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Acrticle Info Abstract

Rice is one of the most important staple crops in the world and
provides millions of people with a significant source of food and
income. Problems related to rice classification and quality detection
can significantly impact the profitability and sustainability of rice
cultivation, which is why the importance of solving these problems
cannot be overstated. By improving the classification and quality
detection techniques, it can be ensured the safety and quality of rice
crops, and improving the productivity and profitability of rice
cultivation. However, such techniques are often limited in their ability
to accurately classify rice grains due to various factors such as lighting

Avrticle History:
Received 03 December 2024
Revised 20 December 2024
Accepted 31 December 2024

DOI:10.22044/jadm.2024.15282.2631

Keywords:

Rice  Classification,  Quality
Detection, Convolutional Neural
Network, Long  Short-Term
Memory, Transfer Learning.

:%%v;gzg%”ugmzacir a“thfzg conditions, background, and image quality. To overcome these
Mavaddati). ' limitations a deep learning-based classification algorithm is

introduced in this paper that combines the power of convolutional
neural network (CNN) and long short-term memory (LSTM)
networks to better represent the structural content of different types
of rice grains. This hybrid model, called CNN-LSTM, combines the
benefits of both neural networks to enable a more effective and
accurate classification of rice grains. Three scenarios are
demonstrated in this paper including CNN, CNN in combination with
the transfer learning technique, and CNN-LSTM deep model. The
performance of the mentioned scenarios is compared with the other
deep learning models and dictionary learning-based classifiers. The
experimental results demonstrate that the proposed algorithm
accurately detects different rice varieties with an impressive accuracy
rate of over 99.85%, and 99.18% to identify quality for varying
combinations of rice varieties with an average accuracy of 99.18%.

1. Introduction

Rice is a staple food for billions of people
worldwide and is a primary source of
carbohydrates, protein, and essential nutrients for
many populations. The global rice market is
estimated to be worth over $720 billion, making it
one of the most important commaodities in the
world [1-2]. Rice classification is a crucial step in
the rice value chain, as it helps to identify various
types of rice based on their properties, such as size,
shape, color, texture, and cooking characteristics.

The accurate classification of rice varieties can
help identify those that have low levels of
contaminants, ensuring their safe consumption. By
accurately classifying different rice varieties, the
industry can improve the quality and safety of rice
products, reduce food wastage, and ensure
consumers can make informed decisions about the
rice they purchase and consume [3-4]. The
traditional categorization methods for classifying
rice varieties rely on manual visual inspection,
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which can be time-consuming, subjective, and
prone to errors due to human factors such as
fatigue, inexperience, and bias. Researchers have
adopted  advanced classification  methods,
leveraging signal processing techniques to extract
key features from rice grain images using image
processing, machine learning, and deep learning.
These features are then used to train models for
accurate rice variety classification. One of the key
advantages of using signal processing techniques
for rice classification is their ability to
automatically extract key features from images,
reducing the need for manual inspection and
reducing the risk of error due to human factors [2,
5-6]. Machine learning and data mining techniques
have been utilized in rice processing to increase
classification speed and accuracy [4-6]. In recent
years, deep learning-based techniques have
become more prevalent in the field of rice
classification. These models are particularly well-
suited for image classification tasks due to their
ability to effectively extract and process visual
features. These features can be used to classify
complex rice samples with many variables
accurately. In [7], a real-time, non-contact rice
quality grading method was proposed using deep
learning. The system captured rice images, which
were preprocessed and fed into a deep-learning
network. The model was trained on a rice dataset
and applied transfer learning to identify areas of
interest. It was tested on two standard datasets and
a real-time scanning prototype, achieving
satisfactory results. In [8], a method to detect fraud
in rice varieties, seeds, and flour, was proposed
using a camera to capture images of rice samples.
A convolutional neural network (CNN) classified
the samples into five categories, identifying one
lower-quality variety as counterfeit and the others
as original. In [9], an image processing algorithm
using a backpropagation neural network (BPNN)
with feature selection was proposed to classify five
rice types. The method utilized 36 features from
RGB, HSI, and HSV color spaces, achieving high
accuracy in rice variety. In [10], a deep learning
approach using ResNet20 was developed to
classify rice grains based on size, color, shape, and
surface. The method effectively identified brown
Basmati, Kolam, Parmal, White Basmati, and Wild
rice, aiding in the pricing of agricultural products
based on quality standards. In [11], a study on
identifying 13 Iranian rice varieties using image
processing and artificial neural networks (ANN)
showed a non-linear relationship between rice
characteristics like color, texture, and morphology.
The decision algorithm (DA) achieved less than
90% accuracy, while the ANN demonstrated
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higher classification. In [12], a CNN-based
algorithm was developed for the automatic
identification and counting of rice crop generative
sprouts. The model, trained on a large dataset of
images taken under various environmental
conditions using a mobile phone, achieved accurate
results, offering the potential for automating this
process and reducing manual labor. In [13],
features such as color, morphology, and shape were
extracted from rice images and wused for
classification using MLP and neuro-fuzzy models,
proving the algorithm's effectiveness. In [14], a
non-destructive  rice  variety  classification
algorithm was developed using hyperspectral
imaging and a CNN model, improving
classification accuracy by capturing spatial and
spectral features of rice grains. A pre-trained deep
model combining InceptionV3 and
InceptionResNetV2 is introduced in [15] to classify
five rice varieties, achieving high accuracy with the
RiceNet system. In [16], two CNN-based methods
were proposed for classifying five rice types, one
using transfer learning with a pre-trained VGG16
network and the other combining the method with
VGG16, both achieving high accuracy in
recognizing broken or fine rice seeds.

In this paper, a new approach to rice classification
using deep learning models is presented, focusing
on the structural features of different rice varieties.
A powerful deep learning model, known for
excelling in computer vision tasks such as data
classification, is employed. The proposed approach
utilizes a CNN deep model, which has
demonstrated the ability to learn rich
representations of images and perform well with
new data. The transfer learning technique is
considered in each proposed scenario [17], which
can be particularly useful when labeled data is
limited. By starting with a pre-trained model, the
new model can leverage prior knowledge, reducing
training time and resource requirements.
Additionally, the paper employs a Long Short-
Term Memory (LSTM) network [18], a neural
network architecture widely used in sequential data
processing. By combining CNNs and LSTMs, the
model can capture both low-level and high-level
features and learn complex relationships between
them. The LSTM component allows the model to
capture long-term dependencies and temporal
patterns, which is particularly beneficial for tasks
involving time-series data, such as speech
recognition or weather prediction. Furthermore, a
deep model based on ResNet50 and Xception was
developed to categorize five different rice varieties,
including Arborio, Basmati, Ipsala, Jasmine, and
Karacadag, into categories and quality levels of
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best, good, and fine. The model used 17 features,

including 13 morphological and 4 shape features,

and achieved high classification efficiency [19].

Lastly, a CNN-based deep model for classifying

rice products in Vietnam into whole and broken

rice categories was designed. This model's results
were compared to other machine learning
classifiers, such as Support Vector Machine (SVM)
and K-Nearest Neighbors (K-NN), using

Histogram of Oriented Gradients (HOG) features.

The models were evaluated on a dataset consisting

of rice sample images from various sources to

assess their efficiency and accuracy in predicting
the rice categories [20]. The proposed method
evaluates different scenarios, including CNN,

CNN combined with transfer learning (CNN-TL),

and CNN with long short-term memory (CNN-

LSTM). Its performance is compared with existing

methods, such as machine learning-based,

dictionary-based, and deep learning models. The
method is resilient to rotations and lighting
changes, as it extracts deep model-based features
that are resistant to these challenges. It focuses on
classifying five rice varieties from northern Iran:

Tarom, Shiroodi, Fajr, Neda, and Behnam. This

approach offers several key contributions to

agriculture as:

e Proposing a hybrid CNN-LSTM model for rice
guality detection, addressing key challenges in
data imbalance, feature representation, and model
complexity.

e Optimizing the CNN model with a multi-

attention mechanism to improve classification

accuracy and model performance.

e Leveraging the LSTM network to capture both

low-level and high-level features, enabling the

model to learn complex relationships within the
data.

e Utilizing transfer learning to fine-tune the CNN

model, improving the generalization and

performance of rice quality classification tasks.

e Demonstrating the model's adaptability across

different scenarios and its ability to classify rice

varieties with high accuracy, even under varying
conditions.

¢ Providing a scalable and efficient solution for

rice classification and quality detection, with

practical applications in agricultural settings.

o Introducing a method for determining rice purity

by accurately identifying the purity percentage of

different rice varieties and their mixtures.

The proposed method offers significant
contributions to agriculture, potentially driving
innovation in rice quality detection and
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classification. It serves as a valuable resource for
researchers and practitioners, with the potential for
advancements in agricultural technologies. The
paper outlines the rice classification process in
Section 2, presents the deep learning-based method
in Section 3, and provides experimental results in
Section 4, demonstrating the method's
effectiveness. Section 5 concludes with a summary
of the findings and highlights the method's
importance in rice grading and quality assessment.

2. Data Processing Steps

Rice is vital to the Iranian economy, ranking fifth
globally in production and consumption. Accurate
rice classification is crucial for ensuring quality,
safety, and optimizing the rice value chain, from
production to consumption. It helps identify rice
types, improves storage and processing, reduces
losses, boosts farmer productivity, and benefits rice
businesses. The proposed method includes steps
like database collection, pre-processing to improve
classification accuracy, and deep model design,
with specific details provided below.

2.1. Database Collection

The process of creating an imaging database for
rice classification involves several steps. First,
samples are collected from various rice varieties
commonly consumed in northern Iran, including
Tarom, Shiroodi, Fajr, Neda, and Behnam. High-
resolution cameras and appropriate lighting are
then used to capture clear images of the rice grains.
A specialized LED light tent (23cmx23cmx23cm)
is designed, equipped with two 23cm LED strips to
ensure uniform lighting and prevent shadows. A
5cm circular opening holds the imaging device,
such as a smartphone, to capture the images. Rice
samples are evenly distributed in the box using a
50g measuring cup. A Sony Imaging Camera with
a 300imx sensor and 19-Megapixel resolution is
used for image capture [21, 22]. Figure 1 illustrates
the LED light tent setup.

Two methods for image acquisition in rice
classification are individual sampling and bulk
sampling. This paper uses the individual sampling
method, where single rice grains are placed on the
surface. Figure 2 compares the two techniques.
Each image is labeled with the corresponding rice
variety, creating a labeled dataset. A total of 2000
images across five rice varieties were collected,
providing a sufficient dataset for deep analysis.

2.2. Data Preprocessing

Pre-processing is crucial for ensuring the quality
and accuracy of images used in rice classification.
It involves steps such as image resizing, color
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space conversion, noise reduction, and feature
extraction.  Resizing  standardizes  image
dimensions, improving model performance by
reducing input variability. Color space conversion
ensures uniformity, minimizing the impact of
lighting differences. Noise reduction enhances
image quality, making them more suitable for
machine learning. In this paper, images are resized
to 256x256, and a median filter is applied to reduce
noise and shadow effects, enhancing classifier
accuracy and algorithm performance.

2.3. Data Augmentation

Large-scale Al applications, such as image
classification, require large public datasets for
model training. However, collecting and labeling
these datasets can be costly and resource-intensive.
This highlights the need for efficient methods to
gather, process, and label data to reduce the time
and resources required for effective models.
Smaller datasets limit model performance and may
only represent a subset of the underlying patterns.
In rice classification, a large amount of labeled,
pre-processed data is needed, which can be time-
consuming and expensive.

Large datasets are essential to optimize deep model
performance, but challenges exist in collecting and
labeling them. Advanced computational resources
are also required. To address these issues, data
augmentation techniques can be used to increase
dataset size and avoid overfitting artificially. This
paper employs data augmentation to generate more
data for each class. Techniques such as mirroring,
scaling, shifting, rotation, and noise addition
enhance dataset diversity, improving model
performance [23-27]. Figures 3 shows the example
of augmented rice images for Tarom,
demonstrating the effectiveness of this approach.

) /\/
Figure 1. The box designed for imaging from rice
varieties.
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(b)
Figure 2. Two types of rice imaging: a) Individual rice
grains, b) Bulk rice grains.

2.4. Cross Validation for Evaluation

K-fold cross-validation is a key evaluation method
in rice classification, helping to address training
model limitations and providing a better
understanding of the model's generalization to new
data. It involves dividing the dataset into multiple
partitions, using each as a validation set once while
the others are used for training. This approach
enhances the evaluation's robustness and accuracy,
and helps identify overfitting or underfitting. In this
study, 5-fold cross-validation was used, with 70%
of the data for training and 30% for validation. The
model's performance was assessed across all five
partitions, and the final accuracy was the average
of the class accuracies. This method ensures a
comprehensive evaluation of the model's
generalization ability.

3. Deep Model Architecture

In recent years, deep learning techniques like
CNNs have gained popularity in data classification,
especially for image tasks, due to their ability to
extract and process visual features effectively.
These techniques can significantly improve rice
classification accuracy and speed. The success
depends on selecting appropriate  CNN
architectures and hyperparameters. The proposed
method combines CNN with LSTM to form a
hybrid CNN-LSTM model, which classifies input
images after CNN processing. Transfer learning is
also used to enhance generalization by leveraging
a pre-trained model. Block diagrams of the
methods (CNN, CNN-TL, and CNN-LSTM) are
shown in Figure 4.

3.1. CNN Deep Model

CNNs are deep learning models ideal for image
classification tasks [25, 27-28]. CNNs are designed to
identify patterns and features in images by
applying a series of convolutional operations.
These operations help the network extract
important features from input data. CNNs are
widely used in both image processing and signal
classification.
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Original image Rotation={5 5] salt & pepper noise with d=0.01

Guassian filter Change in intensity Horizontal flip

Figure 3. A sample of the Tarom rice cultivar and its
transformation based on data augmentation technique.
The model consists of convolutional layers,
pooling, and fully connected layers. Convolutional
layers extract features by applying filters to the
input data while pooling layers reduce the size of
the output matrix to improve efficiency. Fully
connected layers then classify the extracted
features. Proper hyperparameter tuning is critical
for optimizing CNN performance, as incorrect
settings can lead to overfitting or underfitting. Key
hyperparameters include learning rate, batch size,
weight decay, and regularization strength, which
impact the model's accuracy, precision, and recall.
These hyperparameters are discussed in the next

sections.

3.2. LSTM Network

LSTM networks are ideal for handling variable-
length input sequences and capturing complex
temporal patterns, making them suitable for tasks
like video classification or sentiment analysis [29-
31]. Unlike other recurrent networks, LSTMs
efficiently learn long-term dependencies by using
multiple memory cells with separate update
mechanisms. This paper combines LSTMs with
CNNs to enhance rice classification by capturing
both low-level and high-level features. The LSTM
network includes layers like the input layer, LSTM
cells (with input, output, and forget gates), and the
output layer. A sequence folding layer is also used
for classifying event sequences, where each neuron
represents a probability distribution over the entire
sequence. The LSTM network is trained using key
parameters such as input embedding, the number of
layers and cells, timesteps, learning rate, and batch
size. L2 regularization helps prevent overfitting.
Proper hyperparameter tuning is crucial to optimize
performance, minimize overfitting, and improve
generalization.

3.3. Transfer Learning Technique

Transfer learning is particularly useful for large-
scale datasets or high-dimensional data [32-34].
Training models from scratch is time-consuming
and computationally expensive, so using pre-
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trained models can accelerate training and enhance
performance on new tasks. Pre-trained models,
having learned from large datasets, offer improved
generalization and can transfer learned knowledge
to a new model, boosting its performance.
Additionally, transfer learning allows us to
leverage the strengths of existing models, such as
those trained on diverse image datasets, to extract
relevant features for new data. Overall, transfer
learning reduces training time, saves computational
resources, and enhances model performance,
making it a valuable tool for CNN deep models.

4. Results and Discussions

The input rice images are pre-processed and
augmented before being classified by a fine-tuned
CNN model into five categories: Tarom, Shiroodi,
Fajr, Neda, and Behnam. The CNN, CNN-TL, and
CNN-LSTM architectures are compared with
traditional classifiers like MLP, RNN, the
dictionary learning-based algorithm from [21], and
the GMM-based classifier from [22]. Transfer
learning is used in the second scenario to address
high-dimensional data fitting, and LSTM is
employed to capture long-term temporal
dependencies and handle variable-length input
data. The proposed solution is validated through
experiments with various parameter settings and
evaluation measures.

4.1. Details of Simulation

To evaluate the proposed rice cultivar classifier,
2000 color images (256 x 256 pixels) were
recorded for each rice type and processed with a
median filter to reduce noise and improve
accuracy. Three deep model scenarios were used:
1) CNN, trained from scratch; 2) CNN-TL, fine-
tuned using transfer learning; and 3) CNN-LSTM,
combining CNN for feature extraction and LSTM
for classification. Key parameters, such as
architecture, hyperparameters, and pre-processing
techniques, were considered. The batch size of 128
was used, but adjustments were made for optimal
performance. Learning rates were tuned for each
scenario to balance training accuracy and
convergence. The settings for each model
configuration are summarized in Tables 1 and 2.
The proposed approach uses a flexible framework
for rice cultivar classification, employing a CNN
model with the Adaptive Moment Estimation
(Adam) optimizer. Adam computes adaptive
learning rates for each parameter, aiding the
training of deep networks. The learning rate and
decay rate for Adam were set to 10-4 and 0.9,
respectively. For the CNN-LSTM scenario, the
Stochastic Gradient Descent (SGD) optimizer was
used, where model parameters are updated in small



Mavaddati et al./ Journal of Al and Data Mining, Vol 12, No 4, 2024

steps based on the negative gradient. A balanced
batch size and learning rate are critical for stable
training and avoiding overfitting. The LSTM
network configuration is outlined in Table 3.

The proposed algorithm was trained on a computer
with high-performance hardware, specifically, an
Intel Xeon E5 2600 CPU with 16 cores and a clock
speed of 3.20 GHz. The computer is also equipped
with 3.20 GB of RAM, which is a sufficient
amount for running deep-learning models.
Additionally, the algorithm was trained on a Linux
machine with 192 GB of DDR4 RAM, which is a
high amount of RAM suitable for running larger
models and larger datasets, and for running
multiple instances of the algorithm in parallel. It

In classification problems, evaluation metrics such
as accuracy, sensitivity, specificity, positive
prediction rate, and F-Measure are essential for
assessing model performance. These metrics
provide insights into the model's strengths and
weaknesses. Accuracy reflects the classifier's
ability to correctly identify the actual class, while
specificity measures its capacity to distinguish true
categories. A positive prediction rate indicates the
percentage of correctly labeled images, sensitivity
assesses the recognition of different classes, and F-
Measure balances precision and recall. These
metrics, defined in this manuscript, facilitate a
comprehensive evaluation and comparison of the
rice classifiers:

also uses sparse principal component analysis (SPCA) A TP +TN (8]
and sparse structured principal component analysis cc=
P principa’ componert. analy TP+TN +FP+FN
(SSPCA) to reduce dimensionality and improve
classification accuracy and efficiency. The algorithm in @
[22] combines fractal and texture features with a GMM Spe = N
classifier for classifying four rice cultivars. Sparse TN + FP
structured principal component analysis is used to
reduce feature dimensions, achieving precise TP (3)
classification with reduced computational time. Ppr=————
TP+ FP
4.2. Performance Evaluation
CNN Feature Extraction
=" vt ommoEm o oEmoaoEm o oEm o oEm o oEm o oEm o oEm oo oEm 1
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Figure 4. The block diagram of the proposed rice classifier based on different scenarios: a) CNN deep model, b) CNN
in combination with transfer learning technique (CNN-TL), c) Hybrid CNN deep model with LSTM network and
transfer learning technique (CNN-LSTM), and d) Test procedure in the last scenario.
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Table 1. The hyperparameters set for different deep model’s scenarios.

Epochs  Optimizer Batch Kernel Activation Learning Weight #of # of
Size size function rate decay parameters  layers
MLP [13] 1000 SGD 32 12 Sigmoid 10* - ~ 4
Resnet34 [10] 100 Adam 10 3x3 Non-Linear 2x10* 10% 0.60M 34
RNN 20 Adam 64 3x3 Sigmoid 10° 10 0.30M 10
CNN (Scenario 1) 250 Adam 128 3x3 Sigmoid 108 10* 0.80M 20
CNN-TL (Scenario 2) 250 Adam 128 3x3 Sigmoid 10° 10 0.90M 20
CNN-LSTM (Scenario 3) 250 SGD 64 3x%3 Sigmoid 10* 10* 0.90M 20
Table 2. The configurations of each scenario of CNN deep model in the proposed rice classification algorithm.
No. of Name of layer CNN CNN-TL CNN-LSTM
Layers (Scenario 1) (Scenario 2) (Scenario 3)
1 Input image 256x256x3 256%256x%3 256%256x3
2 Sequence folding layer - - 256x256x1
3 Conv2D/ReLU/Normalization Kernel size Kernel size [3,3], Kernel size [3,3],
[3,3],256x256x1, Stride 1 256x256x1, Stride 1 256%256x1, Stridel
4 Pooling Kernel size [2,2], Kernel size [2,2], Kernel size [2,2],
256%256x64, Stride2 256%256x64, Stride2 256%256x64, Stride2
5 Conv2D/ReLU/Normalization Kernel size [1,1], Kernel size [1,1], Kernel size [1,1],
64x64x64, Stride 1 64x64x64, Stride 1 64x64x64, Stride 1
6 Pooling/padding Kernel size [2,2], Kernel size [2,2], Kernel size [2,2],
64x64x128, Stride2 64x64x128, Stride2 64x64x128, Stride2
7 Conv2D Kernel size [3,3], Kernel size [3,3], Kernel size [3,3],
32x32x128, Stride 1 32x32x128, Stride 1 32x32x128, Stridel
8 Pooling Kernel size [2,2], Kernel size [2,2], Kernel size [2,2],
32x32x256, Stride 2 32x32x256, Stride 2 32x32x256, Stride2
9 Sequence unfolding layer - - 32x32x256
10 Flattening - - 192x192
11 LSTM - - 4096
12 Fully Connected 4096 4096 4096
13 ReLU ~ ~ ~
14 Dropout ~ ~ ~
15 Fully Connected 4096 4096 4096
16 ReLU ~ ~ ~
17 Dropout 50% dropout 50% dropout 50% dropout
18 Fully Connected 1000 fully connected layer 1000 fully connected 1000 fully connected
layer layer
19 softmax ~ ~ ~
20 Classification Output ~ ~ ~
Table 3. Representation of optimized hyperparameters of the LSTM network employed in scenario 3.
Epochs Learning Batch No. of Interpolate Dropout Dimension of No. of units in
rate size nods method rate hidden state fully connected
layer
LSTM 100 10* 64 40 N/A 50% 200 40
TP (4) normalization, and median filtering, followed by
n= TP+ EN CNN blocks extracting deep features. These
features pass through fully connected layers, with a
Ppr x Sen ©) . e i
F —Measure=2————— softmax function estimating class probabilities.
Ppr +Sen The 5-fold cross-validation approach (Section 2.4)

TP, TN, FP, and FN represent True Positive, True
Negative, False Positive, and False Negative rates,
respectively. TP indicates correctly detected
classes, TN represents correctly identified
negatives, FP counts false positives, and FN
denotes false negatives. Higher TP and TN rates
with lower FP and FN rates indicate better
classification. These metrics enable a thorough
evaluation and comparison of classifier
performance, with high scores across all metrics
reflecting accuracy and effectiveness.

4.3. The Proposed Rice Classification Based on
Different CNN Scenarios

Preprocessing is vital for image classification, as
depicted in Figure 4. Steps include resizing,
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divides training data into five groups, iteratively
training on four and validating on one.
Performance  metrics—accuracy,  specificity,
positive predictive value, sensitivity, and F-
Measure—are detailed in Table 4. The Friedman
test [39] assesses algorithm efficiency, calculating
o —Values compared to a 0.05 significance level.
The lower p—Value indicates significant
differences. Table 5 shows the CNN-LSTM
algorithm achieves the best performance, with p —
Values below 0.05, confirm its superiority over
alternative methods, including dictionary-based
and traditional algorithms.

The CNN-LSTM model demonstrates high
accuracy and stability in rice classification, as
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shown in Table 6. The confusion matrix highlights
minimal misclassification, and metrics like
specificity, prediction rate, sensitivity, and F-
Measure confirm its effectiveness. Figure 5

illustrates the training and testing accuracy and
loss, offering insights into the model's learning

process and optimal hyperparameters.

Table 4. The overall performance of various rice classifiers, as measured by Accuracy, Specificity, Positive Prediction
Rate, Sensitivity, and F-Measure metrics.

Acc (%) Spe (%) Ppr (%) Sen (%) F-Measure (%)
Tarom 94.24 94.89 93.49 94.31 93.89
Shiroodi 95.39 94.80 94.57 93.43 93.99
MLP [13] Fajr 94.98 94.32 94.53 94.91 94.72
Neda 95.62 95.49 94.58 94.96 94.77
Behnam 95.87 95.44 94.32 94.70 94.51
Tarom 97.53 97.46 97.56 98.11 97.83
Shiroodi 97.89 97.70 98.15 97.43 97.79
CNN [6] Fajr 97.39 97.64 97.21 97.41 97.31
Neda 97.88 97.47 98.22 97.58 97.89
Behnam 97.82 97.78 97.84 97.69 97.76
Tarom 95.86 96.05 96.70 95.96 96.34
Shiroodi 95.51 94.07 96.04 96.54 96.29
RNN Fajr 96.74 96.13 95.78 96.27 96.02
Neda 95.85 95.91 95.91 96.41 96.16
Behnam 95.77 95.82 96.75 96.53 96.64
Tarom 93.81 93.61 94.23 93.13 93.68
Shiroodi 93.58 93.24 93.21 93.14 93.17
GMM-based [21] Fajr 93.25 93.53 93.28 94.36 93.82
Neda 94.17 93.31 93.16 93.79 93.47
Behnam 94.06 94.11 93.77 93.28 93.52
Tarom 93.35 93.43 94.33 94.34 94.33
Dictionary learning- Shiroodi 93.41 94.65 93.56 94.45 94.00
based [22] Fajr 93.87 93.83 93.54 94.22 93.88
Neda 94.11 93.43 95.02 93.98 94.49
Behnam 93.21 93.18 93.43 93.56 93.49
Tarom 98.32 98.16 98.78 98.49 98.63
CNN Shiroodi 98.80 98.69 97.98 98.21 98.09
(Scenario 1) Fajr 99.13 98.55 98.65 98.64 98.64
Neda 98.64 98.48 97.93 99.10 98.51
Behnam 98.33 98.67 98.80 98.64 98.72
Tarom 99.61 100 99.85 99.23 99.54
CNN-TL Shiroodi 99.65 99.49 99.67 99.21 99.44
(Scenario 2) Fajr 100 100 99.59 99.32 99.45
Neda 99.63 99.82 99.76 99.40 99.58
Behnam 99.70 99.79 99.85 99.01 99.43
Tarom 99.68 99.48 100 99.67 99.83
CNN-LSTM Shiroodi 99.82 99.80 99.80 100 99.90
(Scenario 3) Fajr 100 99.63 99.69 99.74 99.71
Neda 100 99.56 100 99.83 99.91
Behnam 99.77 99.68 99.81 100 99.90

3.4. The Proposed Procedure for Rice
Quality Detection Based on Different CNN
Scenarios

In many countries, rice is blended with lower-
quality varieties due to factors like cost, supply
shortages,  consumer  preferences,  or
misconceptions. Blending lowers product costs,
maximizes retailer profits, and addresses
shortages caused by climate change or drought.
Some consumers also prefer the taste or texture
of mixed rice. Assessing rice purity can be
achieved using grain analyzers to measure
properties like grain size, impurities, and
moisture, or through high-resolution imaging
for detailed structural analysis. Signal
processing-based methods offer faster, more
accurate  analysis, enabling  real-time
monitoring and detailed chemical composition

insights, benefiting breeding, quality control,
and production processes.

This  paper investigates rice cultivar
authenticity and classification, focusing on the
use of deep learning to detect rice purity after
classification. In northern Iran, lower-priced
rice varieties, such as Shiroodi, are mixed with
higher-quality ones like Tarom for texture,
color, and taste. This study examines the purity
of Tarom rice mixed with Shiroodi at 10%,
20%, and 40% levels. The authenticity and
quality of rice are assessed using a CNN-LSTM
classifier, showing remarkable accuracy in
detecting rice quality. The success of CNN-
LSTM models is due to their ability to learn
complex features from large datasets. The paper
concludes that the quality of data and model
optimization are key to effective machine-
learning solutions in rice quality detection. The
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authenticity of the rice is tested to ensure it CNN-LSTM classifier for rice quality detection
meets the required standards, and the results are are presented in Table 7, highlighting their
shown in Figure 6. The results of the proposed remarkable accuracy.
Table 5. The results of the Friedman test to analysis the different rice classification algorithms and proposed
scenarios.
Acc (%) P — Value Mean p —Value Mean Acc (%)
Tarom 94.24 0.024
Shiroodi 95.39 0.026
MLP [13] Fajr 94.98 0.027 0.0274 95.22
Neda 95.62 0.031
Behnam 95.87 0.029
Tarom 97.53 0.019
Shiroodi 97.89 0.009
CNN [6] Fajr 97.39 0.016 0.0130 97.70
Neda 97.88 0.011
Behnam 97.82 0.010
Tarom 95.86 0.020
RNN Shiroodi 95.51 0.018 95.95
Fajr 96.74 0.029 0.0234
Neda 95.85 0.031
Behnam 95.77 0.019
Tarom 93.81 0.034
GMM-based [21] Shiroodi 93.58 0.033
Fajr 93.25 0.029 0.0324 93.77
Neda 94.17 0.035
Behnam 94.06 0.031
Tarom 93.35 0.040
Dictionary learning-based Shiroodi 93.41 0.039
[22] Fajr 93.87 0.038 0.0382 93.59
Neda 94.11 0.037
Behnam 93.21 0.037
Tarom 98.32 0.009
CNN Shiroodi 98.80 0.006
(Scenario 1) Fajr 99.13 0.007 0.0078 98.64
Neda 98.64 0.008
Behnam 98.33 0.009
Tarom 99.61 0.004
CNN-TL Shiroodi 99.65 0.003
(Scenario 2) Fajr 100 0.005 0.0042 99.72
Neda 99.63 0.005
Behnam 99.70 0.004
Tarom 99.68 0.002
CNN-LSTM Shiroodi 99.82 0.003
(Scenario 3) Fajr 100 0.001 0.0018 99.85
Neda 100 0.002
Behnam 99.77 0.001
Table 6. Confusion matrix for the CNN-LSTM proposed method for rice cultivars classification.
Tarom (%) Shiroodi (%) Fajr (%) Neda (%) Behnam (%)
Tarom (%) 99.68 0.00 0.00 0.14 0.18
Shiroodi (%) 0.05 99.82 0.09 0.04 0.00
Fajr (%) 0.00 0.00 100 0.00 0.00
Neda (%) 0.00 0.00 0.00 100 0.00
Behnam (%) 0.06 0.07 0.06 0.04 99.77
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Figure 5. Training progress plots related to, a) the accuracy, and b) the loss function, for the proposed CNN-LSTM model
used to resolve the rice classification problem.
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Figure 6. Examples of training data used for rice quality detection, include: a) Tarom1 rice data,
b) Shiroodi rice data, c) 90% of grains from Tarom1 in combination with 10% of rice grains from the Shiroodi
cultivar, d) 80% of grains from Tarom1 in combination with 20% of rice grains from the Shiroodi cultivar,
e) 60% of grains from Tarom1 in combination with 40% of rice grains from Shiroodi cultivar.

Table 7. The statistical test analysis of different rice quality detection scenarios.

Acc (%) p — Value Mean o —Value  Mean Acc (%)

Tarom 99.07 0.004

Shiroodi 99.14 0.004

Fajr 98.31 0.005

CNN Neda 99.28 0.004
(Scenario 1) Behnam 99.33 0.005 0.0055 98.69

90% Tarom_10%Shiroodi 98.21 0.007

80% Tarom_20%Shiroodi 98.07 0.008

60% Tarom_40%Shiroodi 98.18 0.007

Tarom 99.23 0.003

Shiroodi 99.49 0.003

Fajr 99.54 0.005

CNN-TL Neda 99.66 0.005
(Scenario 2) Behnam 99.17 0.006 0.0047 98.99

90% Tarom_10%Shiroodi 98.20 0.006

80% Tarom_20%Shiroodi 98.32 0.005

60% Tarom_40%Shiroodi 98.33 0.005

Tarom 99.38 0.002

Shiroodi 99.80 0.001

Fajr 99.70 0.002

CNN-LSTM Neda 99.71 0.002
(Scenario 3) Behnam 99.80 0.003 0.0026 99.18

90% Tarom_10%Shiroodi 98.27 0.004

80% Tarom_20%Shiroodi 98.36 0.003

60% Tarom_40%Shiroodi 98.41 0.004

Table 8. Confusion matrix for proposed CNN-LSTM method for rice cultivars classification.

Tarom Shiroodi Fajr Neda Behnam 90% Tarom 80% Tarom 60%Tarom_
10%Shiroodi 20%Shiroodi 40%Shiroodi
Tarom 99.38 0.10 0.13 0.09 0.03 0.14 0.04 0.09
Shiroodi 0.00 99.80 0.00 0.03 0.00 0.03 0.08 0.06
Fajr 0.03 0.06 99.70 0.02 0.04 0.06 0.04 0.05
Neda 0.05 0.07 0.05 99.71 0.03 0.02 0.03 0.04
Behnam 0.03 0.05 0.00 0.06 99.80 0.02 0.03 0.01
90% Tarom 0.31 0.33 0.21 0.24 0.18 98.27 0.28 0.18
_10%Shiroodi
80% Tarom 0.29 0.13 0.29 0.17 0.19 0.29 98.36 0.28
_20%Shiroodi
60% Tarom 0.26 0.22 0.17 0.19 0.16 0.28 0.31 98.41
_40%Shiroodi

Table 8 shows the confusion matrix for the
proposed CNN-LSTM model in detecting rice
quality across eight categories of pure and impure
rice. The training time for the model depends on
factors like dataset size, model complexity, and the
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training algorithm. Training the model on 70% of
the dataset takes about 21 hours, with a runtime of
approximately 19 seconds, making it efficient for
online applications. The CNN effectively extracts
features from rice images, which are then
processed by the LSTM network to identify
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patterns over time, improving classification
accuracy and speed. Transfer learning enhances the
model's ability to generalize to new, varied data,
boosting its performance in  real-world
applications. This combination of CNN, LSTM,
and transfer learning makes the classifier highly
accurate and efficient for agricultural use.

While the proposed CNN-LSTM  model
demonstrates impressive accuracy in controlled
experiments, several challenges may arise when
deploying the system in real-world agricultural
settings. One major challenge is the computational
power required for processing bulk samples,
especially in environments with limited access to
advanced hardware. To address this, edge
computing techniques and model compression
strategies, such as pruning and quantization, can be
employed to reduce the computational load.
Additionally, variability in lighting conditions and
background noise during image acquisition could
impact the model’s performance. Employing
robust data augmentation techniques and adaptive
preprocessing pipelines can help mitigate these
issues. Future work will focus on developing
hardware-friendly versions of the model to
facilitate deployment in resource-constrained
settings.

In real-world scenarios, processing high-resolution
images of rice grains in bulk could pose
computational challenges. Optimizing the model's
architecture for deployment on edge devices and
exploring lightweight alternatives will be essential
steps in future research.

5. Conclusion

Rice classification and quality detection are
essential for agriculture, food security, and
consumer safety. Rice is a staple food but is also
perishable and vulnerable to damage and
contamination. Effective rice quality detection is
crucial for ensuring food safety and consumer
satisfaction. This can be applied in breeding, seed

selection, field management,  processing,
marketing, and food safety. Deep learning
algorithms are effective for detecting and

classifying rice defects, extracting features from
images or spectral data. This paper proposes CNN-
based models with transfer learning and hybrid
CNN-LSTM models for rice classification and
guality detection. The CNN extracts visual
features, while LSTM handles temporal data,
making the combination effective for sequential
tasks. Transfer learning enhances model
performance, enabling faster convergence and
better generalization. These models classify five
rice cultivars and three mixed rice classes in
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northern Iran. The CNN-LSTM model improves
classification accuracy, making it a reliable choice
for rice quality detection, as demonstrated through
simulations and statistical tests. This approach also
evaluates rice purity and quality, highlighting its
importance for food safety. In real-world scenarios,
processing high-resolution images of rice grains in
bulk could pose computational challenges.
Optimizing the model's architecture  for
deployment on edge devices and exploring
lightweight alternatives will be essential steps in
future research.

Future Work

While this study has demonstrated the
effectiveness of the proposed model using rice
varieties from northern Iran, we acknowledge the
importance ~ of  enhancing the model’s
generalizability. Future work will focus on
expanding the dataset to include a more diverse
range of rice varieties from different regions
globally. This will ensure that the model is
applicable across various agricultural practices and
addresses challenges specific to different rice-
producing areas. Additionally, we aim to explore
hardware optimization techniques for more
efficient real-world deployment of the system in
large-scale agricultural settings. By doing so, we
can improve both the model’s accuracy and its
practical applicability in diverse agricultural
environments.

Although the model demonstrates high accuracy,
future work will focus on evaluating its
computational performance, including processing
time, resource consumption, and scalability across
various hardware platforms. Optimizing the model
for efficiency using techniques such as model
compression and parallel processing will also be
explored to ensure its applicability in large-scale
agricultural  settings. By addressing these
computational aspects, we aim to enhance the
model's real-world feasibility and its potential for
widespread deployment in agriculture.

A limitation of this study is the dataset's focus on
specific rice varieties. Future work will involve
collecting and analyzing a more diverse dataset
representing global varieties to enhance the
model's generalizability and applicability in
diverse agricultural contexts.

Future work will focus on addressing challenges
related to the deployment of the system in real-
world agricultural settings. Key challenges include
hardware limitations, processing bulk samples
efficiently, and ensuring scalability across different
agricultural operations. Optimizing the system for
handling large datasets and ensuring timely
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processing will be prioritized. Strategies such as
hardware acceleration, distributed computing, and
batch processing techniques will be explored to
improve the system’s efficiency and feasibility for
large-scale agricultural environments.

While deep learning models like the CNN-LSTM
often provide excellent performance, their "black-
box" nature can make them difficult to interpret. To
address this limitation, future work will focus on
enhancing the model's interpretability. Techniques
such as activation maps, feature importance
analysis, and model explanation methods like
SHAP and LIME will be explored to provide
transparent insights into the model's decision-
making process. This will improve the
understanding and trust in the proposed solution,
especially for real-world agricultural applications.
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