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In the present work, we aim to overcome some defects of the K-

nearest neighbor (K-NN) rule. Two important data preprocessing 

methods to elevate the K-NN rule are the prototype selection (PS) and 

prototype generation (PG) techniques. Often the advantages of these 

techniques are investigated separately. In this work, using the 

gravitational search algorithm (GSA), two hybrid schemes are 

proposed, in which the PG and PS problems are considered together. 

In order to evaluate the classification performance of these hybrid 

models, we perform a comparative experimental study including a 

comparison between our proposals and some approaches previously 

studied in the literature using several benchmark datasets. The 

experimental results obtained demonstrate that our hybrid approaches 

outperform most of the competitive methods. 

Keywords: 
Classification, K-nearest neighbor, 

Prototype generation, Prototype 

selection, Gravitational search 

algorithm, Hybrid method. 

*Corresponding author:
mo.rezaei@eng.uk.ac.ir (M. Rezaei). 

1. Introduction

The K-NN rule is a popular non-parametric 

classification technique that has been extensively 

used in pattern recognition [1]. This classifier is 

conceptually simple since for determining the 

class label of an unknown sample, it uses the raw 

training data [2]. In order to classify an unseen 

sample first according to a distance metric such as 

the Euclidean distance, its K nearest training 

samples (neighbors) are detected, and then the 

most frequent label occurring in the K neighbors 

is assigned to that unknown sample. Also the 

expected error of the K-NN rule is bounded by 

twice the Bayesian error rate [3]. Unfortunately, 

the simplicity and effectiveness of the K-NN 

classifier have been affected by some weaknesses. 

First, the K-NN classifier has large memory 

requirements in order to preserve the whole 

training set. Also classifying a new sample is 

required to compute the distances between that 

sample and all t\he samples in the training set, 

which leads to a high computational cost. The 

third drawback of the K-NN classifier is the 

sensitivity to noise objects [4]. 

These drawbacks can be dealt with using the data 

reduction techniques [5-7] in order to simplify the 

training data by removing the noisy or redundant 

data. The goal of these techniques is to reduce the 

number of instances, while trying to keep a good 

classification performance. It can be seen from the 

literature that PS and PG are the two main 

reduction techniques. In the PS methods the most 

proper samples are selected from the training set 

[8]. There are three main types of PS methods [9]: 

condensation [10], edition [11], and hybrid 

methods [12]. The purpose of the condensation 

methods is to obtain a small subset of the training 

set by removing the instances that are not crucial 

to the K-NN decision, while in edition methods, 

noisy instances that contribute to the 

misclassification rate are removed. In the hybrid 

methods, both approaches are combined. Various 

procedures to the PS algorithms have been 

suggested in the literature [13-15]. 

In the PG methods, some artificial prototypes are 

generated, and the original training set can be 

replaced by them [16, 17]. In the taxonomy and 
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experimental study on the PG methods that have 

been carried out in [18], these methods have been 

divided into four main groups: positioning 

adjustment [19], class relabeling [20], centroid-

based [21] and space-splitting [22]. The 

positioning adjustment methods consist of two-

step. In the first step, an initial set of prototypes is 

selected from the training set, and in the second 

step, their location is amended through an 

optimization procedure. The class relabeling 

methods suppose that some of the training 

samples could be suspicious of having errors and 

belonging to other different classes, and hence, 

the class labels of them must be changed. In the 

centroid-based techniques, new prototypes are 

acquired by combining a set of similar examples. 

Using different heuristics in the space-splitting 

methods, the feature space is partitioned into some 

regions and new prototypes are defined in each 

one of them. 

Since the PG and PS problems can be considered 

as the combinatorial and optimization problems, 

some works have been done concerning the use of 

metaheuristic algorithms such as particle swarm 

optimization (PSO) [23], differential evolution 

(DE) [24], and gravitational search algorithm 

(GSA) [25] in order to solve these problems. In 

PG, the search space is continuous with real 

variables, and in PS, it is binary with binary 

variables. In [26-28], PSO and in [29, 30], DE has 

been applied as the optimizers that can find the 

best set of prototypes, Also in our previous work 

[31], GSA that is a population-based 

metaheuristic search technique of the recent years 

[32] has been employed in solving the PG 

problem. Many algorithms have been proposed in 

order to solve the PG problem but those based on 

metaheuristics have gained excellent results. In 

addition, to the best of our knowledge, the PS 

algorithm reported in [33] can get the best results.  

Some intrinsic characteristics of GSA such as 

flexibility and capability for balancing the 

exploration and exploitation abilities have led to 

provide good results by our previous method in 

[31], which were the best or better than the other 

comparing PG methods. This success encouraged 

us to improve these results using the hybrid 

techniques that incorporate PG and PS. We have 

two different proposals for combining the PG and 

PS methods based on GSA: sequential 

optimization and mixed optimization. In the 

former approach, a PS phase is performed after 

the PG stage in order to select the best prototypes 

among prototypes generated by the PG stage. For 

the PS phase, a binary GSA (BGSA) [34] is used, 

and the same as [31], a real GSA (RGSA) [25] is 

applied in order to execute the PG stage. In the 

mixed optimization (second approach), a hybrid 

optimizer such as the mixed gravitational search 

algorithm (MGSA) [35] that contains RGSA and 

BGSA is employed in order to simultaneously 

solve the PG and PS problems. Actually, in this 

case, the search space includes both types of real 

and binary variables. Also similar to our previous 

work in [31], we use the “vote rule” in order to 

gain better classification accuracy rates. We repeat 

the PG phase for S times, and hence, we have S 

sets of the prototypes at the end of the algorithm. 

Classifying each test sample is done through each 

one of these S sets separately, and the “vote rule” 

is used to combine these S results. Herein, the 

voting rule is the majority voting, and under this 

rule, a test sample is assigned to the class with the 

most agreement between S obtained results. These 

two versions of the proposed methods with the 

vote rule are called V-SPGS and V-MPGS. 

The first contribution of this paper is to examine 

whether the utilization of hybrid schemes can 

enhance the classification accuracy of the K-NN 

classifier. Our second goal is to determine which 

one of these two hybrid methods can achieve a 

better performance in the field of classification. 

For this reason, a total of 20 benchmark datasets 

with different characteristics (number of classes, 

instances, and features) were considered for 

experimentation, and the results obtained were 

compared with our previous method [31], nine 

existing PG algorithms and K-NN classifier (with 

K = 1). It must be mentioned that the current 

paper is an extension of our previous paper in 

[31]. In [31], we demonstrated the capabilities of 

GSA in the PG problem. In the current paper, we 

propose two new approaches in the same field, 

and therefore, in the background section, there is a 

little overlap between them.  

The rest of the paper is organized as what follows. 

In Section, the PS and PG problems are 

introduced. Furthermore, the gravitational search 

algorithm for the binary and real-valued variables 

is described. Two proposed methods are 

introduced in Section 3. The experimentation and 

comparison with the competing algorithms are 

provided in Section 4, and finally, the paper is 

concluded in Section 5.  

 

2. Background 

2.1. Definition of PS and PG problems 

In general, the PS problem is explained as 

follows: Yp = (       , …,    ,    ) is the 

sample representation, where the value of the i-th 

feature of the p-th sample is given by ypi with the 

real class label of ypc. Then assume that there is a 
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training set (called TR) that consists of M samples 

(   {   |         ) and a test set (called 

TS) containing T samples (   {   |   
     ). For the samples of TR, the class label ypc 

is known but ytc is unknown for the samples of 

TS. 

The PS algorithm aims to select a subset called SS 

from TR. This subset is applied by the K-NN 

classifier in order to classify each new observation 

from TS. First, the k closest prototypes of the SS 

subset to that test sample are specified, and then 

the most frequently represented class is assigned 

to it. 

The PG algorithm generates a set of r prototypes 

(called    {   |        ), in which r < M. 

The GS subset must represent the distribution of 

the classes in TR efficiently. Also the size of this 

subset must be small enough to improve the 

memory requirement and computational cost of 

the K-NN classifier. In this paper, we use K = 1 in 

the K-NN rule. 

 

2.2. Gravitational search algorithm 

GSA is a population-based metaheuristic search 

technique, which has been inspired by the 

Newtonian laws of gravity and motion. This 

algorithm simulates the mass interactions and 

movement of objects (agents) in a search space 

under the influence of gravitation. In this section, 

the presentation of three versions of GSA is given: 

real-valued gravitational search algorithm 

(RGSA), binary gravitational search algorithm 

(BGSA), and mixed gravitational search algorithm 

(MGSA). 

 

2.2.1. Real-valued gravitational search 

algorithm (RGSA) 

GSA was first developed as the continuous search 

space optimization problems [25]. In the present 

paper, this version of GSA is called RGSA. In this 

algorithm, the movement of N agents in D-

dimensional search space is accomplished under 

the influence of the gravity force. The 

performance and the position of each agent 

specify the mass of a solution to the problem. The 

best solutions to the problem correspond to those 

agents with a higher performance. Xi denotes the 

position of the i-th object defined by: 
1( ,..., ,..., ); 1,2,..., d D

i i i iX x x x i N             (1) 

where xi
d
 is the position of the i-th object in the d-

th dimension, and D is the dimension of the search 

space. The current population’s fitness is used in 

order to calculate the mass of each object as 

follows: 
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The mass and the fitness value of the object i at 

iteration t are given by Mi(t) and fiti (t), and 

worst(t) is the worst fitness value obtained in the 

swarm of objects at t. The total force from a set of 

heavier objects that acts on the i-th agent is 

considered based on a modified law of gravity 

(Eq. (3)), and the acceleration of this agent is 

computed using the law of motion (Eq. (4)). 

Afterward, the next velocity of the i-th agent is 

calculated as a fraction of its current velocity 

added to its acceleration (Eq. (5)). Then its next 

position could be calculated using Eq. (6). 
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( 1) ( ) ( )d d d d

i i i iv t rand v t a t   (5) 

( 1) ( ) ( 1)d d d

i i ix t x t v t     (6) 

where rand is a uniformly distributed random 

number in the interval [0,1], ɛ is a small value, 

and Rij(t) is the Euclidean distance between the 

two objects i and j. Kbest is the set of first K 

objects with the best fitness value and the heaviest 

mass. K is a decreasing function of time, initially 

is set to K0 and reduced linearly over time. Here, 

K0 is set to N (total number of agents), and K is 

decreased linearly to 1. In GSA, the initial value 

of the gravitational constant (G) is G0 that is 

declined linearly during the running time of the 

algorithm. 

 0  ,  G G G t               (7) 

 
 2.2.2. Binary gravitational search algorithm 

(BGSA) 

As mentioned earlier, the basic model of GSA is 

suitable for the real-valued optimization problems. 

In [34], the binary version of GSA was introduced 

in order to optimize the binary structured 

problems. In a binary search space, every 

dimension has a value of 0 or 1. Moving in each 

dimension means that its value changes from 0 to 

1 or vice versa. In BGSA, the force, acceleration, 

and velocity are updated the same as RGSA but 

the binary version uses the Hamming distance in 

order to compute the distance of R. 

BGSA updates the velocity based on Eq. (5). Then 

the position is considered to be 1 or 0 with a 

probability according to Eq. (8). Once     
   is 

calculated, the object will move by the rule 

explained in Eq. (9). 
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 2.2.3. Mixed gravitational search algorithm 

(MGSA) 

There are some optimization problems with real 

and binary variables. In order to solve these types 

of problems, the mixed optimization algorithms 

such as MGSA are required [35]. In MGSA, the 

objects move toward the optimal places in the 

search space with the dimensions of both the real 

and binary variables. An object in this complex 

search space is called ‘super-agent’, and the 

computation of force, velocity, and movement of 

each super-agent are performed separately in the 

real and binary parts. Also the fitness of each 

super-agent is the same for the real and binary 

parts, and is used for mass calculation. In order to 

compute the distance between two super-agents, 

the Euclidean distance and the Hamming distance 

are applied for the real and binary parts, 

respectively [35]. Different gravitational constants 

may be used in the real and binary parts.  

 

3. Proposed methods 

In this section, the main characteristics of the two 

hybrid methods will be explained. In order to do 

this, first, a TR set consisting of M samples with m 

features is considered. These M samples are 

classified into C classes. We will introduce two 

hybrid models in order to concatenate the PG and 

PS problems: sequential optimization for PG and 

PS hybridization (called in brief as SPGS) and 

mixed optimization for PG and PS hybridization 

(called in brief as MPGS). Sections 3.1 and 3.2 

describe the construction of SPGS and MPGS, 

respectively. 

 

3.1. Sequential optimization for PG and PS 

hybridization (SPGS) 

The SPGS method has two distinct optimization 

phases. In the preliminary phase, there is a 

continuous search space where RGSA uses the TR 

samples in order to generate a GS set containing 

2×r prototypes. In the second phase, using BGSA, 

the best r prototypes with the highest 

classification accuracy rate are selected from the 

generated prototypes in GS. These r prototypes are 

placed in the final set of prototypes (SS). The 

second phase is performed in a binary search 

space. More details are interpreted in the 

following sub-sections. 

 

 

Figure 1. Agent representation in continuous space 

Figure 2. Agent representation in binary space. 

 

3.1.1. Agent representation 

In the continuous space, each agent is a set of 2 × 

r prototypes, and the position of the agent 

corresponds to a solution to the problem. The data 

dimension is m, and thus the length of each agent 

is (2 × r) ×m. The structure of an agent in the 

continuous space is shown in Figure 1. In the 

binary space, each agent is a binary string with the 

length of 2 × r bits, shown in Figure 2, where 

each bit is related to a prototype. In this binary 

string, one and zero mean the existence and non-

existence of a prototype in the final set SS, 

respectively. 

 

3.1.2. Initialization 

RGSA is initialized with N agents, each agent 

containing a random selection of 2 × r samples 

from TR. Each class is represented by some 

prototypes that are related to the number of class 

members in the TR set. Also in order to initialize 

each agent in BGSA, a 2×r-bit string of 0 and 1 is 

produced by the uniform distribution. 

 

3.1.3. Fitness function 

RGSA and BGSA require a fitness function to 

guide the search process. In this work, we 

examine the classification accuracy rate of the K-

NN as the fitness function. In order to compute the 

classification accuracy rate of an agent, first, the 

entire TR is classified by the agent’s prototypes, 

and then the number of correct classifications 

(Ncc) is counted and divided by the total number 

of classifications. This proportion is regarded as 

the fitness of that agent. Eq. (10) shows how to 

calculate the fitness value for each agent. 

100
( ) , 1,2,...,i NNfitness i cc i

M
    

 (10) 

 

3.1.4. Gravitational constant 

The gravitational constant, G, is set using Eq. (11) 

for both RGSA and BGSA. The initial value of G 

is G0, which declines linearly during the running 

time of the algorithm. 
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A block diagram of SPGS is given by Figure 3. 

As this block diagram shows, in the first phase, 

initialization is performed using the dataset. Then 

the fitness values of all agents in the swarm are 

computed, and these values are passed into RGSA 

to determine the next position of the swarm, 

which is the new solution of the problem and must 

be evaluated. A fixed number of iterations, which 

is a pre-determined parameter, is considered as the 

stopping criterion of the algorithm. At the end of 

the first phase, a GS set is obtained, which is the 

position of 2 × r optimal prototypes. GS is 

delivered to the second phase, where the best r 

prototypes from GS are selected by BGSA and 

located in the final set, SS. Classifying the new 

samples are done using the prototypes of SS in the 

performance measurement phase. 

Besides, the higher classification accuracy rate in 

SPGS can be achieved using the “vote rule”. We 

repeat the PG phase for S times, and hence, we 

have S sets of the prototypes at the end of the 

algorithm. Classifying each test sample is done 

through each one of these S sets separately, and 

the “vote rule” is used in order to combine these S 

results. Herein, the voting rule is the majority 

voting, and under this rule, a test sample is 

assigned to the class with the most agreement 

between S obtained results. We call this version of 

SPGS as V-SPGS in the experiments. 

 

3.2. Mixed optimization for PG and PS 

hybridization (MPGS) 

As mentioned earlier, in the MPGS method, both 

the PG and PS problems are jointly optimized by 

MGSA, whereas in this case, there is a complex 

search space; the super-agents containing the real 

and binary parts move in this space to obtain the 

best set of prototypes. The main specifications of 

this algorithm are expressed in the following. 

 

3.2.1. Super-agent representation 

The structure of a super-agent is indicated by 

Figure 4. As indicated in this figure, a super-agent 

has a real part to display the position of prototypes 

and a binary part to select the best prototypes. In 

the real part, the prototypes are encoded 

sequentially, and in the binary part, each bit is 

associated with a prototype. In the MPGS method 

for each super-agent, those prototypes that are 

chosen by the binary part are presented in the final 

set. The length of the real part is (2 × r) × m and 

the binary part is 2 × r. 

 

Figure 4. Super-agent representation. 

3.2.2. Initialization 

The initial population of MGSA has two parts, 

and the initialization of each part should be done 

separately. For each super-agent, in the real part, 2 

× r samples are chosen randomly from TR, and in 

the binary part, a 2×r-bit string of 0 and 1 is 

produced by the uniform distribution. Since the 

binary part is produced by a uniform distribution, 

almost half of the prototypes of the real part are 

selected and the final set contains r prototypes. 

Therefore, the reduction rate remains unchanged.   

 

3.2.3. Fitness function 

The classification accuracy rate is the fitness 

function of this algorithm, and calculated by Eq. 

(10).  

3.2.4. Gravitational constant 

Figure 3. A block diagram of SPGS method. 
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In MGSA, the gravitational constant of the real 

and binary parts is calculated by Eq. (11). 

The description of this method is demonstrated as 

the block diagram in Figure 5. It is clear in this 

figure that MGSA is applied to jointly optimize 

the PG and PS blocks, which cause to achieve the 

maximum classification accuracy rate. The super-

agents of the swarm are evaluated by the fitness 

function, and the corresponding fitness values are 

applied by MGSA in order to determine the next 

position of the swarm. The same as SPGS, in 

MPGS, the maximum number of iterations is the 

stopping criterion. 

 

4. Experimental results 

In this section, the performance comparison is 

done between our two hybrid methods, 1-NN 

classifier, ten state-of-the-art PG methods 

including LVQ3 [36], MGauss [37], HYB 

algorithm [38], RSP3 [39], ENPC [40], PSO [26], 

AMPSO [27], IPADE [30], SSMA-SFLSDE [29], 

and our previous work called GPG, which has 

been proposed in [31]. The performance 

measurement of the competing algorithms is the 

classification accuracy rate, and the KEEL 

software tool [41] is used to carry out their 

experiments. Appendix A in [31] gives a brief 

explanation of these algorithms and their 

parameters. 

30 benchmark datasets from the UCI repository 

[42] are selected to perform all the experiments. 

Some related studies such as [15, 29-31] have 

been used this repository. These datasets have 

been selected in such a way that the dataset sizes 

and the number of features and classes are varied. 

The characteristics of these datasets are listed in 

Table 1. We applied the 10-fold cross-validation 

schema on these 20 datasets, and in each partition, 

three runs of the algorithms are performed. At the 

end, 30 runs for each algorithm are provided, and 

the average of these trials is used to compare 

them. Furthermore, as recommended by many 

proposed PG methods, the feature values of the 

datasets are then normalized into the [0, 1] 

interval. 

Finally, the Friedman Aligned-Rank test that is a 

widely-used hypothesis in the non-parametric test 

is used to provide a statistical analysis of the 

results [43]. Using this non-parametric test, 1 × N 

comparisons have been done, and the rank is 

computed for each method. These ranks are used 

in order to determine whether the statistical 

differences lie among a group of results [44]. In 

this work, we apply the Friedman Aligned (FA) 

procedure with a post-hoc method called Holm’s 

test [45] for the p-value adjustment.  

 

Table 1. Characteristics of 30 datasets used in 

experiments. 

Dataset #Ex. #feat. #Cl. 

Appendicitis 106 7 2 
Australian 690 14 2 
Balance 625 4 3 
Bands 365 19 2 

Breast-Cancer 569 31 2 
Bupa 345 6 2 
Cleveland 297 13 5 

Dermatology 366 33 6 
E.coli 327 7 5 

Glass 214 9 7 

Haberman 306 3 2 
Hayes-Roth 160 4 3 

Heart 270 13 2 

Hepatitis 155 19 2 
Horse 364 27 3 

Ionosphere 351 33 2 

Iris 150 4 3 
Led7digit 500 7 10 

Mammographic 830 5 2 

Monks 432 6 2 
Pima 768 8 2 

Spectfheart 267 44 2 

Sonar 208 60 2 
Tae 151 5 3 

Thyroid(new) 215 5 3 
Vehicle 846 18 4 
WDBC 569 30 2 

Wine 178 13 3 

Wisconsin 699 9 2 
Zoo 101 16 7 

 

Figure 5. A block diagram of MPGS method. 
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Here, the null hypothesis states that there is no 

significant difference between the performances 

of two PG methods. In order to reject the null 

hypothesis, the p-value must be less than or equal 

to a level of significance of α = 0.1, the same as 

[29]. This case means that a significant difference 

does exist between two PG methods. 

 

4.1. Parameters of proposed methods 
The parameters of the SPGS and MPGS methods 

must be set. The size of the initial population (N) 

is set to 20, and the maximum iteration number 

(T) is set to 250. Eq. (11) is used to set G for 

RGSA, BGSA, and MGSA, where G0 is set to 1 

and T is the iteration number. The initial reduction 

rate of these algorithms is fixed to 0.90, and the 

number of primary prototypes is 2 × r = 0.1 × M 

(M is the TR size). However, in both SPGS and 

MPGS, almost half of these prototypes are 

available in the final set. Therefore, similar to the 

GPG method [31], the final reduction rate of them 

is 0.95. In our proposed methods, we have used 1-

NN rule with the Euclidean distance in order to 

compute the distances between the samples. Also 

in order to apply the voting, the S parameter is set 

to 5.  

 

4.2. Analysis of results 

In this sub-section, the results obtained are 

analyzed by several experiments. Our goal is to 

compare the two current proposed methods with 

each other and different PG methods. Tables 2 

and 3 show the train and test average 

classification accuracy on 30 runs for each 

algorithm. We also use the boldface style to 

highlight the best result. The last row of each table 

shows the average classification accuracy 

obtained over all datasets. The results of the 

statistical comparisons are presented in Table 4. In 

this table, the best (lowest) and the worst (highest) 

rank are located at the top and the bottom, 

respectively. Furthermore, the third column 

contains the adjusted p-values with the Holm 

post-hoc test (Holm APV). The Friedman 

Aligned-Rank test considers the best method that 

has obtained the best FA ranking as the control 

algorithm, and in this experiment, V-SPGS is the 

best one. The analysis of results has two parts 

including the performance comparison of the two 

hybrid models proposed in this paper with the 

previously proposed methods and also two hybrid 

models to each other.  

 

 

 

4.2.1. Comparison with different PG methods 

In this sub-section, we compare the two hybrid 

models with different PG methods. According to 

the results reported in Tables 2-5, we can 

summarize some analyses: 

 The highest average classification 

accuracy over the test sets has been 

achieved by SPGS and VMPGS, 

respectively because in SPGS, after 

generating the prototypes, the best 
prototypes with the highest accuracy rates 

are inserted in the final set. 
 After SPGS and V-MPGS, we can see V-

SPGS that has obtained the second rank 

of the test average classification accuracy. 

This means that both hybrid models have 

achieved good results. 

 We have observed from Table 3 that V-

MPGS performs well with four large 

datasets that have more than 500 instances 

(Australian, Balance, Breast-Cancer, 

Wisconsin). Also V-MPGS could achieve 

the first rank on eight of the datasets 

(Appendicitis, Australian, Balance, 

Breast-Cancer, Heart, Iris, Wine, 

Wisconsin). 

 In Table 4, we can see that the best FA 

ranking has been obtained by V-SPGS 

with a rank of 113.93 in comparison, and 

V-MPGS and SPGS could achieve the 

second- and third-ranking. The existence 

of significant differences between the 

competing algorithms is confirmed by p-

values of the FA ranking. 

 Regarding Table 4, the Holm’s procedure 

states that the differences of V-SPGS over 

AMPSO, HYB, ENPC, RSP3, 1-NN, 

LVQ3, IPADE, and MGauss are 

significant. This hypothesis is rejected by 

two state-of-the-art algorithms (PSO and 

SSMA-SFLSDE) and GPG. 

 

4.2.2. Comparison of two hybrid models 

In this sub-section, we focus on comparing two 

hybrid models using a statistical test called the 

Wilcoxon test. Table 5 shows the ranking of R+ 

and R- values and its related p-value. Here, the 

same as the Fa ranking test, we consider a level of 

significance of α = 0.1 for the Wilcoxon test. As it 

can be seen in this table, SPGS outperforms 

MPGS, and there are no significant differences 

between the V-SPGS and V-MPGS methods. Also 

R+ is greater for SPGS in the first row and V-

SPGS in the second row of the table.
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Table 2. Average classification accuracy on training set. 

Dataset Algorithm              

 1-NN SPGS MPGS V-SPGS V-MPGS 
GPG 

[31] 

LVQ3 

[36] 

MGauss 

[37] 

HYB 

[38] 

RSP3 

[39] 

ENPC 

[40] 

PSO 

[26] 

AMPSO 

[27] 

IPADE 

[30] 

SSMA-SFLSDE 

[29] 

Appendicitis 80.61 90.32 90.29 90.38 90.30 90.71 87.31 85.61 89.38 86.27 88.78 90.95 82.03 90.88 92.35 

Australian 80.71 88.67 88.58 88.54 88.59 88.85 83.78 85.98 83.50 86.91 87.72 88.79 84.96 84.04 89.57 

Balance 78.95 96.63 91.74 94.81 91.97 94.96 80.83 87.86 97.32 86.72 91.88 90.97 62.28 83.59 91.98 

Bands 73.47 85.44 80.11 85.74 83.76 84.88 67.08 68.73 93.26 82.66 93.01 78.46 68.91 71.10 80.25 

Breast-Cancer 96.40 97.52 97.09 97.40 97.06 97.27 95.41 95.28 96.84 97.24 98.49 97.16 94.03 97.76 97.23 

Bupa 61.22 86.61 80.13 85.57 80.21 85.18 58.98 63.10 90.20 80.58 86.51 75.69 61.77 67.29 80.42 

Cleveland 52.77 69.32 67.43 68.35 67.35 69.57 56.44 60.22 70.69 65.02 69.50 67.73 58.51 64.03 67.88 

Dermatology 95.63 98.88 98.63 98.88 98.70 98.83 95.97 97.70 97.94 96.18 98.71 98.30 90.66 96.75 99.61 

E.coli 78.57 92.84 91.07 92.41 91.02 92.30 70.37 73.94 88.82 85.02 85.12 85.75 72.59 81.22 89.19 

Glass 70.77 82.69 76.17 82.54 76.54 79.98 47.89 53.31 80.39 76.89 81.62 69.49 52.63 70.23 82.41 

Haberman 67.14 81.72 80.00 81.65 80.06 81.50 70.77 74.76 68.84 74.64 72.70 78.50 74.15 73.36 79.81 

Hayes-Roth 35.44 81.60 77.80 80.86 78.17 78.38 43.37 54.64 31.06 33.18 37.94 72.21 62.26 82.83 86.03 

Heart 75.88 86.97 87.16 87.12 87.22 87.64 81.8 82.81 90.20 85.14 89.66 87.05 80.42 83.13 88.89 

Hepatitis 80.65 92.26 91.39 92.25 90.80 91.61 75.49 79.79 92.76 83.37 83.44 88.96 81.43 87.89 90.18 

Horse 60.25 82.18 78.40 81.62 78.24 82.76 68.36 67.80 78.32 80.53 72.56 81.34 66.39 75.28 78.65 

Ionosphere 86.93 91.48 91.18 91.23 90.98 90.25 81.86 91.86 92.66 88.13 97.69 91.93 82.37 89.90 96.01 

Iris 95.48 98.96 98.96 99.07 98.98 99.28 91.7 94.74 95.78 95.78 97.97 99.11 92.22 98.59 99.41 

Led7digit 40.22 78.10 77.75 78.12 76.95 77.83 65.27 77.57 74.89 59.11 61.33 77.36 63.93 77.47 78.84 

Mammographic 73.77 83.01 82.51 82.88 82.80 83.17 72.30 79.38 63.57 76.99 74.18 82.74 79.48 81.81 83.87 

Monks 77.55 93.43 91.17 92.93 90.97 94.68 80.37 79.78 96.90 75.31 96.73 87.35 72.16 74.64 97.09 

Pima 70.70 83.78 80.32 83.55 80.48 84.50 71.04 74.56 88.26 80.80 87.80 81.19 70.98 77.35 83.98 

Spectfheart 69.46 82.99 82.72 82.96 83.40 84.60 79.07 80.67 94.57 80.44 94.67 88.68 80.86 85.77 82.39 

Sonar 86.32 86.93 87.64 87.92 87.47 88.05 78.53 73.93 95.99 90.17 98.40 92.79 75.32 81.94 86.99 

tae 42.11 66.00 63.90 65.74 63.84 63.94 48.79 42.68 51.81 54.75 50.05 64.17 56.44 62.25 70.49 

Thyroid 96.64 99.53 99.00 99.72 98.91 99.41 89.94 95.59 97.73 95.86 98.03 99.17 91.09 98.22 99.85 

vehicle 69.40 68.49 63.63 68.57 62.89 67.48 57.63 50.68 84.80 78.24 87.73 71.87 55.91 58.38 68.55 

WDBC 95.66 97.40 97.04 97.47 97.06 97.44 92.97 95.53 97.66 97.36 98.26 98.42 94.63 97.54 98.83 

Wine 95.57 99.17 99.02 99.10 99.03 99.19 94.78 97.44 97.11 95.57 99.48 99.75 87.77 98.63 100.0 

Wisconsin 95.69 97.88 97.74 97.89 97.76 97.77 95.6 97.38 99.00 96.32 98.38 98.41 85.16 97.62 98.27 

Zoo 92.08 99.24 98.50 99.28 98.25 99.50 88.47 98.39 94.62 88.65 94.27 98.87 85.76 96.32 98.44 

Average 75.87 88.00 86.24 87.82 86.33 87.72 75.74 78.72 85.83 81.79 85.75 86.11 75.57 82.86 87.91 

 

4.3. Discussion 

The results obtained show that if PG and PS are 

considered together in solving the mentioned 

problem about the K-NN classifier, the 

performance improvement is higher than a 

situation with only PG or PS because in this case, 

we can benefit from the advantages of both of 

them. In the sequential method proposed here, the 

overall search space is explored by the algorithm, 

and the best prototypes are introduced to the PS 

phase. After that, the PS algorithm selects among 

this set the best of best prototypes. Hence, this 

approach can achieve a better performance than a 

competing PG algorithm. We can generalize this 

finding to MPGS. Again, the mixed algorithm can 

gain the best of best prototype using a mixed 

search algorithm that is able to generate and select 

jointly.
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Table 3. Average classification accuracy on test set. 

Dataset Algorithm              

 1-NN SPGS MPGS V-SPGS V-MPGS 
GPG 

[31] 

LVQ3 

[36] 

MGauss 

[37] 

HYB 

[38] 

RSP3 

[39] 

ENPC 

[40] 

PSO 

[26] 

AMPSO 

[27] 

IPADE 

[30] 

SSMA-SFLSDE 

[29] 

Appendicitis 79.36 86.15 85.36 86.00 87.00 85.67 85.09 84.42 73.91 80.18 77.18 85.70 79.09 85.76 83.27 

Australian 81.45 86.09 86.28 86.09 86.38 85.85 82.99 85.89 71.54 82.9 77.29 85.65 83.28 84.15 86.38 

Balance 79.04 89.43 88.63 89.44 90.71 90.39 79.51 86.51 68.10 84.31 71.56 87.08 60.32 80.19 89.28 

Bands 63.09 67.36 66.89 68.14 67.46 66.69 64.96 68.10 70.34 69.40 69.77 68.29 66.06 65.50 69.78 

Breast-Cancer 95.28 96.01 95.78 95.77 96.48 96.30 94.27 94.43 65.46 95.6 94.43 95.68 92.61 96.42 95.38 

Bupa 61.08 67.72 67.92 66.86 66.58 66.32 57.75 60.70 59.83 57.72 61.92 66.43 57.35 63.60 66.00 

Cleveland 53.14 52.17 54.23 53.63 54.32 54.16 54.67 53.99 50.67 53.18 52.03 55.93 53.44 55.36 56.15 

Dermatology 95.35 97.47 96.90 97.47 97.24 96.53 96.06 95.88 94.66 95.50 95.40 93.85 89.65 95.03 95.37 

Ecoli 80.70 87.68 87.57 87.38 86.44 87.27 68.74 72.94 77.69 81.57 76.50 77.36 71.16 77.14 83.07 

Glass 73.61 66.13 65.19 72.20 66.05 66.08 46.47 47.68 73.71 67.11 70.89 62.27 50.88 61.99 71.98 

Haberman 66.97 71.30 71.21 73.16 75.43 71.64 74.44 76.67 58.89 66.67 60.00 77.78 74.44 71.11 71.53 

Hayes-Roth 35.70 66.46 65.00 64.38 61.88 65.63 39.67 55.36 30.93 26.48 27.68 65.74 55.13 77.77 75.41 

Heart 77.04 82.96 81.97 82.59 83.33 81.48 80.37 80.37 73.95 72.59 77.16 81.23 77.16 81.60 82.22 

Hepatitis 80.75 83.78 82.75 87.00 85.84 81.36 74.13 78.04 73.00 75.46 75.50 76.92 76.17 82.58 81.21 

Horse 57.84 67.76 65.91 65.90 64.81 67.84 65.48 64.14 72.25 65.13 71.15 67.24 60.85 61.59 62.87 

Ionosphere 85.48 88.31 87.84 92.02 89.45 87.07 82.03 88.04 86.32 86.32 86.33 86.33 80.04 85.21 88.02 

Iris 93.33 95.11 94.44 95.33 95.33 94.22 93.78 93.33 93.33 94.00 92.89 94.44 91.78 94.67 94.00 

Led7digit 40.20 73.27 73.53 73.40 73.42 72.20 62.93 73.27 67.07 56.8 59.27 72.20 62.33 72.73 71.40 

Mammographic 73.68 81.10 81.00 81.31 81.14 81.72 70.24 78.67 57.02 74.09 70.55 80.75 78.15 81.27 81.27 

Monks 77.91 88.22 86.34 89.55 86.35 90.06 78.06 78.50 74.10 70.92 80.19 82.96 69.41 71.40 95.44 

Pima 70.33 75.06 76.27 75.41 76.01 75.05 70.53 73.84 64.17 71.88 65.50 74.75 67.51 75.24 74.89 

Spectfheart 69.70 77.32 77.53 79.46 75.73 76.82 75.26 76.40 73.77 74.22 75.68 79.09 79.83 79.09 79.02 

Sonar 85.55 78.54 77.11 81.67 76.43 74.52 72.57 70.71 86.98 82.64 88.95 79.71 66.74 75.50 79.29 

Tae 40.50 56.38 57.07 53.17 55.08 56.82 45.08 32.58 42.54 46.54 43.88 63.04 52.54 53.79 56.54 

Thyroid 97.23 96.46 95.53 97.27 95.84 96.48 90.87 94.44 95.35 95.41 94.74 96.63 92.45 97.11 97.68 

vehicle 70.10 61.79 61.00 66.79 65.96 59.86 54.85 50.00 69.02 67.73 66.30 66.20 55.68 56.75 65.84 

WDBC 95.26 96.19 95.72 96.13 95.78 95.54 91.74 95.08 94.73 95.08 93.50 97.01 94.73 97.19 96.31 

Wine 95.52 95.87 95.34 96.08 96.63 95.86 96.04 96.60 96.08 93.23 95.14 96.27 87.05 94.01 94.93 

Wisconsin 95.57 96.80 96.90 96.20 97.25 97.15 95.73 96.85 94.03 94.88 94.37 96.65 84.57 96.95 96.14 

Zoo 92.81 95.95 94.74 96.83 94.47 96.74 92.53 94.47 92.42 88.92 93.86 92.58 85.44 93.45 95.33 

Average 75.45 80.83 80.40 81.55 80.83 80.44 74.56 76.60 73.40 75.55 75.32 80.19 73.19 78.81 81.2 

5. Conclusion  

In this work, we aimed to improve the 

classification performance of the K-NN classifier. 

PG and PS were two ways of solving this 

problem. However, traditionally, they were 

considered separately. In this work, we presented 

two hybrid techniques that incorporated the PG 

and PS problems. Two different proposals for 

combining the PG and PS methods based on GSA 

were introduced: SPGS and MPGS. The first 

contribution of this paper was to examine whether 

the utilization of the hybrid schemes could 

improve the classification accuracy of the K-NN 

classifier. Our second objective was to determine 

which one of these two hybrid methods could 

achieve a better performance in the field of 

classification. 
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Table 4. Average ranking of algorithms (Friedman 

Aligned-Ranks and adjusted p-values with Holm test. 

Algorithm FA ranking Holm APV 

V-SPGS 113.93 - 

V-MPGS 137.80 0.9532 
SPGS 144.28 0.9532 

SSMA-SFLSDE 147.48 0.9532 

GPG 160.98 0.7177 
MPGS 163.05 0.7177 

PSO 171.10 0.5320 

IPADE 224.10 0.0072 
MGauss 254.58 0.0002 

RSP3 291.98 10-6 

1-NN 295.08 10-6 
ENPC 299.91 0 

HYB 312.32 0 

LVQ3 323.93 0 
AMPSO 341.95 0 

 

Table 5. Results of Wilcoxon signed-ranks test comparing 

two hybrid models. 

Comparison R+ R- p-value 

SPGS vs. MPGS 336 99 0.0093 

V-SPGS vs. V-MPGS 292.5 172.5 0.21 

 

The experimental study carried out showed that 

both hybrid models obtained very competitive 

results. The results obtained confirmed that these 

hybrid models worked properly to tackle the PG 

problem with promising results. The results 

obtained were compared with two non-parametric 

statistical procedures that had supported the 

conclusion drawn. 

As a future work, we plan to integrate the other 

data reduction techniques such as the feature 

selection and feature weighting with PG and PS in 

the K-NN performance improvement. 
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APPENDIX-A  

Ten methods that have been selected to make the 

comparison are as follow: 

1-NN: The results obtained by the 1-NN classifier 

without pre-processing have been shown as a base 

performance, and most of the rest methods should 

overcome it. 

GPG: GPG method employs RGSA as a global 

searcher in order to find the best position of the 

prototypes [31]. 

LVQ3: Learning vector quantization is a 

competitive learning scheme, which uses a 

“reward-punishment” rule to update the position 

of prototypes [36]. The third version of this 

algorithm, LVQ3, reported the best results. 

MGauss: This is an adaptive PG method 

considered in the framework of mixture modeling 

by Gaussian distributions, while assuming 

statistical independence of the features. The 

prototypes are chosen as the mean vectors of the 

optimized Gaussians, whose mixtures are fit to 

model each one of the classes [37]. 

HYB: The hybrid LVQ3 algorithm combines 

several data reduction techniques. In this method, 

first, the initial prototypes are selected by a 

support vector machine method, and then HYB 

invokes an LVQ3 phase to find the optimal 

position of the prototypes [38].    

RSP3: Reduction by space partitioning splits the 

feature space, and defines new prototypes in each 

partition. This algorithm is proposed in order to 

avoid drastic changes in the form of decision 

boundaries associated with the original training 

set [39]. 

ENPC: The evolutionary nearest neighbor 

prototype classifier is a genetic-based technique 

that finds the optimal number of the prototypes as 

well as the location of these prototypes [40]. 

PSO: In this method, particle swarm optimization 

is applied in order to generate an optimal set of 

prototypes. The social behavior of biological 

organisms, the movement of bird flocking, 

motivates the PSO algorithm. Each potential 

solution of an optimization problem is a bird (or 

‘‘particle’’) with a given velocity, flying trough 

the solution space. Each bird adjusts its flight 

according to its own flying experience and its 

companions’ flying experience [26]. 

AMPSO: Adaptive Michigan particle swarm 

optimization is based on the particle swarm 

optimization in which each particle in the swarm 

represents one prototype in the solution. In 

AMPSO, the number of prototypes can adapt to 

the problem [27].  

IPADE: Iterative prototype adjustment based on 

differential evolution determines the most proper 

number of prototypes per class through an 

incremental procedure, and adjusts their location 

during the evolutionary process [30]. In IPADE, 

each individual in the population encodes just one 

prototype, and the whole population is taken as 

the solution to the problem. 

SSMA-SFLSDE: This method is a differential 

evolution-based approach for optimizing the 

positioning of the prototypes. The proposed 

SSMA-SFLSDE algorithm combines a prototype 

selection stage with an optimization of the 

position of prototypes [29].  

In order to make a fair comparison between the 

algorithms, we should utilize the same number of 

function evaluations. Therefore, the same as our 

proposed method, for 1-PC, LVQ3, HYB, ENPC, 

PSO, AMPSO, IPADE, and DE algorithms, the 

number of iterations is set to 250, and for PSO, 

AMPSO, IPADE, and DE, the population size is 

equal to 20. For the other parameters, we have 

used the recommended parameters proposed by 

their respective authors. The configuration 

parameters are shown in Table A-1. 
 

Table A-1. Parameters determination for comparison 

methods. 

Algorithm Parameters 

GPG Iterations = 250, Swarm size = 20, G0 = 1 

LVQ3 
Iterations = 250, alpha = 0.1, Window Width = 0.2, 

epsilon = 0.1 

MGauss Particle Size = 5 

HYB 

Search Iterations = 250, Optimal search Iterations = 

1000, alpha = 0.1, Initial epsilon = 0, Final epsilon 

= 0.5, Initial Window Width = 0, Final Window 
Width = 0.5, delta = 0.1, delta Window Width = 

0.1, Initial Selecion = SVM 

RSP3 Select Choice = diameter 

ENPC Iterations = 250 

PSO 
Iterations = 250, Swarm size = 20, C1 = 1, C2 = 3, 

Vmax = 0.25, Wstart = 1.5, Wend = 0.5 

AMPSO 
Iterations = 250, C1 = 1.0, C2 = 1.0, C3 = 0.25, Vmax = 

1, W = 0.1, X = 0.5, Pr = 0.1, Pd = 0.1 

IPADE 
Iterations = 250, iterFSGSS = 8, iterSFHC = 20, Fl = 

0.5, Fu = 0.9 

SSMA-SFLSDE 
Iterations = 250, Swarm size = 20, iterSFGSS = 8, 

iterSFHC = 20, Fl = 0.1, Fu = 0.9 
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بند نزدیکترین همسایه مبتنی بر الگوریتم یک روش ترکیبی تولید نماینده و انتخاب نماینده برای طبقه

 جستجوی گرانشی

 

  پورآبادیحسین نظام و *محدثه رضایی

 .ایران، کرمان، کرمان دانشگاه شهید باهنر، مهندسی برقدانشکده  

 11/11/1411 پذیرش؛ 40/40/1411 بازنگری؛ 11/14/1414 ارسال

 چکیده:

شدود. ارائده مدیدو روش پردازش داده انتخاب نمایندده و تولددد نمایندده با استفاده از ترین همسایه بند نزدیکحلی برای مشکلات طبقهدر این مقاله، راه

شود، اما در این مقاله با استفاده از الگوریتم جسدتجوی گرانشدی، دو روش ترکدبدی پدشدن اد جداگانه استفاده می اغلب از مزایای این دو روش به صورت

-بندی دو روش ترکدبدی، آزمدای اند. به منظور ارزیابی عملکرد طبقها یکدیگر در نظر گرفته شدهب تولدد و انتخاب نمایندهل ا مسائهشده است که در آن

های موجود انجام شده است. نتایج بدست آمده نشان داد که دو روش ترکدبی عملکرد ب تدری های پدشن ادی با تعدادی از روشروشهایی برای مقایسه 

 اند.های مورد مقایسه داشتهنسبت به اغلب روش

 ترکدبی.گرانشی، روش  ترین همسایه، تولدد نماینده، انتخاب نماینده، الگوریتم جستجویبندی، الگوریتم نزدیکطبقه :کلمات کلیدی

 


