[1] K. Kiani, R. Hematpour, and R. Rastgoo, “Automatic Grayscale Image Colorization using a Deep Hybrid Model,” Journal of AI and Data Mining, vol. 9, no. 3, pp. 321-328, 2021.
[2] N. Sharma, V. Jain, and A. Mishra, “An Analysis Of Convolutional Neural Networks For Image Classification,” Procedia Computer Science, vol. 132, pp. 377-384, 2018.
[3] J. Jung, M. Maeda, A. Chang, M. Bhandari, A. Ashapure, and J. Landivar-Bowles, “The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems,” Current Opinion in Biotechnology, vol. 70, pp. 15-22, 2021.
[4] B. Liu, Y. Zhang, D. He, and Y. Li, “Identification of Apple Leaf Diseases Based on Deep Convolutional Neural Networks,” Symmetry, vol. 10, no. 1, pp. 11, 2018.
[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84-90, 2017.
[6] C. Szegedy, L. Wei, J. Yangqing, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, "Going deeper with convolutions." 2015, pp. 1-9.
[7] Q. Yan, B. Yang, W. Wang, B. Wang, P. Chen, and J. Zhang, “Apple Leaf Diseases Recognition Based on An Improved Convolutional Neural Network,” Sensors, vol. 20, no. 12, 2020.
[8] Y. Zhong, and M. Zhao, “Research on deep learning in apple leaf disease recognition,” Computers and Electronics in Agriculture, vol. 168, pp. 105146, 2020.
[9] W.-z. Liang, K. R. Kirk, and J. K. Greene, “Estimation of soybean leaf area, edge, and defoliation using color image analysis,” Computers and Electronics in Agriculture, vol. 150, pp. 41-51, 2018.
[10] A. Karlekar, and A. Seal, “SoyNet: Soybean leaf diseases classification,” Computers and Electronics in Agriculture, vol. 172, pp. 105342, 2020.
[11] S. Kaur, S. Pandey, and S. Goel, “Semi-automatic leaf disease detection and classification system for soybean culture,” IET Image Processing, vol. 12, no. 6, pp. 1038-1048, 2018.
[12] J. Xiong, D. Yu, Q. Wang, L. Shu, J. Cen, Q. Liang, H. Chen, and B. Sun, “Application of Histogram Equalization for Image Enhancement in Corrosion Areas,” Shock and Vibration, vol. 2021, pp. 8883571, 2021/01/23, 2021.
[13] Anjna, M. Sood, and P. K. Singh, “Hybrid System for Detection and Classification of Plant Disease Using Qualitative Texture Features Analysis,” Procedia Computer Science, vol. 167, pp. 1056-1065, 2020.
[14] M. Turkoglu, and D. Hanbay, “Leaf-based plant species recognition based on improved local binary pattern and extreme learning machine,” Physica A: Statistical Mechanics and its Applications, 2019.
[15] R. I. Hasan, S. M. Yusuf, and L. Alzubaidi, “Review of the State of the Art of Deep Learning for Plant Diseases: A Broad Analysis and Discussion,” Plants, vol. 9, no. 10, pp. 1302, 2020.
[16] Y. S. Aurelio, G. M. de Almeida, C. L. de Castro, and A. P. Braga, “Learning from Imbalanced Data Sets with Weighted Cross-Entropy Function,” Neural Processing Letters, vol. 50, no. 2, pp. 1937-1949, 2019.
[17] X. Zhang, X. Zhou, M. Lin, and J. Sun, "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices." 2018, pp. 6848-6856.
[18] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design,” 2018, pp. 122-138.
[19] J. Hu, L. Shen, and G. Sun, "Squeeze-and-Excitation Networks." 2018, pp. 7132-7141.
[20] K. Rangarajan Aravind, P. Maheswari, P. Raja, and C. Szczepański, "Chapter nine - Crop disease classification using deep learning approach: an overview and a case study," Deep Learning for Data Analytics, pp. 173-195: Academic Press, 2020.
[21] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai, and T. Chen, “Recent advances in convolutional neural networks,” Pattern Recognition, vol. 77, pp. 354-377, 2018.
[22] F. Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions." 2017, pp. 1800-1807.
[23] N. Yao, F. Ni, Z. Wang, J. Luo, W.-K. Sung, C. Luo, and G. Li, “L2MXception: an improved Xception network for classification of peach diseases,” Plant Methods, vol. 17, no. 1, pp. 36, 2021.
[24] L. Chen, H. Fei, Y. Xiao, J. He, and H. Li, "Why batch normalization works? a buckling perspective." 2017, pp. 1184-1189.
[25] N. D. Marom, L. Rokach, and A. Shmilovici, "Using the confusion matrix for improving ensemble classifiers." 2010, pp. 555-559.
[26] E. M. Dogo, O. J. Afolabi, N. I. Nwulu, B. Twala, and C. O. Aigbavboa, "A Comparative Analysis of Gradient Descent-Based Optimization Algorithms on Convolutional Neural Networks." 2018, pp. 92-99.
[27] M. Brahimi, M. Arsenovic, S. Laraba, S. Sladojevic, K. Boukhalfa, and A. Moussaoui, "Deep Learning for Plant Diseases: Detection and Saliency Map Visualisation," Human and Machine Learning: Visible, Explainable, Trustworthy and Transparent, pp. 93-117, Cham: Springer International Publishing, 2018.
[28] M. Agarwal, S. K. Gupta, and K. K. Biswas, “Development of Efficient CNN model for Tomato crop disease identification,” Sustainable Computing: Informatics and Systems, vol. 28, pp. 100407, 2020.
[29] H. Durmus, E. O. Günes, and M. Kirci, “Disease detection on the leaves of the tomato plants by using deep learning,” in 2017 6th International Conference on Agro-Geoinformatics, 2017, pp. 1-5.
[30] S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using Deep Learning for Image-Based Plant Disease Detection,” Frontiers in Plant Science, vol. 7, no. 1419, pp. 1-7, 2016.
[31] L.-C. Chang, E. El-Araby, V. Q. Dang, and L. H. Dao, “GPU acceleration of nonlinear diffusion tensor estimation using CUDA and MPI,” Neurocomputing, vol. 135, pp. 328-338, 2014.