 

5.3. Baseline Comparison with Deep Neural 

Classifier 

To further validate the effectiveness of the 

proposed shallow classifiers, we conducted a 

baseline comparison using a deep neural network. 

A simple yet representative convolutional neural 

network (CNN) was trained on the same set of 

SDA- and TDA-based features extracted via the 

proposed Deep ONMF method. The CNN 

architecture consisted of two convolutional layers 

(with 16 and 32 filters of size 3×3), each followed 

by batch normalization, ReLU activation, and 2×2 

max pooling. This was followed by a fully 

connected layer with 64 units, a dropout layer (rate 

= 0.5), and a softmax output layer for five-class 

classification. Training was performed using the 

Adam optimizer over 20 epochs with a mini-batch 

size of 32. As in the previous section, the input 

features were derived from scalograms generated 

using the Bump wavelet, which had already shown 

superior performance among wavelet types. The 

results showed that despite being a deep model, the 

CNN did not outperform the Random Forest 

classifier, supporting the discriminative power and 

efficiency of the proposed shallow models. The 

average performance metrics of the CNN model 

are summarized in Table 5. 

Table 5. CNN Classification Results Using SDA and TDA 

Features from Deep ONMF. 

Feature 

Type 
Classifier Acc Sen Spe Pre F1 

SDA CNN 94.00 94.10 98.48 94.64 94.25 

TDA CNN 91.85 92.00 97.60 92.70 92.30 
 

5.4. Evaluation of Time-Frequency 

Representations: Scalogram vs. 

SpectrogramError! Reference source not 

found.Figure 4 presents a comparative evaluation 

of the proposed model based on Deep ONMF using 

SDA, with two different types of input 

representations: scalogram and spectrogram. It is 

important to note that the underlying model 

architecture remains unchanged; only the input 

representation varies between the two cases. This 

comparison provides a detailed analysis of how 

each type of time-frequency representation affects 

classification accuracy and misclassification 

patterns across the different heart disease classes. 

By analyzing the confusion matrices for both 

scalogram- and spectrogram-based inputs, Figure 4 

highlights the crucial impact of input feature 

representation on the performance of the proposed 

model. In Figure 4 (a), where the scalogram is used 

as the input representation, the model demonstrates 

strong classification performance across all heart 
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disease classes. For the Normal class, 199 out of 

201 samples were correctly classified, with only 2 

samples misclassified as MS. In the case of AS, the 

model achieved perfect classification, correctly 

identifying all 232 samples without any errors. For 

MR, 182 samples were correctly classified, while 

3 were misclassified as AS and 1 as MS. Regarding 

the MS class, 195 out of 199 samples were 

correctly identified, with 1 sample misclassified as 

Normal (N) and 3 as AS. Finally, the model 

achieved perfect classification for the MVP class, 

correctly classifying all 185 samples. In Figure 4 

(b), where the spectrogram is used as the input 

representation, the classification performance of 

the model shows greater variability across different 

heart disease classes. For the Normal class, 178 

samples were correctly classified, while 17 were 

misclassified as MS, 4 as MR, and 2 as MVP. In 

the case of AS, the model correctly classified 231 

out of 232 samples, with only 1 sample 

misclassified as MR. For the MR class, 165 

samples were correctly identified, whereas 6 were 

misclassified as AS, 7 as MS, and 8 as MVP. 

Regarding MS, 143 samples were correctly 

classified, but 27 were misclassified as N, 3 as AS, 

10 as MR, and 16 as MVP. Finally, for the Mitral 

Valve Prolapse (MVP) class, 157 samples were 

correctly classified, with 12 misclassified as AS, 5 

as MR, and 11 as MS.  

Overall, the results demonstrate that the 

scalogram-based model (Figure 4 (a)) provides 

more consistent and reliable performance across all 

classes, particularly in reducing misclassifications 

in complex cases such as MS and MVP. This 

highlights the superior effectiveness of scalogram 

representations over spectrograms in capturing the 

distinctive characteristics of PCG signals for heart 

valve disease classification. 

 

 
Figure 4. Confusion Matrix for VHD Detection using the 

Proposed SDA: (a) Scalogram, (b) Spectrogram Input. 

5.2. Comparison with Recent Approaches 

To evaluate the effectiveness of the proposed 

method, its performance was compared with 

several recent studies using the same or 

comparable datasets. As summarized in Table 6, 

prior works employed various feature extraction 

and classification strategies. These include the use 

of Chirplet Z-transform spectrograms 

 with transfer learning [3], integration of 

orthogonal NMF with CNN architectures [22], 

hybrid combinations of DWT and MFCC with 

SVM classifiers [12], and deep models such as 

ResNet101, DenseNet201, DarkNet19, and 

GoogLeNet based on CWT representations [26]. 

Additionally, lightweight CNN-RNN networks 

enhanced with attention mechanisms were 

proposed to improve noise robustness [27]. While 

many of these methods achieve competitive 

accuracy—often in the 97-98% range—their 

performance is frequently tied to complex 

preprocessing steps, segmentation requirements, or 

computationally intensive models. However, 

common challenges persist across these 

approaches. Many rely on explicit segmentation of 

cardiac cycles, which can be error-prone and 

sensitive to signal variability. Others require deep 

networks with numerous parameters, leading to 

high computational overhead and reduced 

interpretability. Additionally, handcrafted feature 

pipelines may lack adaptability across datasets and 

conditions. In contrast, the proposed method 

introduces a novel Deep ONMF framework that 

eliminates the need for segmentation and heavy 

preprocessing. By directly leveraging CWT-based 

scalograms and extracting hierarchical spectral and 

temporal features through Scale-Domain and 

Temporal-Domain Analysis, the model offers high 

classification performance (98.40% accuracy with 

Random Forest) using shallow classifiers. This not 

only enhances interpretability and efficiency but 

also makes the system more robust and easier to 

deploy in real-world, resource-constrained 

environments. Furthermore, the integration of 

hierarchical decomposition enables the discovery 

of multi-level discriminative features, contributing 

to superior generalization across all five heart 

sound classes. 

 

6. Conclusion 

The proposed method for classifying valvular heart 

diseases (VHDs) using phonocardiogram (PCG) 

signals demonstrates high classification 

performance while addressing key limitations of 

conventional approaches. We validated the 

generalizability of the method using two widely-

used benchmark datasets, confirming its 

robustness across different recording conditions. 

Unlike traditional methods that require precise 

segmentation of heart sounds—a process that is 

often error-prone and sensitive to noise—our 

approach directly analyzes full PCG scalograms, 

eliminating the need for segmentation and 
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simplifying preprocessing. By applying Deep 

Orthogonal Non-Negative Matrix Factorization 

(Deep ONMF), the method extracts hierarchical 

and interpretable features that capture both scale- 

and time-domain characteristics, while the scale-

domain features consistently outperform the time-

domain features in classification. In addition, the 

use of shallow classifiers enhances computational 

efficiency. Notably, the Random Forest (RF) 

classifier outperformed a standard Convolutional 

Neural Network (CNN) on the same features, 

reaching an accuracy of 98.40%. This highlights 

both the quality of the extracted features and the 

practicality of the model for real-time or low-

resource settings. Among the wavelet functions 

used to generate scalograms, Morse and Bump 

provided the best results, both exceeding 98% 

across evaluation metrics, while Amor showed 

slightly lower results. These findings position the 

proposed method as a robust and interpretable tool 

for automated heart sound analysis, with potential 

for broader application beyond VHD 

classification.

Table 6. Comparison of the Proposed Method with Recent Approaches for VHD Classification using Y-18. 

Reference Feature Extraction Technique Classification Model Acc (%) Remarks 

[3] 
Chirplet Z transform (CZT) based 

Spectrogram 

Pre-trained Networks 
(PTNs) with Transfer 

Learning (RBTL) 

97 
Used CZT transform for deep 
feature extraction and transfer 

learning 

[22] 
Orthogonal Non-negative Matrix 

Factorization (ONMF) 

Convolutional Neural 

Networks (CNNs) 
98 

Combined ONMF with CNN for 

normal/abnormal heart sound 
detection without segmentation 

[12] 
Discrete Wavelet Transform (DWT) 

+ MFCC 
SVM Classifier 97.9 

Used combined features of DWT 
and MFCC with SVM classifier 

[26] 
Continuous Wavelet Transform 

(CWT) 
ResNet101, DenseNet201, 
DarkNet19, GoogLeNet 

98 
Used CWT for signal processing 
and deep models for classification 

[27] MFCC, STFT, CQT, CWT 

NRC-Net (Convolutional 

Recurrent Neural Network 

with Attention Block) 

97.4 

Proposed NRC-Net with CWT 

and attention block for noise-

robust classification 

 

Our work 

 

Deep ONMF using SDA and TDA 

on Scalograms 

 

RF 

 

98.40% 

Proposed SDA features using 

BUMP wavelet achieved the 

highest classification accuracy 

with RF classifier 
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 .1404 وم، سالسشماره  زدهم،یدوره س ،کاوینوعی و دادهمجله هوش مص                                                                           و همکاران                    مروی

 

ای قلب از طریق تجزیه سلسله مراتبی با استفاده از تجزیه ماتریسی های دریچهبندی بیماریطبقه

 مهای فونوکاردیوگرام مبتنی بر اسکالوگرانمایش

 

 زینب محمدپوری و *حسین مروی، سمیرا مغانی

 ایران.، شاهرود، دانشگاه صنعتی شاهرود، دانشکده مهندسی برق

 15/06/2025 پذیرش؛ 13/05/2025 بازنگری؛ 20/04/2025 ارسال

 چکیده:

شود که با معرفی می (Deep ONMF)عمیقبر پایه روش تجزیه ماتریس غیرمنفی ارتوگونال  هاداده بندیطبقهبرای در این پژوهش، چارچوبی نو 

های بیماریهای ساختاری مهم را برای بازشناسی مراتبی ویژگیصورت سلسلهبه (PCG) قلبهای صوتهای اسکالوگرامِ سیگنالگیری از نگاشتبهره

ی ی ورودی اصلی در زنجیرهعنوان دادهشوند، بهساخته می (CWT) کمک تبدیل موجک پیوستهها که بهکند. اسکالوگرامای قلب استخراج میدریچه

ای گونهپیشنهادی بهشوند. چارچوب درآمیخته می Deep ONMF بندی، بانیاز از قطعهکار گرفته شده و در ساختاری یکپارچه و بیاستخراج ویژگی به

های ویژگی .(TDA)زمان یحوزهو بررسی در  (SDA) مقیاس یحوزه دست آورد: بررسی درها را از دو دیدگاه مکمل بهطراحی شده است که ویژگی

    هایهمراه با ویژگی (Random Forest)بند جنگل تصادفیشوند، که در این میان، طبقهبندهای ساده بررسی میوسیله طبقهآمده سپس بهدستبه

SDA  بر پایه موجک Bump گونه پنج دارای یکی—قلبهای صوتی باز از سیگنالها بر روی دو پایگاه دادهبهترین کارایی را داشته است. آزمایش 

 ٪۹۷٫23و  ٪۹۸٫40 با برابر هاییدقت که ایگونهبه است، پیشنهادی روش کارآمدی یدهندهنشان—دودویی بندیطبقه برای دیگری و قلب صدای

دهد که روش پیشنهادی راهکاری کاربردی و توانمند ها نشان میسازد. یافتهپذیر میهای پیشرفته موجود، رقابتدست آمده است و این روش را با روشبه

 .ای قلب را نیز دارددریچههای هایی فراتر از شناسایی بیماریبرداری در زمینهبرای تحلیل خودکار صدای قلب فراهم کرده و توان بهره

 .فرکانس–ای قلب، تجزیه ماتریس غیرمنفی ارتوگونال عمیق، اسکالوگرام، تحلیل زمانهای دریچهکاردیوگرام، بیماریوفون :کلمات کلیدی

 


