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 The search for effective treatments for complex diseases, while 

minimizing toxicity and side effects has become crucial. However, 

identifying synergistic combinations of drugs is often a time-

consuming and expensive process, relying on trial and error due to the 

vast search space involved. Addressing this issue, we present a deep 

learning framework in this study. Our framework utilizes a diverse set 

of features including chemical structure, biomedical literature 

embedding, and biological network interaction data to predict 

potential synergistic combinations. Additionally, we employ 

autoencoders and principal component analysis (PCA) for dimension 

reduction in sparse data. Through 10-fold cross-validation, we 

achieved an impressive 98 percent area under the curve (AUC), 

surpassing the performance of seven previous state-of-the-art 

approaches by an average of 8%.  
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1. Introduction 

Theoretically, combination therapy uses multiple 

drugs to treat a specific disease and shows better 

therapeutic efficacy than the sum of individual 

effects of the two drugs [1]. The use of combination 

therapy in the treatment of a variety of complex 

disorders such as hypertension, cancer, and 

infections [2]. The benefits of combination therapy 

over monotherapy such as increasing the 

therapeutic effect, decreasing the required dose per 

drug to avoid toxicity and the risk of adverse 

effects, and slowing the development of drug 

resistance have made this method a vital strategy 

[3]. As a result, determining the best drug 

combinations is a critical task with clinical and 

economic implications. It is unfeasible to test the 

complete combinatorial space due to the enormous 

search space. For example, the number of pairwise 

combinations that need to be examined across 

about 3000 human diseases and different dosage 

configurations is 499,500 for a sample of 1000 

Food and Drug Administration (FDA)- approved 

drugs [4]. Also as the number of drugs rises, the 

search space extends quadratically [5]. 

 Search algorithms were the most basic methods for 

predicting new drug combinations. In this category, 

Zinner et al. [6] used search algorithms with high 

convergence speed and no need for positive and 

negative samples of training data. However, it may 

reach a local optimum rather than a global 

optimum. Our proposed deep learning framework 

offers a more robust and comprehensive approach 

by incorporating a varied range of features. 

 Under the network analysis category, Chen et al. 

used the relationship between drug targets and 

disease proteins to evaluate drug combination 

efficiency for a disease. They concluded that drug-

target module closeness in the protein-protein 

interaction network correlates with chemical and 

functional similarity. While the focus of their 

method was on the relationship between drug 

targets and disease proteins, our approach 

considers a broader range of features and captures 

a more holistic understanding of the intricate 

relationships between drugs which enables us to 

make more accurate predictions of synergistic 

effects, offering valuable insights for optimizing 

drug combination therapy. 
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Machine learning is the category with the most 

proposed approaches. Shi et al. [7] used a support 

vector machine (SVM) classifier on a two-layer 

structure. Bai et al. [8] used an upgraded Naïve 

Bayesian (NB) classifier on five distinct types of 

features, including drug targets, pathways, side-

effects, metabolic enzymes, and drug transporters. 

Li et al. [9] compared the ensemble model with 

classic machine learning methods and determined 

that it outperformed them. Numerous further 

strategies have been proposed in this category. 

By utilizing deep learning, our method can 

effectively capture complex relationships in drug 

data and provide more accurate and reliable 

predictions compared to ensemble models and 

traditional machine learning methods. 

In this paper, we have considered interactions, 

side-effects, and indications of drugs and even their 

usage in biomedical texts available in PubMed 

[10]. To overcome the challenge of the imbalanced 

dataset, we have applied negative sampling and 

considered 2000 least similar drugs as negative 

samples. Additionally, various regularization 

methods including activity regularization, dropout, 

and early stopping have been used to eliminate 

overfitting caused by small datasets. 

 In this paper, we have made the following 

contributions:  

 We have introduced a new dataset that 

gathered the chemical (molecular 

structure), biological (interactions and 

targets), phenotype (side effects and 

indications), and biomedical literature 

(PubMed) information of drugs together. 

To overcome the challenge of imbalanced 

dataset, we have applied negative sampling 

and considered 2000 least similar drugs 

based on the sum of 6 different feature 

similarities as negative samples alongside 

augmented positive samples, which have 

improved the performance compared to a 

random selection of negative samples. 

 To reduce the effect of overfitting due to 

the small dataset in the field of synergistic 

drug combinations, we used a combination 

of dimensional reduction and negative 

sampling methods. 

The rest of the paper is organized as what follows. 

Section 2 provides a literature assessment in the 

field of drug combinations prediction, Section 3 

explains the methodology in further depth, Section 

4 contains the empirical results of the DcDiRNeSa 

model and biological interpretation, and Section 5 

discusses the conclusions and policy implications 

of the study.The source codes, datasets, and 

additional files used in this work are all available 

at:https://github.com/minta76/DcDiRNeSa. 

 

2. Related Works 

In drug combination therapy, more than one drug 

is used to treat complex diseases like HIV [11] and 

cancer [12]. As a result, computational methods 

have become increasingly important in predicting 

drug synergy. The Computational methods that are 

used to detect drug combinations can be divided 

into several categories, including search algorithms 

[6], network-based [4,13,14], machine learning [7-

9,15-26], and deep learning methods [27-31]. 

The first computational method for dealing with 

drug combinations was a stochastic search 

algorithm known as the genetic algorithm [32]. The 

genetic algorithm, although a pioneering 

computational method for drug combination 

prediction, may suffer from converging to 

suboptimal solutions due to its stochastic nature 

and limited ability to capture complex 

relationships. Another technique for identifying 

drug combinations is network analysis, in which 

the interaction between components may uncover 

more information about the mechanisms of action 

of drugs that are either synergistic or antagonistic 

[33]. Guney et al. [13] proposed a drug-disease 

proximity metric that quantifies the connection 

between drug targets and diseases in order to 

discover the therapeutic effects of drugs and they 

concluded that drugs with close targets to disease 

can have a better effect than drugs with distant 

targets. Network analysis approaches often focus 

on capturing the interactions between components, 

such as drugs and target proteins, to uncover 

synergistic or antagonistic mechanisms. However, 

they may not fully capture the complex and 

multifaceted nature of drug combinations, which 

involve diverse factors beyond direct interactions. 

Chen et al. [14] constructed a two-layer 

heterogeneous network by integrating multiple 

data sources describing drugs, target proteins, and 

diseases in which nodes are drugs combination and 

diseases, and the edges are relations between the 

two layers. Using this network, they converted the 

drug combinations predictions problem to the link 

prediction problem solved by Regularized Least 

Squares (KRLS) [34] algorithm due to its easy 

implementation. While this technique offer 

simplicity in implementation, it may not effectively 

capture the intricate relationships and patterns that 

contribute to drug synergy. 

Another type of computational method is one that 

employs machine learning to develop a prediction 

model and to learn underlying patterns in labeled 

input data, allowing for complex integration of 

https://github.com/minta76/DcDiRNeSa
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various data types. Three main ML approaches, 

including supervised [7-9,16,21-23,25,35], 

unsupervised [17,18,36], and semi-supervised 

learning [19,20] can be considered in the task of 

drug combination prediction. 

Machine learning-based approaches may focus on 

a subset of features, such as drug targets or 

pathways, neglecting the integration of other 

relevant information. This limited feature 

integration can lead to incomplete representations 

of drug combinations and potentially impact the 

accuracy of predictions. While these models can 

learn underlying patterns in labeled data, they may 

struggle with capturing complex relationships and 

interactions present in drug combinations. 

Another category of drug combination prediction 

is the deep learning method which necessitates 

more training data, hyperparameters, 

computational resources, and memory because of 

its several processing layers [37]. The performance 

of deep learning models improves significantly as 

the amount of input data increases. Preuer et al. 

[27] outperformed four classic machine learning 

methods including SVM, RF, GBM (Gradient 

Boosting Machine), and EN (Elastic Nets), using a 

two-layer feedforward neural network that the 

input is a concatenated vector of chemical 

descriptors of both drugs and gene expression 

values of corresponding cancer cell lines. 

To the best of our knowledge, none of the previous 

research has used a combination of features such as 

Node2vec (extracted from DDI interactions), 

word2vec (extracted from PubMed), drug-protein 

targets, indications, side effects, and drug 

fingerprints to investigate the relationship between 

the two drugs in predicting the synergistic effect of 

drug pairs. Also, the impact of employing 

dimensional reduction in sparse data in addition to 

the different negative sampling approaches to 

provide balanced training data on the prediction 

outcomes has not been explored yet.   

 

3. Method 

The main steps of the DcDiRNeSa model are 

illustrated in Figure 1; these steps are as follows: 
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Figure 1. Overview of the DcDiRNeSa method with three main steps. Step a) Feature Construction and Selection: Feature 

extraction and dimension reduction techniques, followed by sampling methods to obtain a representative set of features 

(Section 3.1, 3.2, and 3.3). Step b) Candidate Drug Combination: Model is constructed using the candidate drug combinations 

generated from the previous step (Section 3.4). Step c) Evaluation and Interpretation: The numerical evaluation of the 

model's performance and the subsequent biological interpretation of the results (Section 4). 

3.1. Databases and features construction 

Drug combinations used in this article are taken 

from DCDB (Version 2.0) [38]. DCDB is collected 

from about 140,000 clinical studies and the Food 

and Drug Administration (FDA) Orange Electronic 

Book, which has a total of 1363 combinations.  

Other drug features such as side-effects and 

indications are extracted from an external dataset 

known as SIDER [39]. Moreover, Word2Vec 

embedding of the drugs is extracted from PubMed. 

Chemical structure of drugs can be represented by 

SMILES (simplifying the molecular linear input 

specification) string [40].  A drug has a list of target 

proteins which is represented by a 790-dimension 

binary sparse vector showing the presence or 

absence of each protein. We have used a model 

constructed by Allahgholi et al. [41], which was 

based on the Word2vec word embedding technique 

[42].  We assigned a 3256-dimension binary sparse 

vector showing the presence or absence of side 

effects for each drug. Drug indications are 

represented in the same way, using a 1513-

dimension binary sparse vector for each drug.  

To create a positive sample, we extracted 295 drugs 

that have all the 6 mentioned features and 

participated in 329 positive combination drugs.  

In creating negative samples, we used the similarity 

of all the drug pairs in the positive samples. The 

similarity of binary features, including chemical 

structure, drug targets, side effects, and indications 

are calculated based on the Tanimoto coefficient 

(also known as the Jaccard coefficient). While the 

similarity of Word2Vec and Node2Vec embedding 

of drugs which are numerical features are 

calculated using the cosine similarity measure. In 

the next step, we sorted the drug pairs based on the 

sum of the six obtained similarity scores, and after 

removing the positive samples from them, we 

considered the 2000 least similar drug pairs as 

negative samples.  

The Tanimoto coefficient score is calculated using 

equation 1 and ranges from 0 to 1: 

         

             

F A F B
T

F A F B F A F B




  
 

(1) 

𝐹 𝐴 is the number of chemical structures, targets, 

side effects, or indications related to drug 𝐴 and 𝐹 

𝐵 is the number of chemical structures, targets, side 

effects, or indications related to drug 𝐵, and 𝐹 𝐴 ∩ 

𝐹 𝐵 is the number of common chemical structure, 

targets, side effects and indications for drug 𝐴 and 

drug 𝐵. 

 

3.2. Dimension reduction 

Dimensionality reduction is used in this method to 

avoid overfitting and redundancy, which can be 

caused because of the curse of dimensionality 

phenomena. In addition, simplifying models 

improves the quality of human interpretations and 

reduces computational costs. We have applied two 



DcDiRNeSa, Drug Combination Prediction by Integrating Dimension Reduction and Negative Sampling Techniques 

 

421 

 

different dimension reduction methods including 

PCA and autoencoder in order to identify the 

salient aspects of features with high dimensions 

and to make them easier to employ in a subsequent 

task. Using these two methods, the three features, 

including drugs target, side effects, and indications 

are reduced from 790, 3256, and 1513 to 200 

dimensions, respectively. 

 

3.2.1. Autoencoder 

Three autoencoders (AE) [43] are used to reduce 

the dimension of the drug’s targets, indications, 

and side effects. We have considered 𝑥𝜖𝑅𝑑 as the 

input with dimensions d and 𝑥ꞌ the reconstructed 

output. ℎ𝜖𝑅𝑡 is the encoded feature representation 

with dimension t, which is smaller than d because 

the encoder is designed to produce low-

dimensional and abstract features that can be used 

in different applications. In order to gain the input’s 

hidden representation ℎ, an encoder performs 

transformations 𝑓 on the original input equation 2. 

A decoder, on the other hand, uses different 

transformations 𝑔 to extract the reconstruction 

vector from the hidden representation ℎ Equation 3. 

Back-propagation is used to update the parameters 

of 𝑓 and 𝑔 and reduce the reconstruction loss 

𝐿(𝑥, 𝑥′) in Equation 4 [44]. 

 h f x
 

(2) 

     x g h g f x  
 

(3) 

  ( ,  ) ( , L x x L x g f x 
 

(4) 
 

3.2.2. PCA 

PCA is a method for converting multidimensional 

data into lower dimensions with minimal loss of 

information. PCA is based on a decomposition of 

the data matrix 𝑌 (𝑛𝑥𝑚) into two matrices 𝑇 and 𝑃 

Equation 5, where both matrices are orthogonal, 

plus a matrix of residual 𝐸. The matrix 𝑃 (𝑚𝑥𝑓) is 

usually called the loadings matrix, and the matrix 

𝑇 (𝑛𝑥𝑓) is called the scores matrix, where 𝑓 is the 

number of factors 𝑓 < 𝑚.  
TY TP E   (5) 

As a condition of factorization optimality, the 

Euclidean norm of the residual matrix, ‖𝐸‖, must 

be reduced for the specified number of factors. 

PCA can be considered as a linear data mapping 

from 𝑅𝑚 to 𝑅𝑓 Equation 6, where 𝑦 represents a 

row of 𝑌 as a single data, 𝑡 represents the 

corresponding row of 𝑇, or the coordinates of 𝑦 in 

the feature space, 𝑃 are the coefficients for the 

linear transformation. 
t yP  (6) 

To examine the information loss in this mapping, 

the measurement vector 𝑦′ =  𝑦 − 𝐸 can be 

reconstructed by reversing the projection back to 

𝑅𝑚 Equation 7 and measured by |𝐸| for individual 

measurement vectors or ‖𝐸‖ for the overall dataset. 
Ty tP   (7) 

 

3.3. Sampling 

We concatenated the vector of the five specified 

features to produce a feature vector for each drug, 

and by using dimension reduction methods, the 

dimension of this vector was reduced from 6054 to 

1095. 

To represent each drug combination sample, we 

have concatenated vectors related to the 

participating drugs. Given that the model should be 

able to predict the synergistic combination 

regardless of the order of the drugs, each sample is 

used twice in the training set. The sequence of drug 

features is used once in (𝑋, 𝑌) and once in (𝑌 , 𝑋) 

order. To deal with an imbalanced dataset that 

includes 329 positive samples and 43,365 possible 

negative samples, the undersampling as well as 

oversampling method is used. Therefore, we have 

selected a number of negative samples with two 

different methods. In one case, negative samples 

are picked up randomly from all the pairwise 

combinations of drugs. In the other case, a negative 

sampling method is used, and among all possible 

drug combinations, drugs with the least similarity 

to each other are considered negative samples.  

 

3.4. Model 

A deep learning approach is presented in this paper 

which uses a feedforward neural network 

composed of multiple processing layers for 

predicting the synergistic effect of drug 

combinations and comparing the results to other 

state-of-the-art machine learning methods. This 

neural network converts drug sample vectors into a 

single output value that indicates whether a drug 

combination is synergistic or not.  

The forward propagation procedure starts with the 

inputs, and each neuron gets the linear combination 

of neural unit outputs from the previous layer as 

input and applies the activation function on it to get 

the output. With 𝑥 as the input to layer 𝑖, 𝑊 as the 

weight matrix, 𝑏 as the bias vector, and 𝑓 as the 

activation function, the 𝑖-th layer’s output can be 

shown as Equation 8: 

    Xi ii
z f W b 

 
(8) 

After forward propagating an input example to the 

output layer, utilizing the specified loss function, 

the error is determined to minimize the difference 

between predicted and real values. Then the 

gradient of the loss function is calculated with 

respect to each of the weights of the network, and 

the backpropagation algorithm is applied to 



Rahmani et al./ Journal of AI and Data Mining, Vol. 11, No. 3, 2023 
 

422 
 

propagate the error from the output to the input 

layer. As a result, each weight can be 

independently updated, allowing the loss function 

to be gradually reduced across numerous training 

iterations. Learning is accomplished by iteratively 

adjusting the weights using gradient algorithms, 

such as stochastic gradient descent (SGD) or 

modifications such as the Adam algorithm. 

 

4. Empirical Results 

In the following sub-sections, we first explain the 

hyper-parameters of our model in greater detail. 

Next, we’ll go over the performance metrics that 

were utilized to evaluate the model, as well as the 

findings of the evaluation. The performance of our 

model is then compared to that of earlier state-of-

the-art models. Finally, we evaluate some of the 

new predicted drug combinations with recent 

medical work and perform a network analysis 

based on Anatomical Therapeutic Chemical (ATC) 

codes of predicted synergistic drug combinations. 

  

4.1. Method configuration 

The feedforward neural network and autoencoder 

implementation details, as well as the values of the 

parameters, are discussed in this section.  

 

4.1.1. Feedforward neural network 

The feedforward neural network model is 

implemented using Keras, and to choose the best 

parameters grid search is used.The loss function is 

binary cross entropy and Adam is chosen as the 

optimization algorithm. To choose the best 

learning rate, 10 − 3, 10 − 4 and 10 − 5 values 

are considered. To overcome overfitting, early-

stopping, dropout, and activity regularizer are used 

as regularization techniques. For the input and the 

hidden layer’s dropout rates of 0.3 and 0.5 were 

tested, and an early stopping strategy [45] was 

implemented with a patience of 20, which stops the 

training after 20 epochs if no improvement is seen. 

This method could help to avoid overfitting while 

also speeding up the training process. 

The activity regularizer applies a penalty on the 

output of layers, which are summed into the loss 

function that the network optimizes. We have used 

L1 regularization with a factor of 0.01 in all layers. 

Besides the input and output layers, the remaining 

hidden layers have 128, 64, and 16 neural units, and 

all these three layers share the same activation 

function of ‘relu’ or ‘selu’. In addition, we looked 

into different learning rates and regularization 

techniques. To achieve the optimum result, the 

selected hyperparameter space based on the best 

practices is summarized in Table 1. 

Table 1. Neural network parameters chose based on the 

best practices. 

Grid search hyper-parameter Best hyper-parameters 

Learn rate = [0.0001, 0.001, 0.01] 

batch size = [16, 32, 64] 

epochs = [10, 100, 1000] 

dropout rate = [0.3, 0.5, 0.7] 

activation = [‘selu’, ‘relu’] 

learn rate = 0.0001 

batch size = 64 

epochs = 1000 

dropout rate = 0.3 

activation = ‘relu’ 

4.1.2. Autoencoder 

The encoder includes four hidden layers in addition 

to the input layer. For dimension reduction of side 

effects and indications features, the first layer 

contains 1,000 neural units, while target features 

have 600. The second and third layer contains 500 

and 300, respectively. The encoded layer, which 

corresponds to the retrieved features with a length 

of 200, is the fourth layer. The decoder includes 

three hidden levels with unit numbers 300, 500, and 

1000, respectively, as well as an output layer with 

the same unit number as the encoder’s input layer.  

The autoencoder’s loss function is Mean absolute, 

and the optimization technique is Adam, with a 

learning rate of 0.001.  

 

4.2. Performance metrics 

We used a 10-fold cross-validation method to 

evaluate performance. In our method, we employed 

accuracy as equation 9, recall (REC) as equation 

10, precision (PRE) as Equation 11, F-measure as 

Equation 12, and the area under the receiver 

operating characteristic curve (AUC) as 

performance measurements 
TP TN

Accuracy
TP TN FP FN




    
(9) 

TP
Recall

TP FN


  
(10) 

TP
Precision

TP FP


  
(11) 

1

2*  *   

   

Precision Recall
F

Precision Recall


  
(12) 

 

4.3. Model comparison 

In this section, we have compared the influence of 

different methods on performance. In the first step, 

we considered 2000 negative samples, which are 

chosen in two different ways. In the first method, 

the negative drug combinations are random 

pairwise drugs picked up from positive sample 

drugs. The second method chooses the dug pairs 

which have the least similarity to each other based 

on the sum of 6 different feature similarities 

calculated using the Tanimoto coefficient score or 

cosine similarity. Figure 2 shows that selecting 

negative samples from less similar drugs could 

improve the AUC measure from 0.92 to 0.95.  
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Figure 2. Negative sampling methods comparison. In the 

first method, the negative drug combinations are random 

pairwise drugs picked up from positive sample drugs. The 

second method chooses the dug pairs which have the least 

similarity to each other based on the sum of 6 different 

feature similarities. 

Table 2 shows the influence of different negative 

sample sizes on performance for the second 

method. According to the table with 1316 positive 

data, the best result is obtained with 4000 negative 

data, although the improvement is not significant 

and in order to maintain the high speed of 

execution, the same 2000 negative samples have 

been used in later stages. In the next step, we 

decided to utilize autoencoder and PCA to 

minimize the dimension of three features, 

including side effects, indications, and targets. 

Utilizing these two methods, the dimension of the 

features was reduced to 200. However, we can see 

that using the autoencoder (green in Figure 3) 

produces better results than PCA. 
 

Table 2. Performance with different negative sample 

sizes. 

Negative sample size ACC AUC F1 Rec Pre 

2000 0.96 0.95 0.95 0.93 0.95 

4000 0.98 0.97 0.96 0.94 0.98 

8000 0.99 0.96 0.95 0.92 0.99 

 
Figure 3. Dimensional reduction approaches significantly 

improved the results when compared to the unused conditions.  

4.4. Comparison with related work 

In this section, we compare the DcDiRNeSa 

method with 7 other models used to predict 

synergistic drug combinations in the DCDB 

dataset.  

The comparison of validation results is shown in 

Figure 4. Compared to past techniques, the AUC 

score of our approach was an impressive 8 percent 

higher than the average. In addition, the method in 

this article is 7 percent better than the deep learning 

method provided by Zhang et al. (2021) [29]. Also 

compared to Xu et al. [46], it performs 3 percent 

better than the top-performing machine learning-

based method.  

Based on the paired t-test analysis, the obtained p-

value of 0.0043 is smaller than the commonly used 

significance level of 0.05, indicating a statistically 

significant difference between our method's AUC 

score and the AUC scores of the other models. This 

result further strengthens the confidence in the 

superior performance of our approach. 

 
Figure 4. Methods result comparison. The AUC score of 

our approach is 8 percent higher than the average. 

4.5. Biological interpretation 

In the preceding section, we intend to examine the 

suggested model based on biological interpretation, 

in addition to the numerical evaluation completed.  

In the following, the concept called Anatomical 

Therapeutic Chemical (ATC) has been used for 

further biological interpretation. ATC is a system 

for classifying medications based on their 

therapeutic intent and chemical characteristics, as 

well as the organ or system on which they work. In 

this classification system maintained by the World 

Health Organization (WHO), one drug may have 

more than one code, and each code classified drugs 

into groups at five different levels. Only the first 

level of coding is used in this article, which 

specifies the anatomical main group and consists of 

one letter, with 14 main groups. Each of these 

groups has its own color, which can be seen in the 

top right corner of Figure 5.  
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Figure 5. Predicted Drug Combinations Graph. The graph is constructed of new predicted drug combinations by the 

DcDiRNeSa method. A significant degree of homophily is shown when coloring the detected communities of the network 

based on Anatomical Therapeutic Chemical (ATC) codes. Further discussion in subsection 4.5. 

In this graph, the nodes are drugs, and the edges are 

drug pairs that DcDiRNeSa predicts to be 

synergistic. In the next step, we applied the GLay 

algorithm [47] as a community structure analysis of 

biological networks to identify communities that 

are likely to share similar goals. In Figure 5, each 

block shows an identified community, and it can be 

seen that drugs with the same ATC codes are closer 

to each other than drugs with different ones. In 

block 1 most of the drugs including Mitoxantrone, 

Doxorubicin, Lenalidomide, Cyclophosphamide, 

and Methotrexate are used to treat certain types of 

cancer and their first level ATC code is 

"Antineoplastic and immunomodulating agents".  

In block 2, there are two major types of 

medications: One for respiratory pharmaceuticals 

such as pseudoephedrine, chlorpheniramine, and 

hydrocodone, and another for nervous system 
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drugs such as aspirin, acetaminophen, caffeine, 

codeine, and oxycodone. Among some of the 

formed blocks, all drugs have almost the same first-

order ATC code such as blocks 4 and 6, which 

correspond to antiinfectives for systemic use and 

the  Cardiovascular system, respectively. Block 5 

includes a group of drugs used to treat type 2 

diabetes, and the first level ATC code is 

"alimentary tract and metabolism" such as 

Sitagliptin and Pioglitazone. 

 

5. Conclusions and Future Work 

The clinical and economic benefits of combination 

therapy, which employs numerous medications to 

treat a complex disease rather than monotherapy, 

have made it a critical strategy. Due to the 

exponential growth in the number of medications, 

it is necessary to create computational algorithms 

to minimize the search space for drug 

combinations. We introduced a synergistic drug 

combination prediction model named DcDiRNeSa 

in this research, which considers each drug 

combination as a set of features of two drugs. The 

features used include chemical structure, 

biological, biomedical literature embedding, and 

biological network interactions aspects of drugs 

extracted from various datasets. Then we applied a 

feedforward neural network with different 

overfitting handling methods on candidates and 

showed that dimension reduction on features and 

negative sampling on created imbalanced datasets 

could improve results considerably. 

In terms of predicting drug combinations, our 

results show that DcDiRNeSa outperforms state-

of-the-art techniques. In future work, using larger 

and more up-to-date datasets can achieve better 

results. Additionally, experimental validation can 

be used to improve machine Learning methods [48] 

by adjusting the computation model in order to gain 

better prediction results. 
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DcDiRNeSa :یمنف یریگکاهش ابعاد و نمونه یهادارو با ادغام روش بیترک ینیبشیپ 

 

 و مطهره نصیری *حسین رحمانی، مینا طباطبایی

 .رانیتهران، ا ران،یدانشگاه علم و صنعت ا وتر،یکامپ یدانشکده مهندس

 18/07/2023 پذیرش؛ 06/06/2023 بازنگری؛ 26/03/2023 ارسال

 چکیده:

ستجو برا ساندیمرا به حداقل  یو عوارض جانب تیسم کهیدرحال ده،یچیپ یهایماریب یبرا مؤثر یهادرمان یج سر ست.  اری، ب شده ا ، حالنیباامهم 

سا ست و به دل نهیبر و پرهززمان یندیداروها اغلب فرآ ییافزاهم یهابیترک ییشنا ضا لیا ستجو یف س یج ست، بر  ریکه درگ یعیو  هیتک وخطاآزمونا

 ازجمله ها،یژگیاز و ی. چارچوب ما از مجموعه متنوعمیکنیممطالعه ارائه  نیرا در ا قیعم یریادگیچارچوب  کیموضوع، ما  نی. با پرداختن به اکندیم

. علاوه بر کندیاستفاده م القوهب ییافزاهم یهابیترک ینیبشیپ یبرا یکیولوژیتعامل شبکه ب یهاو داده ،یپزشک ستیز اتیادب هیتعب ،ییایمیساختار ش

 یاعتبارسللنج قی. از طرمیکنیپراکنده اسللتفاده م یهاکاهش ابعاد در داده یبرا (PCA) یاصللل یاجزا لیوتحلهیتجزخودکار و  یما از رمزگذارها ن،یا

شمگ ،یبرابر 10متقاطع  سطح چ صد 98 ریما به  ست  (AUC) یمنحن ریز یدر سط  طوربهکه  میافتید  شرفتهیپ کردیاز عملکرد هفت رو صددر 8متو

 گرفت. یشیپ یقبل

 .قیعم یریادگی ،یمحاسبات یهاکیتکن ،ییافزاهماز داروها، اثر  یبیترک ینیبشیپ :کلمات کلیدی

 


