[1] J. Ancilin, and A. Milton, “Improved speech emotion recognition with Mel frequency magnitude coefficient. Appl Acoust, Vol. 179, pp. 108046, 2021.
[2] Y.D. Chavhan, B. S. Yelure, and K. N. Tayade, “Speech emotion recognition using RBF kernel of LIBSVM”, 2nd international conference on electronics and communication systems (ICECS), pp. 1132-1135, 2015.
[3] A. Chamoli, A. Semwal, and N. Saikia, “Detection of emotion in analysis of speech using linear predictive coding techniques (LPC)”, In 2017 International Conference on Inventive Systems and Control (ICISC), pp. 1-4, 2017.
[4] A. Koduru, H. B. Valiveti, and A. K. Budati, “Feature extraction algorithms to improve the speech emotion recognition rate”, International Journal of Speech Technology, Vol. 23(1), pp. 45-55, 2020.
[5] M. Jain, S. Narayan, P. Balaji, A. Bhowmick, and R. K. Muthu, “Speech emotion recognition using support vector machine”, arXiv preprint arXiv: 2002.07590, 2020.
[6] A. Bhavan, P. Chauhan, and R. R. Shah, “Bagged support vector machines for emotion recognition from speech”, Knowl. Based Syst., Vol. 184, pp.104886, 2019.
[7]R. A. Khalil, E. Jones, M. I. Babar, T. Jan, M.H. Zafar, and T. Alhussain, “Speech emotion recognition using deep learning techniques: A review”, IEEE Access, Vol. 7, pp.117327-117345, 2019.
[8] H. Meng, T. Yan, F. Yuan, H. and Wei, “Speech emotion recognition from 3D log-Mel spectrograms with deep learning network”, IEEE Access, Vol. 7, pp.125868-125881, 2019.
[9] Y. Zhang, J. Du, Z. Wang, J. Zhang, and Y. Tu, “Attention-based fully convolutional network for speech emotion recognition”, In 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) pp. 1771-1775, 2018.
[10] D. Issa, M. F. Demirci, and A. Yazici, “Speech emotion recognition with deep convolutional neural networks”, Biomed. Signal Process. Control, Vol. 59,pp. 101894, 2020.
[11] J. Zhao, X. Mao, and L. Chen, “Speech emotion recognition using deep 1D & 2D CNN LSTM networks”, Biomed. Signal Process. Control, Vol. 47, pp. 312-323, 2019.
[12] P. Tzirakis, J. Zhang, and B. W. Schuller, “ End-to-end speech emotion recognition using deep neural networks”, In 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 5089-5093, 2018, IEEE.
[13] K. Aghajani and I. Esmaili Paeen Afrakoti, “ Speech emotion recognition using scalogram-based deep structure”, International Journal of Engineering, Vol. 33(2), pp. 285-292, 2020.
[14] Y. Li, T. Zhao, and T. Kawahara, “Improved End-to-End Speech Emotion Recognition using Self-attention Mechanism and Multitask Learning”, In Interspeech pp. 2803-2807, 2019.
[15] B. T. Nguyen, M. H. Trinh, T. V. Phan, and H. D. Nguyen, “An efficient real-time emotion detection using camera and facial landmarks”, In 2017 seventh international conference on information science and technology (ICIST), pp. 251-255, IEEE, 2017.
[16] E. Bagheri, P. G. Esteban, H. L. Cao, A. D. Beir, D. Lefeber, and B. Vanderborght, “An autonomous cognitive empathy model responsive to users’ facial emotion expressions”, ACM Transactions on Interactive Intelligent Systems (TIIS), Vol. 10(3), pp. 1-23, 2020.
[17] S. H. Wang, P. Phillips, Z. C. Dong, and Y. D. Zhang, “Intelligent facial emotion recognition based on stationary wavelet entropy and Jaya algorithm”, Neurocomputing, 272, pp. 668-676, 2018.
[18] N. Mehendale, “Facial emotion recognition using convolutional neural networks (FERC)”, SN Applied Sciences, Vol. 2(3), pp. 1-8, 2020.
[19] M. M. T. Zadeh, M. Imani, and B. Majidi, “Fast facial emotion recognition using convolutional neural networks and Gabor filters”, In 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI), pp. 577-581, 2019.
[20] P. Giannopoulos, I. Perikos, and I. Hatzilygeroudis, “Deep learning approaches for facial emotion recognition: A case study on FER-2013”, In Advances in hybridization of intelligent methods, pp. 1-16, Springer, Cham, 2018.
[21] N. Mehendale, “Facial emotion recognition using convolutional neural networks (FERC)”, SN Applied Sciences, Vol. 2(3), pp. 1-8, 2020.
[22] I. Lasri, A. R. Solh, and M. El Belkacemi, “ Facial emotion recognition of students using convolutional neural network”, In 2019 third international conference on intelligent computing in data sciences (ICDS), pp. 1-6, IEEE, 2019.
[23] M. R. Fallahzadeh, F. Farokhi, A. Harimi, and R. Sabbaghi-Nadooshan. "Facial Expression Recognition based on Image Gradient and Deep Convolutional Neural Network." Journal of AI and Data Mining , Vol. 9, pp. 259-268 2021.
[24] E. Avots, T. Sapiński, M. Bachmann, and D. Kamińska, “Audiovisual emotion recognition in wild”, Mach. Vis. Appl., Vol. 30(5), pp. 975-985, 2019.
[25] M. C. Sun, S. H. Hsu, M. C. Yang, and J. H. Chien, “Context-aware cascade attention-based RNN for video emotion recognition”, In 2018 First Asian Conference on Affective Computing and Intelligent Interaction (ACII Asia), pp. 1-6, IEEE, 2018.
[26] M. Hu, H. Wang, X. Wang, J. Yang, and R. Wang, “Video facial emotion recognition based on local enhanced motion history image and CNN-CTSLSTM networks”, J. Vis. Commun. Image Represent., Vol. 59, pp. 176-185, 2019.
[27] F. Rahdari, E. Rashedi, and M. Eftekhari, “A multimodal emotion recognition system using facial landmark analysis”, Iran. J. Sci. Technol. - Trans. Electr. Eng., Vol. 43(1), pp. 171-189, 2019.
[28] M. Ren, W. Nie, A. Liu, and Y. Su, “Multi-modal Correlated Network for emotion recognition in speech”, Vis. Inform., Vol. 3(3), pp. 150-155, 2019.
[29] K. S. Song, Y. H. Nho, J. H. Seo, and D. S. Kwon, “Decision-level fusion method for emotion recognition using multimodal emotion recognition information”, In 2018 15th International Conference on Ubiquitous Robots (UR), pp. 472-476, IEEE, 2018.
[30] J. D. Ortega, M. Senoussaoui, E. Granger, M. Pedersoli, P. Cardinal, and A. L. Koerich, “Multimodal fusion with deep neural networks for audio-video emotion recognition”, arXiv preprint arXiv: 1907.03196, 2019.
[31] C. Busso, Z. Deng, S. Yildirim, M. Bulut, C. M. Lee, A. Kazemzadeh, S. Lee, U. Neumann, and S. Narayanan, “Analysis of emotion recognition using facial expressions, speech and multimodal information”, In Proceedings of the 6th international conference on Multimodal interfaces , pp. 205-211, 2004.
[32] P. Tzirakis, G. Trigeorgis, M. A. Nicolaou, B. W. Schuller, and S. Zafeiriou, “End-to-end multimodal emotion recognition using deep neural networks”, IEEE J. Sel. Top. Signal Process., Vol. 11(8), pp. 1301-1309, 2017.
[33] M. A. Jalal, E. Loweimi, R. K. Moore, and T. Hain, “Learning temporal clusters using capsule routing for speech emotion recognition”, In Proceedings of Interspeech, pp. 1701-1705, 2019 ISCA.
[34] C. Luna-Jiménez, D. Griol, Z. Callejas, R. Kleinlein, J. M. Montero, and F. Fernández-Martínez, “Multimodal Emotion Recognition on RAVDESS Dataset using Transfer Learning”, Sensors, Vol. 21(22), p. 7665, 2021.