[1] T.M. Cover and P.E. Hart, “Nearest neighbor pattern classification”, IEEE Transactions on Information Theory, vol. 13, pp. 21–27, 1967.
[3] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis, Wiley Inter science, New York, 1973.
[5]
JJ. Valero-Mas and
FJ. Castellanos, “Data Reduction in the String Space for Efficient k-NN Classification through Space Partitioning”,
Applied Sciences,
vol. 10, pp. 33-56, 2020.
[8] D. Hwang and D. Kim, “Nearest Neighbor-based prototype classification Preserving Class Regions”, Journal of Information Processing Systems, vol. 13, pp. 1345-1357, 2017.
[9] S. García, J. Derrac, JR. Cano, and F.Herrera “Prototype selection for nearest neighbor classification: Taxonomy and empirical study”, IEEE Trans. Pattern Anal. Mach. Intell, vol. 34, pp. 417–435, 2012.
[10] M. N. Ivanov, “Prototype sample selection based on minimization of the complete cross-validation functional”, Pattern Recognition and Image Analysis, vol. 20, pp. 427–437, 2010.
[11] N. Segata, E. Blanzieri, S. J. Delany, and P. Cunningham, “Noise reduction for instance-based learning with a local maximal margin approach”, Journal of Intelligent Information Systems, vol. 35, pp. 301–331, 2010.
[12] S. Ferrandiz and M. Boull´ e. “Bayesian instance selection for the nearest neighbor rule”, Machine Learning, vol. 81, pp. 229–256, 2010.
[16] H. J. Escalante, M. Marin-Castro, A. Morales-Reyes, M. Graff, A. Rosales-Pe´rez, M. Montes-y-Go´mez, C. A. Reyes, and J. A. Gonzalez, “MOPG: a multi-objective evolutionary algorithm for prototype generation”,
Pattern Analysis and Applications, vol. 20, pp. 33-47, 2017.
[18] I. Triguero, J. Derrac, S. García, and F.Herrera, “A Taxonomy and Experimental Study on Prototype Generation for Nearest Neighbor Classification”, IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, vol. 42, pp. 86-100, 2012.
[19] J. Li, M.T. Manry, C. Yu, and D.R. Wilson, “Prototype classifier design with pruning”, International Journal on Artificial Intelligence Tools, vol. 14, pp. 261–280, 2005.
[20] J.S. Sa ´nchez, R. Barandela, A.I. Marque ´ s, R. Alejo, and J. Badenas, “Analysis of new techniques to obtain quality training sets”, Pattern Recognition Letters, vol. 24, pp. 1015–1022, 2003.
[21] H.A. Fayed, S.R. Hashem, and A.F. Atiya, “Self-generating prototypes for pattern classification”, Pattern Recognition, vol. 40, pp. 1498–1509, 2007.
[22] T. Raicharoen and C. Lursinsap, “A divide-and-conquer approach to the pairwise opposite class-nearest neighbor (POC-NN) algorithm”, Pattern Recognition Letters, vol. 26, pp. 1554–1567, 2005.
[23] Z. Hassani, M. Alambardar Meybodi, “Hybrid Particle Swarm Optimization with Ant-Lion Optimization: Experimental in Benchmarks and Applications”, Journal of AI and Data Mining, vol. 9, pp. 583-595, 2021.
[24] R. Storn and K.V. Price, “Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces”, Journal of Global Optimization, vol. 11, pp. 341–359, 1997.
[25] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: a gravitational search algorithm”, Information Sciences, vol. 179, pp. 2232–2248, 2009.
[26] L. Nanni and A. Lumini, “Particle swarm optimization for prototype reduction”, Neurocomputing, vol. 72, pp. 1092–1097, 2008.
[27] A. Cervantes, I.M. Galva ´n, and P. Isasi, “AMPSO: a new particle swarm method for nearest neighborhood classification”, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 39, pp. 1082–1091, 2009.
[29] I. Triguero, S. Garcı´a, and F. Herrera, “Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification”, Pattern Recognition vol. 44, pp. 901–916, 2011.
[30] I. Triguero, S. Garcı´a, and F. Herrera, “IPADE: iterative prototype adjustment for nearest neighbor classification”, IEEE Transactions on Neural Networks, vol. 21, pp. 1984–1990, 2010.
[31] M. Rezaei and H. Nezamabadi-pour, “Using gravitational search algorithm in prototype generation for nearest neighbor classification”, Neurocomputing, vol. 157, pp. 256-263, 2015.
[32] H. Nezamabadi-pour, “A quantum-inspired gravitational search algorithm for binary encoded optimization problems”, Engineering Applications of Artificial Inteligence, vol. 40, pp. 62-75, 2015.
[33] S. García, J. R. Cano, and F. Herrera, “A memetic algorithm for evolutionary prototype selection: A scaling up approach”, Pattern Recognition, vol. 41, pp. 2693–2709, 2008.
[34] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “BGSA: binary gravitational search algorithm”, Natural Computing, vol. 9, pp. 727–745, 2010.
[35] S. Sarafrazi and H. Nezamabadi-pour, “Facing the classification of binary problems with a GSA-SVM hybrid system”, Mathematical and Computer Modelling, vol. 57, pp. 270–278, 2013.
[36] T. Kohonen, “The self-organizing map”, Proceedings of the IEEE, vol. 78, pp. 1464–1480, 1990.
[37] M. Lozano, J. M. Sotoca, J. S. S´ anchez, F. Pla, E. Pekalska, and R. P. W. Duin, “Experimental study on prototype optimization algorithms for prototype-based classification in vector spaces”, Pattern Recognition, vol. 39, pp. 1827–1838, 2006.
[38] S. W. Kim and J. Oomenn, “Enhancing prototype reduction schemes with LVQ3-type algorithms”, Pattern Recognition, vol. 36, pp. 1083–1093, 2003.
[39] J. S. Sánchez, “High training set size reduction by space partitioning and prototype abstraction”, Pattern Recognition, vol. 37, pp. 1561-1564, 2004.
[40] F. Fernández and P. Isasi, “Evolutionary design of nearest prototype classifiers”, Journal of Heuristics, vol. 10, pp. 431–454, 2004.
[41] I. Triguero, S. González, M. Moyano, S. García, J. Alcalá-Fdez, J. Luengo, A. Fernández, M. Jesús, L. Sánchez, and F. Herrera, “
KEEL 3.0: an open source software for multi-stage analysis in data mining”,
International Journal of Computational Intelligence Systems, vol. 10, pp. 1238-1249, 2017.
[43] D. Sheskin, Handbook of Parametric and Non-parametric Statistical Procedures, 2nd Ed. London, U.K.: Chapman and Hall, 2006.
[44] J. Hodges and E. Lehmann, “Ranks methods for combination of independent experiments in analysis of variance”, Annals of Mathematical Statistics, vol. 33, pp. 482–497, 1962.
[45] S. Holm, “A simple sequentially rejective multiple test procedure”, Scandinavian Journal of Statistics, vol. 6, pp. 65–70, 1979.