[1] D. Chen, X. Liu, Y. Yang, H. Yang, P. Lu, "Systematic synergy modeling: understanding drug synergy from a systems biology perspective," BMC systems biology, 2015.
[2] B. He, C. Lu, G. Zheng, X. He, M. Wang, G. Chen, G. Zhang, A. Lu, "Combination therapeutics in complex diseases," Journal of Cellular and Molecular Medicine, 2016.
[3] T. C. Chou, "Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies," Pharmacological reviews, 2006.
[4] F. Cheng, I. A. Kovács, A. L. Barabási, "Network-based prediction of drug combinations," Nature communications, 2019.
[5] L. Wu, Y. Wen, D. Leng, Q. Zhang, C. Dai, Z. Wang, Z. Liu, B. Yan, Y. Zhang, J. Wang, S. He, "Machine learning methods, databases and tools for drug combination prediction," Briefings in bioinformatics, 2022.
[6] R. G. Zinner, B. L. Barrett, E. Popova, P. Damien, A. Y. Volgin, J. G. Gelovani, R. Lotan, H. T. Tran, C. Pisano, G. B. Mills, L. Mao, "Algorithmic guided screening of drug combinations of arbitrary size for activity against cancer cells," Molecular cancer therapeutics, 2009.
[7] J. Y. Shi, J. X. Li, K. T. Mao, J. B. Cao, P. Lei, H. M. Lu, S. M. Yiu, "Predicting combinative drug pairs via multiple classifier system with positive samples only," Computer methods and programs in biomedicine, 2019.
[8] L. Y. Bai, H. Dai, Q. Xu, M. Junaid, S. L. Peng, X. Zhu, Y. Xiong, D. Q. Wei, "Prediction of effective drug combinations by an improved naïve bayesian algorithm," International journal of molecular sciences, 2018.
[9] J. Li, X. Y. Tong, L. D. Zhu, H. Y. Zhang, "A machine learning method for drug combination prediction," Frontiers in Genetics, 2020.
[11] K. Traynor, FDA approves four-drug anti-HIV combination tablet, Oxford University Press, 2012.
[12] B. Al-Lazikani, U. Banerji, P. Workman, "Combinatorial drug therapy for cancer in the post-genomic era," Nature biotechnology, 2012
[13] E. Guney, J. Menche, M. Vidal, A. L. Barábasi, "Network-based in silico drug efficacy screening," Nature communications, 2016.
[14] H. Chen, S. K. Iyengar, J. Li, "Large-scale analysis of drug combinations by integrating multiple heterogeneous information networks," in InProceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 2019.
[15] T. Hastie, R. Tibshirani, J. H. Friedman, J. H. Friedman, The elements of statistical learning: data mining, inference, and prediction, 2009, springer.
[16] V. Y. Tan, C. Févotte, "Tan VY, Févotte C. Automatic relevance determination in nonnegative matrix factorization with the/spl beta/-divergence," IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012.
[17] L. Huang, F. Li, J. Sheng, X. Xia, J. Ma, M. Zhan, S. T. Wong, "DrugComboRanker: drug combination discovery based on target network analysis," Bioinformatics, 2014.
[18] D. Chen, H. Zhang, P. Lu, X. Liu, H. Cao, "Synergy evaluation by a pathway--pathway interaction network: a new way to predict drug combination," Molecular BioSystems, 2016.
[19] Y. Sun, Z. Sheng, C. Ma, K. Tang, R. Zhu, Z. Wu, R. Shen, J. Feng, D. Wu, D. Huang, D. Huang, "Combining genomic and network characteristics for extended capability in predicting synergistic drugs for cancer," Nature communications, 2015.
[20] X. Chen, B. Ren, M. Chen, Q. Wang, L. Zhang, G. Yan, "NLLSS: predicting synergistic drug combinations based on semi-supervised learning," PLoS computational biology, 2016.
[21] H. Liu, W. Zhang, L. Nie, X. Ding, J. Luo, L. Zou, "Predicting effective drug combinations using gradient tree boosting based on features extracted from drug-protein heterogeneous network," BMC bioinformatics, 2019.
[22] P. Sidorov, S. Naulaerts, J. Ariey-Bonnet, E. Pasquier, P. J. Ballester, "Predicting synergism of cancer drug combinations using NCI-ALMANAC data," Frontiers in chemistry, 2019.
[23] C. Zhang, G. Yan, "Synergistic drug combinations prediction by integrating pharmacological data," Synthetic and systems biotechnology, 2019.
[24] Y. Juan, Y. Zhuang, W. S. Chin, C. J. Lin, "Field-aware factorization machines for CTR prediction," in InProceedings of the 10th ACM conference on recommender systems, 2016.
[25] H. Julkunen, A. Cichonska, P. Gautam, S. Szedmak, J. Douat, T. Pahikkala, T. Aittokallio, J. Rousu, "comboFM: leveraging multi-way interactions for systematic prediction of drug combination effects," bioRxiv, 2020.
[26] A. Ianevski, A. K. Giri, P. Gautam, A. Kononov, S. Potdar, J. Saarela, K. Wennerberg, T. Aittokallio, "Prediction of drug combination effects with a minimal set of experiments," Nature machine intelligence, 2019
[27] K. Preuer, R. P. Lewis, S. Hochreiter, A. Bender, K. C. Bulusu, G. Klambauer, "DeepSynergy: predicting anti-cancer drug synergy with Deep Learning," Bioinformatics, 2018.
[28] F. Xia, M. Shukla, T. Brettin, C. Garcia-Cardona, J. Cohn, .J. E. Allen, S. Maslov, S. L. Holbeck, J. H. Doroshow, Y. A. Evrard, E. A. Stahlberg, "Predicting tumor cell line response to drug pairs with deep learning," BMC bioinformatics, 2018.
[29] T. Zhang, L. Zhang, .P. R. Payne, F. Li, "Synergistic drug combination prediction by integrating multiomics data in deep learning models," in InTranslational bioinformatics for therapeutic development, 2021.
[30] H. I. Kuru, O. Tastan, A. E. Cicek, "MatchMaker: a deep learning framework for drug synergy prediction," IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021.
[31] P. Jiang, S. Huang, Z. Fu, Z. Sun, T. M. Lakowski, P. Hu, "Deep graph embedding for prioritizing synergistic anticancer drug combinations," Computational and structural biotechnology journal, 2020.
[32] S. Forrest, "Genetic algorithms: principles of natural selection applied to computation," Science, 1993.
[33] N. Yin, W. Ma, J. Pei, Q. Ouyang, C. Tang, L. Lai, "Synergistic and antagonistic drug combinations depend on network topology," PloS one, 2014.
[34] A. C. Nascimento, R. B. Prudêncio, I. G. Costa, "A multiple kernel learning algorithm for drug-target interaction prediction," BMC bioinformatics, 2016.
[35] T. Chen, C. Guestrin, "Xgboost: A scalable tree boosting system," in InProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016.
[36] Z. Wu, X. M. Zhao, L. Chen, "A systems biology approach to identify effective cocktail drugs," in InBMC systems biology, 2010.
[37] I. F. Tsigelny, "Artificial intelligence in drug combination therapy," Briefings in bioinformatics, 2019.
[38] Y. Liu, Q. Wei, G. Yu, W. Gai, Y. Li, X. Chen, "DCDB 2.0: a major update of the drug combination database," Database, 2014.
[39] M. Kuhn, I. Letunic, L. J. Jensen, P. Bork, "The SIDER database of drugs and side effects," Nucleic acids research, 2016.
[40] D. Weininger, "SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules," Journal of chemical information and computer sciences, 1988.
[41] M. Allahgholi, H. Rahmani, D. Javdani , G. Weiss, D. Módos, "ADDI: Recommending alternatives for drug--drug interactions with negative health effects," Computers in Biology and Medicine, 2020.
[42] T. Mikolov, K. Chen, G. Corrado, L. Dean, "Efficient estimation of word representations in vector space," arXiv preprint arXiv:1301.3781, 2013.
[43] M. A. Kramer, "Nonlinear principal component analysis using autoassociative neural networks," AIChE journal, 1991.
[44] M. Li, Y. Wang, R. Zheng, X. Shi, Y. Li, F. X. Wu, J. Wang, "DeepDSC: a deep learning method to predict drug sensitivity of cancer cell lines," IEEE/ACM transactions on computational biology and bioinformatics, 2019.
[45] L. Prechelt, "Automatic early stopping using cross validation: quantifying the criteria," Neural Networks, 1998.
[46] Q. Xu, Y. Xiong, H. Dai, K. M. Kumari, Q. Xu, H. Y. Ou, D. Q. Wei, "PDC-SGB: Prediction of effective drug combinations using a stochastic gradient boosting algorithm," Journal of theoretical biology, 2017.
[47] G. Su, A. Kuchinsky, J. H. Morris, D. J. States, F. Meng, "GLay: community structure analysis of biological networks," Bioinformatics, 2010.
[48] O. Oladimeji, O. Oladimeji, "Detecting Breast Cancer through Blood Analysis Data using Classification Algorithms," Journal of AI and Data Mining, 2021.