I.3.6. Electronics
Samira Mavaddati; Mohammad Razavi
Abstract
Rice is one of the most important staple crops in the world and provides millions of people with a significant source of food and income. Problems related to rice classification and quality detection can significantly impact the profitability and sustainability of rice cultivation, which is why the importance ...
Read More
Rice is one of the most important staple crops in the world and provides millions of people with a significant source of food and income. Problems related to rice classification and quality detection can significantly impact the profitability and sustainability of rice cultivation, which is why the importance of solving these problems cannot be overstated. By improving the classification and quality detection techniques, it can be ensured the safety and quality of rice crops, and improving the productivity and profitability of rice cultivation. However, such techniques are often limited in their ability to accurately classify rice grains due to various factors such as lighting conditions, background, and image quality. To overcome these limitations a deep learning-based classification algorithm is introduced in this paper that combines the power of convolutional neural network (CNN) and long short-term memory (LSTM) networks to better represent the structural content of different types of rice grains. This hybrid model, called CNN-LSTM, combines the benefits of both neural networks to enable more effective and accurate classification of rice grains. Three scenarios are demonstrated in this paper include, CNN, CNN in combination with transfer learning technique, and CNN-LSTM deep model. The performance of the mentioned scenarios is compared with the other deep learning models and dictionary learning-based classifiers. The experimental results demonstrate that the proposed algorithm accurately detects different rice varieties with an impressive accuracy rate of over 99.85%, and 99.18% to identify quality for varying combinations of rice varieties with an average accuracy of 99.18%.
A. Lakizadeh; Z. Zinaty
Abstract
Aspect-level sentiment classification is an essential issue in sentiment analysis that intends to resolve the sentiment polarity of a specific aspect mentioned in the input text. Recent methods have discovered the role of aspects in sentiment polarity classification and developed various techniques to ...
Read More
Aspect-level sentiment classification is an essential issue in sentiment analysis that intends to resolve the sentiment polarity of a specific aspect mentioned in the input text. Recent methods have discovered the role of aspects in sentiment polarity classification and developed various techniques to assess the sentiment polarity of each aspect in the text. However, these studies do not pay enough attention to the need for vectors to be optimal for the aspect. To address this issue, in the present study, we suggest a Hierarchical Attention-based Method (HAM) for aspect-based polarity classification of the text. HAM works in a hierarchically manner; firstly, it extracts an embedding vector for aspects. Next, it employs these aspect vectors with information content to determine the sentiment of the text. The experimental findings on the SemEval2014 data set show that HAM can improve accuracy by up to 6.74% compared to the state-of-the-art methods in aspect-based sentiment classification task.