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1. Introduction

Deep Neural Networks (DNNj)s an improved
type of artificial neural networks with a relatively
large number of hidden layers. In the process of
selecting
architecture and preparing the associated training
dataset, an iteratd process is used in order to
train the networK1]. In this process, the training
data passes through all layers and -hiogar and
functions of the network. The result obtained at
the end ofthe network is normally different from
the desiredone This difference determines the
amount of errgr and by baclpropagating this
network and correcting the
parameters, the network is updated. This process increase
is repeated until the amount of@r is minimized

building DNN, after

error in the

[2].

Abstract

An important sector that has a significant impact on the economi
countries is the agricuital sector.The researchergre trying to
improve this sector using the latest technologies. One of the prol
facingthefarmers in the agricultural activitiestise plant diseases. If .
plant problem is diagnosed soon, the farmer can treat the eliseae
effectively. Thiswork introduces a new deep artificial neural netw:
called AgriNet which is suitable for recognizing some types
agricultural diseases in a plant using images from the plant leave:
proposed network makes use of the chargmelffling technique of
ShuffleNet and the channéépendencynodeling technique of SENe
One of the factors influencinghe effectiveness of the propos
network architecturés how to increase the flow of information in tl
channels after explicitly madling the interdependencies betwetre
channelsThis is in fact, an important noveltgf this research work
The dataset used in thigork is PlantVillage, which contains 14 typ
of plants in 24 groups of healthy and diseased. Our experim
resultsshow that the proposed method outperforms the other me
in this area. AgriNet leads @n accuracy and loss of 98% and 7%
respectively on the experimental data. This method increases
recognition accuracy by about 2%nd reduces the loss by 8
compared to the ShuffleNetV2 method.

various domains

the network Smart farming has entetevarious fields of

as 1) species manageme(species recognition
species breeding), 2) field

quality evaluation, disease detecticand weed
detection3].

the quality and quantity othe

agricultural products andachieve sustainable

growth in productivity of production resources.

condition
management such as soil and water management,
3) crop management such as yield prediction, crop

One of the objectives of smart farming is to

sea

Deep learning has provided a bright future in
including agriculture. This
emerging concept is known as smart farming.

agriculture and has received good feedback from
theusers. Smart farming can be used in cases such
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An early recognition of plant diseases is an
important issue in smart farming. In this
framework, a Convolutional Neural Network
(CNN) has beerdesigned by Liuet al [4] for
diagnosing apple leaf diseases. The design is
based on the architeres of AlexNet[5] and
GoogleNet [6], and leads to an accusa of
97.62%.In a similar study by Yamt al. [7], some
techniques such as global average pooling and
Batch Normalization (BN) layersave beemsed,
resultingdin an accuracy of 99.01%'he main
drawbacks of thesenethodsare that they study
only the leaves of one type of plant (appland
the adoptedmodels have many parametersin
another study, DenseN&R1 has beenused for
identifying apple leaf diseas¢8]. This study has
achieved an accuracy of about 93% usihg
regression methods, multibel classificationand
loss function.

An important challenge in the study of plant leaf
disease is separation of leaves from the image
background which has attracted considerable
research attention. For example, [8], soybean
leaf area, edge and defoliationhave beerfound

by Mahalanobis distance and Canny edge
detection algorithm Karlekar and Sealhave
suggested two modules. The first maxtracts
theleaf part from the whole image by subtracting
the complex background. The second module
introduces a deep learning convolution neural
network (CNN), SoyNet, for soybean plant
disease recognition usinghe segmented leaf
image[10]. T h émadie databasef plant disease
symptoms , which involves
used in this studywhere 98.14% ientification
accuracy was achieved. Kauet al have
investigated soybean leaf diseases and identified
healthy and diseased leaves usioglor and
texture properties and semiautomatic system
based on the #neans rulg11]. This study was
performed on the PlantVillage datasamndled to

an accuracy of about 90% dhe training data
which is not very significantn anotherstudy, the
identificationprocessof the corrosion areas in the
leaf imageshas beerstrengthened by applying a
color transformation andigtogram equalization
technique[12]. Also in [13], the Support Vector
Machine (SVM) and KNearest Neighbors (KNN)
classifiers have beenapplied for detection and
classification of plantliseaseA feature extraction
method based ro an improved Local Binary
Pattern(LBP) techniquealong with the Extreme
Learning Machine (ELM) classifiehave been
proposed in[14] for recognition of the plant
species.
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Within the framework of neural networkshe
scientists have found that adding more layers to a
network not only makes training nerdifficult
but also reduces the accuracy of network
performance, and the network also suffers from
the vanishinggradientproblem. In order b solve
this problem,ResNet was introduced in 2015.
This network is a deep network that won the first
place in tle ILSVRC competition in 2. The
strength of the ResNes iits skip connections or
additional residual connections. The shortcut
connection goes through one or more layers and
ignores them. It actually connects a layer to the
farther layer. The proposedoakel also useshe
shortcut connections.

In a review study[15], the performance of 9
different deep learning modeln plant disease
classification has been investigated They
performed the study based onwo different
approaches. In the first approachising the
trander learningtecmique the last three layesf

the adopted networkeere replaced with some
other layers. In the second approach, which was
faster and more accurate than the fosg the
result of feature extraction in certain layers of
models was takermand fed to diferent machine
learning classifiersThe highesteportedaccuracy

is 97.45%. This result was obtained by extracting
the features from ResNetl01 withextreme
learning machine classifier and 97.86% from
Resnett0 with an SVM classifier.Also an
accuracy 0f94.60% was achieved in transfer
learning using small datasets with Resbs@f{15].

1Tée amputatiomad compéesity andv awnber of

parametes are among the most important issues
in deep neural networkthat have a relatively
complex architecture. In order to train such a
network, an advancedaldware is requiredvhich

is not presumably accessible in all applications.
On the other hand, for dealingvith more
complicated classification problems, a deeper
architecture is usually required. Most recent
studies in the field of diagnosing plant disea
using the image processing techniques have
focused on one type of crop. Howevdhe
farmers usually cultivate a variety of crops, and in
practice such studies are not practically
applicable. Also due tthe fact that some plant
diseases are rar¢ghe plant disease datasets are
commonly imbalance. Such an imbalanced dataset
causes traditional classification networks that are
based on crossntropy loss function to not train
and perform well[16]. Therefore, it is better to
use modern networks such as deep convolutional
networks which have a structure consisting of
several repeating blocks. In this framewotle
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operations such as Group Convolution (GConv),
Pointwise Group Convolution (GConv(1x13nd
Depthwise Convolution (DWConv) are useful in
order to extract more information from the
associated training data. However, there are
disadvantagegor using these methods too. For
example, if pointwise convolution is used in
shallow networks with a msall number of
channels, the network accuracy is dropped. Using
the stacked group convolutions stops the

information flow between the channel grouasd

weakens the representation. If the grou
convolution receives input from different groups,
the input ad output channels will be

interdependent. In order to remove such problems,
ShuffleNet makes use dhe shuffling operation
[17].

The other issue is the metric used for calculating
the computational complexity of a network. Many
networks use the indict FloatPoint Operations
(FLOPs) metric for this purpose. According to
[18], the FLOPs metric individually will not help
us to succeedn optimal design. They used new
approaches with two metrics, direct metric
(speed) and indirect metric (FLOPS) to measure
the computational complexity.

The rumberof channels is an important challenge
in channel shuffling-based architectures. Better
resuts can be achieved by usingthe
interdependencies between the channels. In this
framework, Squeeze and Excitation Network or
SENet has beenintroduced by Hu, Shefl9].
They managed to improve the interdependency
between the channels using this architecture with
very little computational costn order b do this,
some pamaeters were added to each channel of
the convolution block so that the network could
adjust the weights of each feature map adaptively.
As a result, the shared lo¥evel representations
are strengthezd and the informative featuresire
emphasized.

In the poposed model of the present study, an
attempt has been made to increéise network
accuracy using SENet and recalibrating the
channelwise feature responses. For this purpose,
the new AgriNet architecture inspired by
ShuffleNetV2 (SHNet) and SENet is dgsed to
diagnose and classify leaf diseases tbie
agricultural products.In order b increasethe
network accuracy, the channels with more
information are first recalibrated. The channel
shuffling process is then used in order to increase
the information flow within the network. The
proposed model identifies and classifies leaf
diseases ofhe agricultural products successfully.
The main objectives of designing AgriNet are
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increasing the model accuracy and reducing the
network complexity. As a result, thitechnology
can be used in general agricultural applications or
in similar applications.

The main contributions of thisesearchwork

can be summarized in twolds:
1- Technically:
a.To increasehe network accuracy and reduce
the number of parameterghanrels with
more informationarerecalibrated at the end
of each model block.
b.To increase the flow of information in these
channelsshuffling operationsarethen used.
c.The network architecture isxperimentally
optimized and it is shown thaby repeating
the network bcksappropriatelythe number
of parameters isignificantly redued while
ahighlevel of acuracyis achieved.
2- Application:

a. A relatively simple and accurate neural
network is proposed for recognizing plant
diseases.

b. Most similar researchworks focus on one
type of cropdiseaseswhile in thiswork, 14
different types of crops with different
diseasesire takennto account

2. Materials and M ethods

In this section, you will first get acquainted with
the PlantVillage dataseand see some exwles

of the images in this dataset. You will then be
introduced to some types of CNN networks such
as the ShuffleNet, SHNeand SENet networks.
The proposed AgriNet architecture will thém
discussed in the proposed architecture section.

2.1. Dataset

The PlantVillage dataset used in thisrk can be
downloaded from https://www.kaggle.com. There
are color imagesfrom 14 types of plants with
different diseases in this collectioAs we will
mention latertheimages are resized i®8x 128

x 3. The datast contains 54,305 images, of which
43,456are used athe training data and 10,849 of
themas thetest data. Each folder in the dataset is
named for a disease. Some of the images in this
dataset are shown irFigure 1. Rangarajan
Aravind, Maheswari[20] have publishedthe
complete information on various diseasestla#
agricultural products.

Table 1 shows the number of training and testing
data in the dataset. The numbers in parentheses
are the number of test datand the rest arthe
training data. In this table, 14 types of plants are
classified into 24 types of healthy and diseased.
Some crops such as tomatoes and potatoes have

(0]
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the same disease. The dash indicates the absence
of that instance in the dataset.

b) d) f) h) )

Figure 1. Some examples of gitures of plant diseases: a) Healthy tomato leaves, b) Tomato leaves with Septoria_leaf_spot
disease, c¢) Healthy pear leaves, d) Pear leaves wiihicterial spot disease, e) Healthy apple leaves, f) Apple leaves with disease
Apple_scab, g) Healthy corn leags, h) Corn leaves with Common_rust disease, i) Healthy cherry leaves, j) Cherry leaves with

Powder_mildew disease

Table 1. Number of training and test data in dataset
Apple Orange Grape StrawberrCherry Peach RaspberrBlueberryPotato PepperSquashTomatoSoybearCorn
Dataset y y
Leaf disease

Health 1316 - 339 365 684 288 297 1202 122 1183 - 1273 4072 930
Y (329) (84) (91) (a70) (72) (74) (300) (30) (295) (318) (1018) (232)
504 - - - - - - - - - - - - -
Apple_scab (126)
497 - 944 - - - - - - - - - - -
Black_rot (124) (236)
Cedar_Apple_rust (25250) . . ) . . . ) ) ) . ) ) )
Haunglongbing_(Cit- 4406 - - - - - - - - - - - -
rus_greening) (1101)
Leaf_Blight_(lsariop- - 861 - - - - - - - - - - -
sis_leaf_Spot) (215)
Esca_(Black_Measl¢ - 1107 - - - - - - - - - - -
s) (276)
Leaf_Scorch ) ) 888 ) ) ) ) ) ) ) ) ) )
- (221)
. - - - 842 - - - - - 1468 - - -
Powder_mildew (210) (376)
. - - - - 1838 - - - - - 1702 - -
Bacterial_spot (459) (425)
. - - - - - - - 800 - - 1528 - -
Late_Blight (200) (381)
. - - - - - - - 800 - - 800 - -
Early_Blight (200) (200)
. - - - - - - - - - 798 - - - -
Bell_Bacterial_spot (199)
- - - - - - - - - - - 762 - -
Leaf Mold (190)
) - - - - - - - - - - - 1417 - -
Septoria_Leaf_Spot (354)
Spider_Mites - - - - - - - - - - - 1341 - -
Two_Spotted_Spide (335)
r_Mite
- - - - - - - - - - 1124 - -
Target_Spot (280)
Yellow_Leaf Crul_ - - - - - - - - - - - 4286 - -
Virus (2071)
Mosaic_Virus (74)
Cerospora_leaf_spo- - - - - - - - - - - - - 411
Gray_leaf_spot (102)
- - - - - - - - - - - - - 954
Common_rust (238)
Northern_Leaf_Blig - - - - - - - - - - - - - 788
ht (197)
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2.1. Convolutional neural netwaks

The onvolutional neural networks are created by
stacking of a number of different layers. Each
layer has its own task. The most important layers
are the convolution, pooling and the Fully
Connected (FC) layers. The convolution layer
consists of a setf learnable filters. A pooling
layer is usually used after each convolution layer
in order to reduce the size of the resigitfeature
map and therefore the number of network
parameters. Irthe pooling operations, similar to
what happens in convolutisna window is moved
on the image. If the max pooling operation is
considered, each window retains the maximum
value and discards the rest but in Average (AVG)
pooling, the average of the calculated values is
used in the output. For example, if a max pogli
with size 2x 2 and stride 2 is applied to a feature
map with size 8x 8, a 4x 4 output will be
obtained. In a CNN, the last layer is usually a FC
layer that represents the network output as a
vector for categorizingheinput imageg21].

2.2.1. ShuffleNet architecture

In the deep neural networks, modern architectures
such as Xceptiorf22] and L2MXception [23]
exploit repetition of one or more specific blocks.
An architecture designed using this technique is
ShuffleNet. In ShuffleNetthe group conwlution

is used instead d@he point convolutionin orderto
improve the network accuracy. By stacking group
convolutions, the outputs of a certain group
depend on the inputs within the group, and the
information flow between the channels from
different goups is stopped. In ShuffleNet, this
problem is removed byhe shuffling operation

a)

convolutional

neur al net wor k f
which obtains the input data from different
groups. The shuffling process makes the input and
output channels completely interdependent. As
one can see in Figure, ShuffldNet usesthe
operations such as depthwise convolution,
pointwise group convolution, and shuffeling
operationsin order to reducethe computational
cost. In the unit with stride = 2, in order to be able
to connect the output of the main path and the
shortcu, the AVG pooling technique is used with
stride = 2[17].

In the main path othe ShuffleNet units, the input
channels first pass through a GConv layer. In the
GConv, each kernel looks at only a few input
feature mapsand combines some information
aaossthe channels. In this architecture, GConv is
used for reducinthecomputational complexity of

1 x 1 convolution. You can sethe pointwise
group convolution in Figur8.

The GConv output is normalized usitige BN
technique and passed through theivatibn
function of Rectified Linear Unit (ReLU). The
reason for using BN is that during the learning
processusing the gradient descent algorithm, the
network weights change after each step, and
consequentlythe shape of the data that enters the
next layer changes. BN causes the next layer to
receive the data as expected (similar to the
previous step). As a result, higher learning rates
and less dropout can be wused. Fdthe
normalization purpose, suppose

x:(x(l),x(z),...x(d)) is a ddimensional data
each dimension is normalized by (23].

hd

AVG pooling
(stride =2)

BN
Relll

Figure 2. ShuffleNet architecture a) ShuffleNet unit; b) ShuffleNet unit with stride =2 [17].
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Groups

Height

Depth
input
channels

Depth
output
channels

Figure 3. Pointwise group convolution.

In (1), E and Var are patimension mean and

variance, respectilie

After BN, the RelLU activation function is used
(2). This activation functions decide whether a
particular neuron is active or inactive.

(k) :
X - E@X
g=" 8 )
Wargx" g
e0if x¢O
ReLU( X =)
© (9 }x otherwise @)

In (2), x is the input of the functigand itsoutput
is zero for negative numbers and x for positive
numbers.

The channels are then shuffled based on the
shuffling operation. In this operation, the channel
indices are changed, which occurs byshaping
the related tensor and calculating its trangjmws

The output of the shuffling operation enters a
DWConv. In this type of convolution, a 2D depth
filter is applied to each depth level of input tensor
and the kernel has different spatial dimensions but
only one channel.The dpthwise convolution
kees each channel separate. You can see
DWConv inFigure 4.

New Height

Height

Depth
mput
channels

Figure 4. Depthwise convolution

The output DWConv enters GConv to recover the
channel dimension to match the shortcut path. The
difference between the two units of this
architecture is that in thenit with stride= 2 used
AVG pooling in the shortcut path and channel
concatenation to connect outputs. The purpose of
concatenation is to make it easy to enlarge
channel dimension with little extra computation
cost.

2.2.2. ShuffleNetV2 (SHNet) architeture

In ShuffleNetV2, known in the presemtork as
SHNet, four guidelines were adopted for
designing an efficient network. An indirect metric
used to calculatéhe computational complexity is
the number of floatingoint operations per
second or FLOPs. Thimetric is not equivalent to

a direct metric such as speed or delay. It has been
proven that some networks with the same FLOPs
have different speed48]. In the researctvork of
[18], it has beestated that the use of FLOPs only
as a metric of computational complexitynoiges
the optimal network design. There is a difference
betweenthe indirect metrics (FLOPs) anthe
direct metrics (speeds) for two reasons. First, a
factor such as the Memory Access Cost (MAC),
which affects speed, is not considered by FLOPs.
Secondly,the runtime in models with the same
FLOPs is directly dependent on the type of
hardware usefl 8].

These four guidelines ardirst, equa channel
width reduces MAC secondy, use of group
convolutions can increase MAC. In this guideline,
it has been proven that as the number of group
increases, the speed of network decreases. Thus it
is important to pay attention to the choice of the
numbe of groups in the model. For example, in
the study of[17], the model based on group
convolution did not consider this guideline
thirdly, if the network is fragmented, the degree of
parallelism and the efficiency of the network is
reduced. One of tharchitectures that contradicts
this guideline is the architecture proposedliy;
fourty, since in GPU much time is spent on
performing elementwise operators such as RelLU,
AddTensor, AddBias, and even depthwise
separable convolution, care must be taken in their
use[18]. By following the above four guidelines,
two units were designeds shown in Figure 5.

In explaining the operations performed in each
oneof the blocks or units, it can be statbat in
blockl, which is SHNet unit with stride Z there
are two pathsmain and shortcut. In the main path,
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after applying Conv (1x1), BN and RelLU
activation, a DWConv is used. BN is performed
again and the output of Conv (1x1) is
concatenated to the output of the shortcut path
after applying BN and ReLU. The number of
input and output channels per convolution in the
main path is equal. In the shortcut path, a
DWConv is applied directly to the inguand the
continuation of the path is the same as the main
path. In the main path of blocklunlike
ShuffleNet, the pointwise rgup convolution is
not used because it increases MAR.order b
better understand this, pay attention to (3) and (4),
which show the relatia between MAC and
FLOPs forthe1 x 1 group convolutiof18].

MAC=hu(g +G) %=

3
hwq+@ +—B ©
C \W
B:M (4)
g

In (3) and (4),g is the number of group. The
numbes of input and output channel a@ and
C, respectively.

h andW are the spatial size dhe feature map
and B is FLOPs. According to these equations, if

the input shape@? h 3w) ard B are constant

and only increase the number of groups, MAC
will also increas€18].

Also the channel shuffling operation is eliminated.
The shuffling operation is applied to the output
obtained by concatenating these two paths finally.
In block2, using the split operation, the number of
input feature channels is divided intiee ¢ and

C- Ci channels in each path. £ is considered

Q

[ Channel split ]

convolutional

neur al

half of cj, in each block, half of the feature
channels are inserted directly into the next block,
which reuses the features in this way. The main
paths in blockl andblock2 are exactly the same
and the output of the shortcut path is directly
concatenated to the output of the main path.

In summary, the ShuffleNet architecture is one of
the shallow architectures that has reached its
ultimate goal based on the featureuchels in the
image, and this architecture is used in devices
such as mobile phones. The problem of limiting
the number of feature channels in shallow
networks was fixed in the first version of
ShuffleNet. In the ShuffleNet architecture, in
order to raisethe number of feature channels
without changing the number of FLOPs, two
methods of GConv and ShuffleNet units are used.
Also the shuffing method is used to create
information interdependence betwettre groups

of channels and enhance the network accuracy
SHNet considers ShuffleNet inefficient. The
problems that SHNet raises for the first version of
ShuffleNet arg18]:

1- By increasing th@umber of feature channels
with pointwise group convolutions and
bottleneck structures such as ShuffleNet
units, the MAC value increaseswhich
cannot be ignored forthe light-weight
models.

2- Reducing the network parallelism due to the
large number of grqas will have a negative
effect on the accuracy and efficiency of the
network.

3- Use of add operations increagbs training

time.
Information between different groups in this
network is lost.

@

| DWConu(3+3) |

BN

DWConu(3x3) L
Cony(1x1)

BN

Cony{1x1)

BN

BN
RelU

Comy(1x1)

K

o]

B

Figure 5. SHNet architecture a) SHNet unit or block2; b) SHNetnit with stride = 2 or block1[18].
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2.2.3. SENet architecture

In the study of[19] and based on the idea of

explicit modeling of interdependencies between
channels, the SENet architecture has been

proposé. The nets are better able to map the
channel dependency along with access to global
information and recalibrate the filter outputs by

= Fo (W)

X U yUﬂUﬂU
IxxC

SENet block.
performance
The SENet block shown iRigure 6.was used for
this purpose. This btk consists of three sections:
squeeze module, excitation modulend scale
module. In this block, inputXi R'*W ¥ js
mapped to feature mapsUi R™W* by

convolution operatoF,, .

Finally, it improves the

[T (T]

Ix1xC

(4

Focate (-27)

w' W
' C

Figure 6. Squeer and Excitation block in SENet architecture[19].

In (5), V:[Vl,vz,....\é] is the set of learned
filter kernels, wherev, refersto the parameters of
the cth filter, and its output i) =[u;, U, ...14] .

Ci

U =Ve* X 3 & X

Ve =8V, Vo
X =, %, 0 ™
ul R )
In (5), * refers to the convolution operatiox;
denotes &D spatial kernel that represents a single

channel v, operating on the corresponding of

channel X . In order b create a channel
descriptorthe U features are passed through the
squeeze operatipnand the feature maps are
aggregated in their spatial dimensiond {W).
Once the fature maps are aggregated, the
excitation operation is performed, which is a
simple selfgating mechanism. By stacking the
squeeze and excitation blocks, SENet is created.
The notable point about this network is its low
computational codi9].

The squeeze operation in SENet uses a global
averaging pooling. Compressitige global spatial
information into channel descriptors by an
average global pooling solves the problem of
channel dependence. This pooling layer
transformsU into Z, where the feature maps of
C become 131 C, for example, the -+h

component ofZ is calculated in (9).

®)
(6)

1 .. . ..
=Ro(u) =S-A L au(i) ©

H3w

where Z, refers to the output of the squeeze

operation,H 3 W indicates the spatial dimension,
and u refers to the feature map. The excitation
operation is performed on the output of the
squeeze operation. This operation is indeed a
sigmoid activator that aims to ughe learning
parameters to model the éntlependere between
the feature channels and generate the weight of
each feature channelln order b limit the
complexity of the model, two FC layers have been
used between these two operati¢t@]. Figure 7
displays a block diagram of the SENet block.

The nput dimensions tadhe SENet block are
H3W 3C. This inpu passes through the global
pooling and changes its dimensionslfol T.

Via this technique, each channel is compressed to
a single numeric value. Using a FC layer after the

C
pooling, the number of channels is reduced+o
r

and then passed through a ReLU activation. Next,
using another FC layer, the number of channels is
returned to the primary value. Finally, the output
of the sigmoid function is scaled with the input,
and the output is created withettsame initial
dimensions as the primary input. These steps add
a computational cost of less than 1% to each
network. So far, SENet has been used in different
convolutional network§gl9].

In short, we can say about this architecturett 1
has used a convolution block as an inpuinZhe
squeeze module, each channel igesmyed into a
single value usingheaverage pooling.-3n order
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to reduce the complexity of the output channels, a
dense layer followed by a RelLU adds non
linearity. 4 Another FC layer followed by a
sigmoid gives each channel a smooth gating
function. 5 Finally, it weights each feature map
of the convolutional block based on the side

network the "excitation".

2.3.Proposed architecture

In any image classification taskthe pre
processing operations are usually required in order
to achieve better resaland reduce the effects of
noise and distortions. CNN uses less -pre
processing thamhe other classification methods.
This is mainly due to #hfact thatthe filtering
processes are automatically performed in the
convolution layers of CNNs. However, withthe
CNN framework, a required pqgrocessing step is
to resize the input images tioe same size. In the
proposed architecturethe input images are
resized to 128 x 128. Our experiments show that
using such an image size improves the network's
ability to capture the images informatjowhile

the computational complexity is restricted.
Another preprocessing step of the proposed
model is normalization for rescaling the pixel
values. This puts the pixel values in a certain
range.

Inspired bythelightweight architectures with very
low computational complexity such as SENet and
SHNet thiswork aims to preserve the benefits of
these architectures such as emphasizingthe
informative features and suppressitige less
useful ones, and to reduce the numbenetfvork
parametersn order toachiewe ahigher accuracy
thantheprevious architectures.

The block diagram of the proposed model can be
seen inFigure 8 It is observed that once the
network input with dimensions of 128 x 128 x 3
has passed through theonvolution layer and
global maximum pooling, it goes through three
main stages. Eacbne of these stages involves a
combination of blockl and blockZreviously
shown inFigure 5.Finally, the last four layers of
this architecture are convolution, glolmaaximum
pooling, FC, and Softmax.

the network outputs for classification, and the sum
of its outputs is 1. Indeed, the Softmax output
indicates the possibility of correctly classifying
eachone of the classes. Equation (10) expresses
the Softmax activatiofunction.

7

(9 =—— (10)
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where z is a vector dthe inputs to the output
layer (for example, if z has 5 elements, the output
will be 5 units), i = 1, 2... K is the output units.

Thez values are the elements oktimput vector
to the output layer. The standard exponential

function is e.

—/

HxWxC
y

[ Global pooling ]

1x1x C

A 4
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1x1x%
\ 4

1x1=

\ 4

ECZ]

1x1x C

A 4

I Sigmoid I
Scale

1x1x C

HxWxC

Figure 7. Block diagram of SENet[19].

The Softmax activation function is usually used at
The difference between the two proposed
architectures AgriNet131 and AgriNet373 is in the
number of repetitions dhe blocks in @choneof

the stages. For examplEigure 9reveals a block
diagram for the AgriNet131 model. In this model,
in stagel and stage8 after blockl, block 2 is
located, while in stag@ after blockl, block?2 is
repeated three times. If the AgriNet373
archtecture is considered, in eaane of the
stages after blocK, block 2 is repeated three
times, seven times, and again three times,
respectively, and the continuation of the process is
similar to the AgriNet131 model. Due to the large
architecture of Aghlet373, its block diagram is
not shown.

applying BN and ReLU. The number of input and
output channels per convolution in the main path
is equal. In the shortcut path, a DWConv is
directly applied on the inpu&nd the continuation
of the path is the sanas the main path. In each
oneof the stages, after concatenating the outputs
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of the main and shortcut paths, the informative
features are emphasize@dnd the less useful
features are suppressed using SENet. Then the
channels will be shuffled usinghe chamel
shuffling operations. Finally, after the completion
of stage 3, as seen in Figure 10, the output (O)
passes through the final 4 layers (convolution,
global maximum pooling, FC, and SoftMax) and
the input image is classified.

Section SHNet architectur@describes the internal
structure of each block.

Figure 10 showshe details of AgriNetl31. It is
observed that the network input has passed
through the convolution layer and global
maximum pooling, going through stages 1, 2, and
3. Each one of these stagesinvolves a
combination of blocks 1 and 2.

Each one of these blocks consists othe
components such as convolution, Depthwise
convolution, batch normalizatiomnd ReLU. As
shown in the figure, for example, there are two
main and shortcut paths in block h the main
path, after applying Conv (% 1), BN, and RelLU
activation, a DWConv is used. BN is performed
again and the output of Conv (Ix 1) is
concatenated to the output of the shortcut path
after applying BN and ReLU. The number of
input and outputhannels per convolution in the
main path is equal. In the shortcut path, a
DWConv is directly applied on the input, and the
continuation of the path is the same as the main
path. In each one of the stages, after concatenating
the outputs of the main andatcut paths, the
informative features are emphasized, and the less
useful features are suppressed using SENet. Then
the channels will be shuffled using the channel
shuffling operations. Finally, after the completion
of stage 3, as seen in Figure 10, théput (O)
passes through the final 4 layers (convolution,
global maximum pooling, FC, and SoftMax) and
the input image is classified.

2.4. Evaluationmetrics

In this sectionthe metrics used for evaluating the
performance of the proposed method are
introduced.

Accuracy: The most important metric for
determining the performance of a classification
algorithm is the classification accuracy or rate.
This criterion calculates the total accuracy of a
classifier. Indeed, this criterion is the most famous
and geeral metric for calculating the performance
of the classification algorithms, which shows that
whether a model is being trained correctly and
how it may perform generall25].

Number of correct predictions

Accuracy —
Total number of predictions mac

(11)

Loss One of the most important goals in
designing a network is to enhance the forecasting
accuracy which is calculated by a cofunction.
This function fines the network when it makes a
mistake. The best output occurs when there is the
minimum cost and the optimization algorithms
are used to achieve it. The optimization algorithm,
based on the cost function and data, determines
how the network weights are updated to optimize
the network. One of the appropriate algorithms
that adjusts the learning rate during the training
process is the Adam algorithm (Adam: a method
for stochastic optimizatiorfp5].
Precision= T.n.Je Positives — (12)
True Positives False Positive

Recall: The maximum value of this criterion
is one or 100%, and the minimum walis zero
The recall is the ratio of the correct positive
predictions to all the observations in the real class.
This will be a good metric when the False
Negative value is hig[25].

—C—

()

Figure 8. General structure of AgriNet architecture.
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Figure 9. stagel, stage?, and stage3 in AgriNet131
model.
True Positives
True Positives False Negati\
F1 Score One of the best criteria for evaluating
the accuracy of a testis F1_Score. This criterion is
1 in the best case and 0 in the worst case, and is
calculated based dhe pecision andecall[25].

Recall= (13)

F1_score=2 JPrecisiof Recall

— (14)
Precision+ Recall

2.5. Equipment

Thiswork was developed usinfpe Python's high
level interpretive programming language
Pycharm  programming environment and
TensorflowKeras framework have been used in
all stages of the worklhe GeForce graphics card
used was the GTX1080 with 2560 CUDA cores
and 8GB of memory.The ®mputational time
using this equipment will be discussiedthe next
section.
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3. Experimental Results and Discussion
In this section,the details of our experimental

study and the results are presented.

3.1. Experimentalsetting

When designing a DNN, consideration should be
given to selectinghe values suctas the number

of layers, number of neurons in each layer,
number of epochs, and size of the batch used.
Finding the right values for the mentioned cases is
experimentgland should be selected in a way that
it does not adversely affect the accuracy and
speed. For example, if the number of hidden
layers of the network is largethe network
performance is better but the speed of the network
is affected.

3.2. Parametersetting

In order b understand the two concepts of number
of epochs and batch size, thencept of gradient
descent should be introduced. This concept is
generally used to optimize the network, which is
applied to find the best response based on
iteration. The gradient descent has a parameter
called the learning rateAt the beginning, the
sters are larger and the learning rate is higher, and
as the steps shrink, so does the learning rate. By
gradient descent, the cost is also reduced and the
model is optimized26].

In this work, in orderto accelerateonvergence,
the learning rate is controlledand if no
improvement is seen in the convergence process
after three epochs, the learning rate s
automatically reduced. The new learning rate is
obtained through multiplying the initial learning
rate by 0.5.The lowest learning rate in the
proposed architecture is 0.00001. At the end of an
epoch, the entire training dataset is sent to the
network once.Thus an epoch is a very large
process and it is better to break it into smaller
batches. In this way, all tacan be sent to the
network several timesand the appropriate
weights in the network can be obtained. The
hyperparameters in the proposed architecture are
given in Table 2. The network is trained using the
training set for 50 epochs with a batch sizd 23

and compress rate Xéll numbers were obtained
experimentally using the validation dataset).

Table 2. Hyper-parameters of proposed model

Parameters Setting
Batchsize 128
Imagesize (128,128,3)
Optimization Adam
Epoch 50

Compressate 16

(0]

r
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3.3. Model training

Use of all available data to train the network does
not seem logical. It is best to divide the available
dataset into two parts: training and validation. In
this work, 70% of the available imageare
considered for the network training ad the
remaining 30% are considered te validation
sets.

One of the criteria for evaluating an architecture is
accuracy. Accuracy refers to how close the value

predicted by a machine algorithm is to its true
value.The retwork performance is directly etked

to the accuracy criteria, and a network with
higher accuracy has a better performance. The
right images of Figure$lto 14 show a reduction

in loss, and the left images show an increase in
accuracy in 50 epochs. As the model learns, the
loss succesfully decreaseswhile the accuracy
increases.

I = Input

O = output

C =convolution

GMP = Global Maximum Pooling
DWC = Depthwise Convolution
B1 = Blockl

B2 = Block2

BN = Batch Normalization

CS = Channel Split

CO = Concate

CSH = Channel Shuffle

Figure 10. Figure with more details of Model AgriNet131.

Figure 11depicts the accuracy and loss diagrams
in both training and validation in the AgriNet373
and SHNet373 networkslhe training accuracy
and loss in both networks has the best value, 1 and
0, respectively, while in validation, AgriNet373
performed better.

Figure 12indicates the loss and accuracy curves
of the two architectures AgriNetl31 and
SHNet131 inthe two phases of training and
validation. Asit can be seein the figures, both
networks have reached accuracy 1 in the training
phase and are very close in the validation phase.
Also the loss figures are very close in both phases

The two curves related to the proposed
architecture arecompared inFigure 13 In the
initial  model (AgriNet373) and reduced

parameters model (AgriNet131),dbuld be seen
that the loss in both networks as well as in the
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training and validation phase reached zero after
approximately 20 epochs and remained
unchanged Note that the accuracy of the
validation phase was better in the AgriNet131
architecture than in the AgriNet373

When comparing the two curves related the
SHNet networks in the two initial model
(SHNet373) and parameter reduction model
(Figure 13, it is observed that the lowest and
highest loss irthe validation phase are related to
SHNet131 and  SHNet373, respectively.
Concerning accuracy in the validation phase, the
highest value is related the SHNet131 states. In
the training phase, both meirks operate almost
identically.
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Figure 11. Comparison of accuracy and loss in AgriNet373 and SHNet373 architecture.
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Figure 12. Comparison of accuracy and loss in AgriNet131 and SHNet131 architecture.
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In all of the above curves excepigure 14 after
about 20 epochs, the amount of loss and the
amount of accuracy have reached their minimum
and maximum values, respectively, and have
remained almost unchanged. Figure 14 this
situation occurred in about 10 epochs.

Table 3 reports theAccuracy, F1_score, Loss,
Precision, and Recall ithe training, validation,
and testing phases in SHNet373, SHNet131,
AgriNet373, and AgreNet131 architectures.

All  the experiments were performed on
APl antVillageo with 14
healthy andliseased groups.

As it can be seen in Table 3, in the training phase,
the best performance in term of accuracy is 1 that
belongs to all models. This indicates that the
network is wekltrained.In the validation and test
phase,the AgriNetl31 network has shvn the
best performance in terms of accuracphis
indicates that the proposed model (with the lowest
repetition rate in blocks) is able to classify the leaf
disease images with a very low error rais. a
result, in the proposed architectut®y reducing

the number of iterations of units, in addition to
reducing the number of parameters from 4051690
in AgriNet373 to 2661978 in AgriNetl31 (the
number of parameters is almost halved), accuracy
has increased from 0.97 to 0.98 in the test and
validation phase Since the difference in the
accuracy of the two test phases in the AgriNet373
and AgriNetl31 models is very small, it is
preferable to use the AgriNetl31 model with
fewer parameterdn the training phase, reducing
the number of blocksand consequentlythe
namper ef parameters didin@t change the accuracy
of the network On the other hand, in the
validation and test phasieimproved the accuracy

of AgriNet and SHNet by %. The best F1_Score
has been achieved in the validation and testing
phase of all mdels. The lowest loss among the
models and in all phases belongshe SHNet131
model. The best precision has been achieved in
the validation and testing phase of all modérse
recall values are all acceptable in all cases.

Table3. Accuracy, F1_scorel oss, Precisionand Recall in training, validation, and testing phases in SHNet373, SHNet131,
AgriNet373, and AgreNet131 architectures

SHNet373

50 epochs Accuracy F1_Score Loss Precision Recall
Train 1 0.994 6.676€ 0.988 1
Validation 0.963 1 0.145 1 1
Test 0.962 1 0.153 1 1
SHNet131 Accuracy F1_Score Loss Precision Recall
50 epochs

Train 1 0.944 6.093¢ 0.988 1
Validation 0.975 1 0.090 1 1
Test 0.976 1 0.091 1 1
AgriNet131 Accuracy F1_Score Loss Precision Recall
50 epochs

Train 1 0.94 0.0006 0.988 1
Validation 0.980 1 0.074 1 1
Test 0.980 1 0.075 1 1
AgriNet373 Accuracy F1_Score Loss Precision Recall
50 epochs

Train 1 0.994 0.0001 0.988 1
Validation 0.971 1 0.122 1 1
Test 0.979 1 0.125 1 1

Peach_bacterial_spot disea¥be reason for this

Table 4 shows examples othe network
performance on healthy and diseased créach
column mentions the name of the product and the
type of leaf disease related to it; in each row of the
table, the probability of belonging to the class in
the architecture and the name of the class
predicted byhe network are also mentioned.

It is shows that in the diagnosis of healthy grape
leaves, all architectures have correctly identified
the leaf class, and the AgriNet architecture
outperformed the SHNeOnN the other hand, the
healthy peach leaf ithe AgriNet131 architecture

is mistakenly known as the leaf with
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misclassification can be attributed to the very
similarity of Peach_bacterial_spot to
Peach_healthThe architecture has also worked
well for defectve peach leavesn general, except
for one error in other cases, the proposed network
can assign the images to the correct class with the
highest probability. This shows the high accuracy
and efficiency of the proposed model

Table 5 reports the accuraapd hardware of the
networks that used the PlantVillage dataset. Three
studies[27], [28] and [29] were limited tothe
tomato products from this dataset. They classified
tomatoes into 10 different classes including
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healthy tomato leaves and 9 diseased leaf samples.
The highest accurgcin these three studies was
98.4%. Only in the present study and the study
[30], all 38 classes in the PlantVillage dataset are
covered. In[30], two networks, AlexNet and
GoogleNet, are used in two modesansfer
learning andtraining from scratchThe AlexNet
architecture is categorized as shallow
architectures. The GoogleNet architecture with 9

Inception modules has only 5 million parameters,

convolutional

neur al net wor k f
which is 12 times less than the number of
parameters that can be learned in AlexNet.
However, the proposed architecture has only
2661978 learnable parameters. Given the size of
the network and the limited numbof learnable
parameters, the accuracy obtained from the
proposed network has been acceptable.

Table 4. Examples of results obtained from AgriNet373, AgriNet131, SHNet13and SHNet373 architectures

Sample name Grape-healthy

Grape_leaf_blight

Peach_healthy Peach_bacteri

leaf_spot) al_spot

Sample image

0.99

0.99

Possibility of belonging to 1 0.99
the desired class in Grapehealthy Grape_leaf blight Peach_healthy Peach_bacterial
AgriNet373 architecture/ (isariosis_leaf_spot) _spot
Network predicted class
Possibility of belonging to 0.99 0.99 0.92 0.99
the desired class in Grapehealthy Grape_leaf_blight Peach_bacterial_spot Peach_bacterial
AgriNet131larchitecture/ (isariosis_leaf_spot) _spot
Network predicted class
Possibility of belonging to 0.91 1 0.99 0.99
the desired class BHNet131 Grapehealthy Grape_leaf_blight Peach_healthy Peach_bactal
architecture/ (isariosis_Leaf spot) _spot
Network predicted class
Possibility of belonging to 0.98 0.99 0.97 0.99
the desired class BHNet373 Grapehealthy Grape_leaf blight Peach_healthy Peach_bacterial
architecture/ (isariosis_leaf_spot) _spot

Network predicted class

Due to the fact that SHNet is 40% faster than
ShuffleNetV1, the runtime of the proposed model
is very close to Shu#NetV2. The network
training time on our GPU and with the same batch
size is 9739 s for the SHNet and 9856 for
AgriNet. The test time in the proposed model is
about 15 ms (for all test samples), while it is about
18 ms in the SHNet. We believe that theaim
additional computational cost incurred by AgriNet
is justified by its contribution to model
performance.ln order b compare thehardware
used in the present study a@®], which is in the
4th row, some points should beted. There are
two types of technolagsin the manufacturing of
Nvidia graphics card: CUDA Cores technology
and Tensor Core§.he CUDA technology allows
hundreds of separate Nvidia graphics chips to
proces thedata in parallelThe ensor technology

is designed to aeterate the learning capabilities
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of an artificial intelligence system. This
technology is 47 times faster than a CPased
server and 12 times more powerful than Nvidia's
previous GPU produst[31]. Due to the very
strong technology used in the study[80], the
results obtained in this study are rekadole.
Challenges that may be faced usthg new test
data are:

1- The biggest challenge farbig dataset is
hardware constraints. How to store and
import such a volume of data into the
model also has its own problems.

If the dataset is small, in order tohaeve
acceptable results, the number of input
data should be increased in different ways
such as data augmentation.

In the datasets that have a more crowded
background, more initial psprocessing is
required.

(0]

r
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In order o fill the research gaps, a new inetl

has been proposed for automatic detection as well
as classification of plant leaf diseases using
AgriNet. The advantages of the proposed
algorithm are as follow:

2- In order to increase theformation flow
in the network, the shuffling process has
been used.

3- In addition to reducing the number of

parameters, the complexity of the network

1- Recalibration has been used to increase has been reduced.
thenetwork accuracy.
Table 5. Comparison of accuracy and hardware of networks working on the PlantVillage daset
Numb Numb
Numb Method or System Number er of
Dataset o . crop er of Test accuracy
er author specifications  of images crops
A classes
reviewed
Mohammed
Br?gmgl _ GPU: Quadro K AIe_xl_\lewithout pre
1 Boukhalfa, PlantVilla 5000 4GB 14,828 1 Tomato 10 training: 97_.35%
Abdelouahak ge 1536 cores GooglgNetthhot:t pre
Moussaoui 128 GB RAM training: 97.71%
[27]
Mohit GPU: NVIDIA
Agarwal, Sunee PlantVilla DGX v. 100
2 Kr. Gupta, K.K. 40600 CUDA 18160 1 tomato 10 98.4%
Biswas ge cores
[28] 128 GB RAM
Halil Durmud, GPU: Nvidia
Ece Qcay Guneu  PlantVilla Jetson Tx1 ) 1 tomato 10 AlexNet: 95.65%
Mirvet KOrcO ge 256 CUDA cores SqueezeNet: 94.3%
[29] 4GB RAM,
Apple,Blueber
y
Cherry,Corn
Sharada P. Grape,Orange
Mohanty, GPU: NVIDIA Peach,Bell Training from scratch
4 David P. PlantVilla Tesla V100 54306 14 Pemer 38 AlexNet: 97.82%
Hughes, ge 640 tensor core Potato,Raspbe GoogleNet: Training fron
Marcel Salath 32GB RAM y scratch: 98.36%
[30] Soybean,Squi
h
Strawberry,Tc
mato
GPU: GeForce
) GTX 1080 .
5 SHNeta7a  PaVIld - oseocupa  saz06 14 SMIAOTOW g 96.20%
ge cores,
8GB RAM,
GPU: GeForce
PlantVilla GTX 1080 Similar to row
6 SHNet131 ge 2560 CUDA 54306 14 4 38 97.60%
cores,
8GB RAM,
GPU: GeForce
. PlantVilla GTX 1080 Similar to row
7 AgriNet373 2560 CUDA 54306 14 38 97.90%
ge 4
cores,
8GB RAM,
GPU: GeForce
) GTX 1080 -
8 AgriNet1z1 ~ FlaWVilla  Hoghcupa 54306 14 S'm'fr torow a9 98%
ge cores,
8GB RAM,

4. Conclusion

In this work, a new method was proposed for
diagnoing and classifying plant diseases of
various crops such as caandapples using CNN.

In this way, the learnable parameters of the
proposed network were reduced. Based on the
results of the implementation of the proposed
architectures, the high efficien@and accuracy of
the AgriNet131 architecture in diagnosing and
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classifying diseases of agricultural products were
proved. Given the variety of diseases in the
database, the accuracy of 98% seems acceptable.
In the future,in order to improve the network
performance, after using SENdhe channels can

be grouped, and then those groups can be shuffled
through channel shuffling operatignsvhereby
better results can be obtained.



Agri Net: a new classifying
Acknowledgment

This researchwork did not receive any specific
grant from fundiag agencies in the public,

commercial or noefor-profit sectors.

References

[1] K. Kiani, R. Hematpour, and R. Rastgoo,
AAut omati c Grayscal e Il mag
Deep Hybr Jadirnaviaf Aland,Data Mining,

vol. 9, no. 3, p. 321328, 2021.

convolutional

neur al network for
Ar e aSkaclkoand Vibrationyol. 2021, pp. 8883571,
202101/23, 2021.

[13]JAnj na, M. Sood, and P.
for Detection and Classification of Plant Disease Using
Qualitative Textur €roceBi at ur e
Computer Sciencepl. 167, pp. 1054.065, 2020.

(141N Jyrkoglu, ang . Hanpayd |, etaded plant

Speci€s “recoghition based on improved local binary
pattern and extr eRegsicd Bar ni n
Statistical Mechanics and its Applicatiqr019.

K.

YN, Sharma, V. dain. and gye Miggdd 8w id &8 2 Al
Of Convolutional Neural Networks For Image o : .
. . o AReview of the Sepadaraingdof t he
Cl as s i fHrocain Camputed Scienceol. 132, Pl ant Di seases: A Broad An a
Pp. 377384, 2018. Plants,vol. 9, no. 10, pp. 1302, 2020.
[3] J. Jung, M. Maeda, A. Chang, M. Bhandari, A. : .
Ashapure, and J. lnglivarB o wl e s , AThe p él?] % nS'tAlurg“P’ G'o - de Almeida, C; L. de Castrg,
an A P. raga, ALearning f

remote sensing and artificial intelligence as tools to
improve the resilience of agriculture production
s y st eonent Opinion in Biotechnologwol. 70,
pp. 1522, 2021.

[4] B. Liu, Y. Zhang, ibationHe,
of Apple Leaf Diseases Based on Deep Convolutional
Neur al N Symwmetry Mols 1,0,0no. 1, pp. 11,
2018.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton,
Al mageNet classification
neur al nGoimua. rAEMypl.060, no. 6, pp.
84-90, 2017.

[6] C. Szegedy, L. Wei, J. Yangqging, P. Sermanet, S.
Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A.
Rabinovich, "Going deeper with convolutions." 2015,

pp. 1:9.
[71 Q. Yan, B. Yang, W. Wang, B. Wang, P. Chen,

with Weighted Cros&E ntr opy FNeuvad t i on,
Processing Lettersyol. 50, no. 2, pp. 1937949,
2019.

[17 X.th g, >?E .Zhou,ﬁ . Iéin & fJ. Sun,
"SAUIENet! An x&rémely fﬁjmen Convolutional
Neural Network for Mobile Devices." 2018, pp. 6848
6856.

[18]N. Ma, X. Zhang, HT. Zheng, and J.Sun,

and

ﬁsn] ffleNet V2: Pr.acti cal G
o\ L11Ar gﬁ??ecctounrvemdf&és'iognna,lb 20
[19]J. Hu, L. Shen, and G. Sun, "Squeens

Excitation Networks." 2018, pp. 713241.

[20]K. Rangarajan Aravind, P. Maheswari, P. Raja,

and C. Szczga GEs kK i " C-hGrgptdsaase ni n e
classification using deep learning approach: an
overview and a case studyDeep Learning for Data
Analytics pp. 173195: Academic Press, 2020.

and J. ppk aeafdiseasegdrRecognition Based

on An | mproved Convol ut i o21pllGu, R &/ang,all Kuey . May &.rSkahroudy, B.

Sensorsyol. 20, no. 12, 2020. Shuai, T. Liu, X. WAng, G. Wang, J. Cai, and T. Chen,
ARecent advance in convol ut

[8] Y. Zhong, and M. Zhao, RReSBE &8 on e

l earning in appl e Compufers di SPé';\t(IierSn gsecorgréltlcorgoé ?17i ptp'is%ﬁgn??’ %618'

and Electronics in Agricultureyol. 168 pp. 105146, [22]F. Chollet, "Xception: Deep Learning with

2020.
[9] W.-z. Liang, K. R. Kirk, and J. K. Greene,

Depthwise Separable Convolutions." 2017, pp. 1800
1807.

AEsti mati on of soybean | eal[@3]M Vao,a,Ni, & dMamg, J. lauo, d¥K.dSang,aCl i at i o
usi ng color i nCamgpeters aam&a | ydiu®, 0 and G. Li, AL2MXception
Electronics in Agricultureyol. 150, pp. 4351, 2018. net work for classi fiRaatti on
[10]A. Kar | ekar , oydet Goybkan leSfe a | Metho'g%/ol. 17, no. 1, pp. 36, 2021.

di seases c Coanpuersfand ERdtronicsnin o
Agriculture,vol. 172, pp. 105342, 2020.

[11]S. Kaur , S. P a n d eaytomatiz n d
leaf disease detection and classification system for
s oy b e an IETUmMageProessingyol. 12, no. 6,

pp. 10381048, 2018.

[12]J. Xiong, D. Yu, Q. Wang, L. Shu, J. Cen, Q.
Liang, H. Chen, and B. Sun
Equalization for Image Enhancement in Corrosion

301

[24]L. Chen, H. Fei, Y. Xiao, J. He, and H. Li, "Why
batch normalization erks? a buckling perspective.”
?é).ﬂ’ p&'olle 1,89' iSemi

[25]N. D. Marom, L. Rokach, and A. Shmilovici,

"Using the confusion matrix for improving ensemble
classifiers." 2010, pp. 55559.

[26]E. M. Dogo, O. J. Afolabi, N. I. Nwulu, B. Twala,

and TTAQ. pAlghalmoa, t"A Gamparative HAmalysisoof r a m
Gradient DescerBased Optimization Algorithms on
Convolutional Neural Networks." 2018, pp.-99.



Sadeghi & Salimian Najafab@dJournal of Al ad Data Mining,Vol. 10, No. 2202

[27]M. Brahimi, M. Arsenovic, S. Laraba, S.
Sladojevic, K. Boukhalfa, and A. Moussaoui, "Deep
Learning for Plant Disease®etection and Saliency
Map Visualisation,"Human and Machine Learning:
Visible, Explainable, Trustworthy and Transparegyp.
93117, Cham: Springer International Publishing,
2018.

[28]M. Agarwal, S. K. Gupta, and K. K. Biswas,

ADevel opment CNdfmod& ffof Tamate n t
crop
Informatics and Systemsl. 28, pp. 100407, 2020.

[29]H . Dur mus, E. 0. G¢nes,
detection on the leaves of the tomato plants by using
deep | ear vi6th dntematianal Cohférdnce
on Agro-Geoinformatics, 2017, pp-3.

302

[30]S. P. Mohanty, D. P. Hughes, and M. Salathé,

fUsi ng Deep L eBased PlanyDistasea | ma
De t e c tFrorgiers, in Plant Sciengevol. 7, no.

1419, pp. 17, 2016.

[31]L.-C. Chang, E. EAraby, V. Q. Dang, and L. H.

Dao, AGPU acceleration of n c
estimation using CUDA and MPI , 0

Neurocomputingyol. 135, pp. 32838, 2014.

di s e as e Sustalnabiet Gofmputingct i on, 0

and M. Kirci, AfDi sease



