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 Rice is one of the most important staple crops in the world and 

provides millions of people with a significant source of food and 

income. Problems related to rice classification and quality detection 

can significantly impact the profitability and sustainability of rice 

cultivation, which is why the importance of solving these problems 

cannot be overstated. By improving the classification and quality 

detection techniques, it can be ensured the safety and quality of rice 

crops, and improving the productivity and profitability of rice 

cultivation. However, such techniques are often limited in their ability 

to accurately classify rice grains due to various factors such as lighting 

conditions, background, and image quality. To overcome these 

limitations a deep learning-based classification algorithm is 

introduced in this paper that combines the power of convolutional 

neural network (CNN) and long short-term memory (LSTM) 

networks to better represent the structural content of different types 

of rice grains. This hybrid model, called CNN-LSTM, combines the 

benefits of both neural networks to enable a more effective and 

accurate classification of rice grains. Three scenarios are 

demonstrated in this paper including CNN, CNN in combination with 

the transfer learning technique, and CNN-LSTM deep model. The 

performance of the mentioned scenarios is compared with the other 

deep learning models and dictionary learning-based classifiers. The 

experimental results demonstrate that the proposed algorithm 

accurately detects different rice varieties with an impressive accuracy 

rate of over 99.85%, and 99.18% to identify quality for varying 

combinations of rice varieties with an average accuracy of 99.18%.  
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1. Introduction 

Rice is a staple food for billions of people 

worldwide and is a primary source of 

carbohydrates, protein, and essential nutrients for 

many populations. The global rice market is 

estimated to be worth over $720 billion, making it 

one of the most important commodities in the 

world [1-2]. Rice classification is a crucial step in 

the rice value chain, as it helps to identify various 

types of rice based on their properties, such as size, 

shape, color, texture, and cooking characteristics. 

The accurate classification of rice varieties can 

help identify those that have low levels of 

contaminants, ensuring their safe consumption. By 

accurately classifying different rice varieties, the 

industry can improve the quality and safety of rice 

products, reduce food wastage, and ensure 

consumers can make informed decisions about the 

rice they purchase and consume [3-4]. The 

traditional categorization methods for classifying 

rice varieties rely on manual visual inspection, 
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which can be time-consuming, subjective, and 

prone to errors due to human factors such as 

fatigue, inexperience, and bias. Researchers have 

adopted advanced classification methods, 

leveraging signal processing techniques to extract 

key features from rice grain images using image 

processing, machine learning, and deep learning. 

These features are then used to train models for 

accurate rice variety classification.  One of the key 

advantages of using signal processing techniques 

for rice classification is their ability to 

automatically extract key features from images, 

reducing the need for manual inspection and 

reducing the risk of error due to human factors [2, 

5-6]. Machine learning and data mining techniques 

have been utilized in rice processing to increase 

classification speed and accuracy [4-6]. In recent 

years, deep learning-based techniques have 

become more prevalent in the field of rice 

classification. These models are particularly well-

suited for image classification tasks due to their 

ability to effectively extract and process visual 

features. These features can be used to classify 

complex rice samples with many variables 

accurately. In [7], a real-time, non-contact rice 

quality grading method was proposed using deep 

learning. The system captured rice images, which 

were preprocessed and fed into a deep-learning 

network. The model was trained on a rice dataset 

and applied transfer learning to identify areas of 

interest. It was tested on two standard datasets and 

a real-time scanning prototype, achieving 

satisfactory results. In [8], a method to detect fraud 

in rice varieties, seeds, and flour, was proposed 

using a camera to capture images of rice samples. 

A convolutional neural network (CNN) classified 

the samples into five categories, identifying one 

lower-quality variety as counterfeit and the others 

as original. In [9], an image processing algorithm 

using a backpropagation neural network (BPNN) 

with feature selection was proposed to classify five 

rice types. The method utilized 36 features from 

RGB, HSI, and HSV color spaces, achieving high 

accuracy in rice variety. In [10], a deep learning 

approach using ResNet20 was developed to 

classify rice grains based on size, color, shape, and 

surface. The method effectively identified brown 

Basmati, Kolam, Parmal, White Basmati, and Wild 

rice, aiding in the pricing of agricultural products 

based on quality standards. In [11], a study on 

identifying 13 Iranian rice varieties using image 

processing and artificial neural networks (ANN) 

showed a non-linear relationship between rice 

characteristics like color, texture, and morphology. 

The decision algorithm (DA) achieved less than 

90% accuracy, while the ANN demonstrated 

higher classification. In [12], a CNN-based 

algorithm was developed for the automatic 

identification and counting of rice crop generative 

sprouts. The model, trained on a large dataset of 

images taken under various environmental 

conditions using a mobile phone, achieved accurate 

results, offering the potential for automating this 

process and reducing manual labor. In [13], 

features such as color, morphology, and shape were 

extracted from rice images and used for 

classification using MLP and neuro-fuzzy models, 

proving the algorithm's effectiveness. In [14], a 

non-destructive rice variety classification 

algorithm was developed using hyperspectral 

imaging and a CNN model, improving 

classification accuracy by capturing spatial and 

spectral features of rice grains. A pre-trained deep 

model combining InceptionV3 and 

InceptionResNetV2 is introduced in [15] to classify 

five rice varieties, achieving high accuracy with the 

RiceNet system. In [16], two CNN-based methods 

were proposed for classifying five rice types, one 

using transfer learning with a pre-trained VGG16 

network and the other combining the method with 

VGG16, both achieving high accuracy in 

recognizing broken or fine rice seeds. 

In this paper, a new approach to rice classification 

using deep learning models is presented, focusing 

on the structural features of different rice varieties. 

A powerful deep learning model, known for 

excelling in computer vision tasks such as data 

classification, is employed. The proposed approach 

utilizes a CNN deep model, which has 

demonstrated the ability to learn rich 

representations of images and perform well with 

new data. The transfer learning technique is 

considered in each proposed scenario [17], which 

can be particularly useful when labeled data is 

limited. By starting with a pre-trained model, the 

new model can leverage prior knowledge, reducing 

training time and resource requirements. 

Additionally, the paper employs a Long Short-

Term Memory (LSTM) network [18], a neural 

network architecture widely used in sequential data 

processing. By combining CNNs and LSTMs, the 

model can capture both low-level and high-level 

features and learn complex relationships between 

them. The LSTM component allows the model to 

capture long-term dependencies and temporal 

patterns, which is particularly beneficial for tasks 

involving time-series data, such as speech 

recognition or weather prediction. Furthermore, a 

deep model based on ResNet50 and Xception was 

developed to categorize five different rice varieties, 

including Arborio, Basmati, Ipsala, Jasmine, and 

Karacadag, into categories and quality levels of 
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best, good, and fine. The model used 17 features, 

including 13 morphological and 4 shape features, 

and achieved high classification efficiency [19]. 

Lastly, a CNN-based deep model for classifying 

rice products in Vietnam into whole and broken 

rice categories was designed. This model's results 

were compared to other machine learning 

classifiers, such as Support Vector Machine (SVM) 

and K-Nearest Neighbors (K-NN), using 

Histogram of Oriented Gradients (HOG) features. 

The models were evaluated on a dataset consisting 

of rice sample images from various sources to 

assess their efficiency and accuracy in predicting 

the rice categories [20].  The proposed method 

evaluates different scenarios, including CNN, 

CNN combined with transfer learning (CNN-TL), 

and CNN with long short-term memory (CNN-

LSTM). Its performance is compared with existing 

methods, such as machine learning-based, 

dictionary-based, and deep learning models. The 

method is resilient to rotations and lighting 

changes, as it extracts deep model-based features 

that are resistant to these challenges. It focuses on 

classifying five rice varieties from northern Iran: 

Tarom, Shiroodi, Fajr, Neda, and Behnam. This 

approach offers several key contributions to 

agriculture as: 

• Proposing a hybrid CNN-LSTM model for rice 

quality detection, addressing key challenges in 

data imbalance, feature representation, and model 

complexity. 

• Optimizing the CNN model with a multi-

attention mechanism to improve classification 

accuracy and model performance. 

• Leveraging the LSTM network to capture both 

low-level and high-level features, enabling the 

model to learn complex relationships within the 

data. 

• Utilizing transfer learning to fine-tune the CNN 

model, improving the generalization and 

performance of rice quality classification tasks. 

• Demonstrating the model's adaptability across 

different scenarios and its ability to classify rice 

varieties with high accuracy, even under varying 

conditions. 

• Providing a scalable and efficient solution for 

rice classification and quality detection, with 

practical applications in agricultural settings. 

• Introducing a method for determining rice purity 

by accurately identifying the purity percentage of 

different rice varieties and their mixtures. 

 

The proposed method offers significant 

contributions to agriculture, potentially driving 

innovation in rice quality detection and 

classification. It serves as a valuable resource for 

researchers and practitioners, with the potential for 

advancements in agricultural technologies. The 

paper outlines the rice classification process in 

Section 2, presents the deep learning-based method 

in Section 3, and provides experimental results in 

Section 4, demonstrating the method's 

effectiveness. Section 5 concludes with a summary 

of the findings and highlights the method's 

importance in rice grading and quality assessment. 

 

2. Data Processing Steps 

Rice is vital to the Iranian economy, ranking fifth 

globally in production and consumption. Accurate 

rice classification is crucial for ensuring quality, 

safety, and optimizing the rice value chain, from 

production to consumption. It helps identify rice 

types, improves storage and processing, reduces 

losses, boosts farmer productivity, and benefits rice 

businesses. The proposed method includes steps 

like database collection, pre-processing to improve 

classification accuracy, and deep model design, 

with specific details provided below. 
 

2.1. Database Collection 

The process of creating an imaging database for 

rice classification involves several steps. First, 

samples are collected from various rice varieties 

commonly consumed in northern Iran, including 

Tarom, Shiroodi, Fajr, Neda, and Behnam. High-

resolution cameras and appropriate lighting are 

then used to capture clear images of the rice grains. 

A specialized LED light tent (23cm×23cm×23cm) 

is designed, equipped with two 23cm LED strips to 

ensure uniform lighting and prevent shadows. A 

5cm circular opening holds the imaging device, 

such as a smartphone, to capture the images. Rice 

samples are evenly distributed in the box using a 

50g measuring cup. A Sony Imaging Camera with 

a 300imx sensor and 19-Megapixel resolution is 

used for image capture [21, 22]. Figure 1 illustrates 

the LED light tent setup. 

Two methods for image acquisition in rice 

classification are individual sampling and bulk 

sampling. This paper uses the individual sampling 

method, where single rice grains are placed on the 

surface. Figure 2 compares the two techniques. 

Each image is labeled with the corresponding rice 

variety, creating a labeled dataset. A total of 2000 

images across five rice varieties were collected, 

providing a sufficient dataset for deep analysis.  
 

2.2. Data Preprocessing 

Pre-processing is crucial for ensuring the quality 

and accuracy of images used in rice classification. 

It involves steps such as image resizing, color 
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space conversion, noise reduction, and feature 

extraction. Resizing standardizes image 

dimensions, improving model performance by 

reducing input variability. Color space conversion 

ensures uniformity, minimizing the impact of 

lighting differences. Noise reduction enhances 

image quality, making them more suitable for 

machine learning. In this paper, images are resized 

to 256×256, and a median filter is applied to reduce 

noise and shadow effects, enhancing classifier 

accuracy and algorithm performance. 
 

2.3. Data Augmentation 

Large-scale AI applications, such as image 

classification, require large public datasets for 

model training. However, collecting and labeling 

these datasets can be costly and resource-intensive. 

This highlights the need for efficient methods to 

gather, process, and label data to reduce the time 

and resources required for effective models. 

Smaller datasets limit model performance and may 

only represent a subset of the underlying patterns. 

In rice classification, a large amount of labeled, 

pre-processed data is needed, which can be time-

consuming and expensive. 

Large datasets are essential to optimize deep model 

performance, but challenges exist in collecting and 

labeling them. Advanced computational resources 

are also required. To address these issues, data 

augmentation techniques can be used to increase 

dataset size and avoid overfitting artificially. This 

paper employs data augmentation to generate more 

data for each class. Techniques such as mirroring, 

scaling, shifting, rotation, and noise addition 

enhance dataset diversity, improving model 

performance [23-27]. Figures 3 shows the example 

of augmented rice images for Tarom, 

demonstrating the effectiveness of this approach. 

 
 

 
 

Figure 1. The box designed for imaging from rice 

varieties. 

 

 
(a) 

 
(b) 

Figure 2. Two types of rice imaging: a) Individual rice 

grains, b) Bulk rice grains. 

 

2.4. Cross Validation for Evaluation 

K-fold cross-validation is a key evaluation method 

in rice classification, helping to address training 

model limitations and providing a better 

understanding of the model's generalization to new 

data. It involves dividing the dataset into multiple 

partitions, using each as a validation set once while 

the others are used for training. This approach 

enhances the evaluation's robustness and accuracy, 

and helps identify overfitting or underfitting. In this 

study, 5-fold cross-validation was used, with 70% 

of the data for training and 30% for validation. The 

model's performance was assessed across all five 

partitions, and the final accuracy was the average 

of the class accuracies. This method ensures a 

comprehensive evaluation of the model's 

generalization ability. 

 
3. Deep Model Architecture 

In recent years, deep learning techniques like 

CNNs have gained popularity in data classification, 

especially for image tasks, due to their ability to 

extract and process visual features effectively. 

These techniques can significantly improve rice 

classification accuracy and speed. The success 

depends on selecting appropriate CNN 

architectures and hyperparameters. The proposed 

method combines CNN with LSTM to form a 

hybrid CNN-LSTM model, which classifies input 

images after CNN processing. Transfer learning is 

also used to enhance generalization by leveraging 

a pre-trained model. Block diagrams of the 

methods (CNN, CNN-TL, and CNN-LSTM) are 

shown in Figure 4. 
 

3.1. CNN Deep Model 
CNNs are deep learning models ideal for image 

classification tasks [25, 27-28]. CNNs are designed to 

identify patterns and features in images by 

applying a series of convolutional operations. 

These operations help the network extract 

important features from input data. CNNs are 

widely used in both image processing and signal 

classification.  
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Figure 3. A sample of the Tarom rice cultivar and its 

transformation based on data augmentation technique. 

The model consists of convolutional layers, 

pooling, and fully connected layers. Convolutional 

layers extract features by applying filters to the 

input data while pooling layers reduce the size of 

the output matrix to improve efficiency. Fully 

connected layers then classify the extracted 

features. Proper hyperparameter tuning is critical 

for optimizing CNN performance, as incorrect 

settings can lead to overfitting or underfitting. Key 

hyperparameters include learning rate, batch size, 

weight decay, and regularization strength, which 

impact the model's accuracy, precision, and recall. 

These hyperparameters are discussed in the next 

sections. 
 

3.2. LSTM Network 

LSTM networks are ideal for handling variable-

length input sequences and capturing complex 

temporal patterns, making them suitable for tasks 

like video classification or sentiment analysis [29-

31]. Unlike other recurrent networks, LSTMs 

efficiently learn long-term dependencies by using 

multiple memory cells with separate update 

mechanisms. This paper combines LSTMs with 

CNNs to enhance rice classification by capturing 

both low-level and high-level features. The LSTM 

network includes layers like the input layer, LSTM 

cells (with input, output, and forget gates), and the 

output layer. A sequence folding layer is also used 

for classifying event sequences, where each neuron 

represents a probability distribution over the entire 

sequence. The LSTM network is trained using key 

parameters such as input embedding, the number of 

layers and cells, timesteps, learning rate, and batch 

size. L2 regularization helps prevent overfitting. 

Proper hyperparameter tuning is crucial to optimize 

performance, minimize overfitting, and improve 

generalization. 
 

3.3. Transfer Learning Technique 

Transfer learning is particularly useful for large-

scale datasets or high-dimensional data [32-34]. 

Training models from scratch is time-consuming 

and computationally expensive, so using pre-

trained models can accelerate training and enhance 

performance on new tasks. Pre-trained models, 

having learned from large datasets, offer improved 

generalization and can transfer learned knowledge 

to a new model, boosting its performance. 

Additionally, transfer learning allows us to 

leverage the strengths of existing models, such as 

those trained on diverse image datasets, to extract 

relevant features for new data. Overall, transfer 

learning reduces training time, saves computational 

resources, and enhances model performance, 

making it a valuable tool for CNN deep models. 

4. Results and Discussions 

The input rice images are pre-processed and 

augmented before being classified by a fine-tuned 

CNN model into five categories: Tarom, Shiroodi, 

Fajr, Neda, and Behnam. The CNN, CNN-TL, and 

CNN-LSTM architectures are compared with 

traditional classifiers like MLP, RNN, the 

dictionary learning-based algorithm from [21], and 

the GMM-based classifier from [22]. Transfer 

learning is used in the second scenario to address 

high-dimensional data fitting, and LSTM is 

employed to capture long-term temporal 

dependencies and handle variable-length input 

data. The proposed solution is validated through 

experiments with various parameter settings and 

evaluation measures. 
 

4.1. Details of Simulation 

To evaluate the proposed rice cultivar classifier, 

2000 color images (256 × 256 pixels) were 

recorded for each rice type and processed with a 

median filter to reduce noise and improve 

accuracy. Three deep model scenarios were used: 

1) CNN, trained from scratch; 2) CNN-TL, fine-

tuned using transfer learning; and 3) CNN-LSTM, 

combining CNN for feature extraction and LSTM 

for classification. Key parameters, such as 

architecture, hyperparameters, and pre-processing 

techniques, were considered. The batch size of 128 

was used, but adjustments were made for optimal 

performance. Learning rates were tuned for each 

scenario to balance training accuracy and 

convergence. The settings for each model 

configuration are summarized in Tables 1 and 2. 

The proposed approach uses a flexible framework 

for rice cultivar classification, employing a CNN 

model with the Adaptive Moment Estimation 

(Adam) optimizer. Adam computes adaptive 

learning rates for each parameter, aiding the 

training of deep networks. The learning rate and 

decay rate for Adam were set to 10-4 and 0.9, 

respectively. For the CNN-LSTM scenario, the 

Stochastic Gradient Descent (SGD) optimizer was 

used, where model parameters are updated in small 
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steps based on the negative gradient. A balanced 

batch size and learning rate are critical for stable 

training and avoiding overfitting. The LSTM 

network configuration is outlined in Table 3. 

The proposed algorithm was trained on a computer 

with high-performance hardware, specifically, an 

Intel Xeon E5 2600 CPU with 16 cores and a clock 

speed of 3.20 GHz. The computer is also equipped 

with 3.20 GB of RAM, which is a sufficient 

amount for running deep-learning models. 

Additionally, the algorithm was trained on a Linux 

machine with 192 GB of DDR4 RAM, which is a 

high amount of RAM suitable for running larger 

models and larger datasets, and for running 

multiple instances of the algorithm in parallel. It 

also uses sparse principal component analysis (SPCA) 

and sparse structured principal component analysis 

(SSPCA) to reduce dimensionality and improve 

classification accuracy and efficiency. The algorithm in 

[22] combines fractal and texture features with a GMM 

classifier for classifying four rice cultivars. Sparse 

structured principal component analysis is used to 

reduce feature dimensions, achieving precise 

classification with reduced computational time. 

 

4.2. Performance Evaluation 

In classification problems, evaluation metrics such 

as accuracy, sensitivity, specificity, positive 

prediction rate, and F-Measure are essential for 

assessing model performance. These metrics 

provide insights into the model's strengths and 

weaknesses. Accuracy reflects the classifier's 

ability to correctly identify the actual class, while 

specificity measures its capacity to distinguish true 

categories. A positive prediction rate indicates the 

percentage of correctly labeled images, sensitivity 

assesses the recognition of different classes, and F-

Measure balances precision and recall.  These 

metrics, defined in this manuscript, facilitate a 

comprehensive evaluation and comparison of the 

rice classifiers: 

TP TN
Acc

TP TN FP FN

+
=

+ + +
 

(1) 

 

TN
Spe

TN FP
=

+
 

(2) 

 

TP
Ppr

TP FP
=

+
 

(3) 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
Figure 4. The block diagram of the proposed rice classifier based on different scenarios: a) CNN deep model, b) CNN 

in combination with transfer learning technique (CNN-TL), c) Hybrid CNN deep model with LSTM network and 

transfer learning technique (CNN-LSTM), and d) Test procedure in the last scenario. 

 

 

 



A Hybrid Deep Learning Approach for Classification and Quality Detection of Rice Varieties  

 

479 

 

Table 1. The hyperparameters set for different deep model’s scenarios. 
 Epochs Optimizer Batch 

Size 

Kernel 

size 

Activation 

function 

Learning 

rate 

Weight 

decay 

#of 

parameters 

# of 

layers 

MLP [13] 1000 SGD 32 12 Sigmoid 10-4 - ~ 4 

Resnet34 [10] 100 Adam 10 3×3 Non-Linear 2×10-4 10-4 0.60M 34 

RNN  20 Adam 64 3×3 Sigmoid 10-3 10-4 0.30M 10 

CNN (Scenario 1) 250 Adam 128 3×3 Sigmoid 10-3 10-4 0.80M 20 

CNN-TL (Scenario 2) 250 Adam 128 3×3 Sigmoid 10-3 10-4 0.90M 20 

CNN-LSTM (Scenario 3) 250 SGD 64 3×3 Sigmoid 10-4 10-4 0.90M 20 
 

Table 2. The configurations of each scenario of CNN deep model in the proposed rice classification algorithm. 
No. of 

Layers 

Name of layer CNN 

(Scenario 1) 

CNN-TL 

(Scenario 2) 

 CNN-LSTM  

(Scenario 3) 

1 Input image 256×256×3 256×256×3 256×256×3 
2 Sequence folding layer - - 256×256×1 

3 Conv2D/ReLU/Normalization Kernel size 

[3,3],256×256×1, Stride 1 

Kernel size [3,3], 

256×256×1, Stride 1 

Kernel size [3,3], 

256×256×1, Stride1 
4 Pooling Kernel size [2,2], 

256×256×64, Stride2 

Kernel size [2,2], 

256×256×64, Stride2 

Kernel size [2,2], 

256×256×64, Stride2 

5 Conv2D/ReLU/Normalization Kernel size [1,1], 
64×64×64, Stride 1 

Kernel size [1,1], 
64×64×64, Stride 1 

Kernel size [1,1], 
64×64×64, Stride 1 

6 Pooling/padding Kernel size [2,2], 

64×64×128, Stride2 

Kernel size [2,2], 

64×64×128, Stride2 

Kernel size [2,2], 

64×64×128, Stride2 
7 Conv2D Kernel size [3,3], 

32×32×128, Stride 1 

Kernel size [3,3], 

32×32×128, Stride 1 

Kernel size [3,3], 

32×32×128, Stride1 
8 Pooling Kernel size [2,2], 

32×32×256, Stride 2 

Kernel size [2,2], 

32×32×256, Stride 2 

Kernel size [2,2], 

32×32×256, Stride2 

9 Sequence unfolding layer - - 32×32×256 
10 Flattening - - 192×192 

11 LSTM - - 4096 

12 Fully Connected 4096 4096 4096 
13 ReLU ~ ~ ~ 

14 Dropout ~ ~ ~ 

15 Fully Connected 4096 4096 4096 
16 ReLU ~ ~ ~ 

17 Dropout 50% dropout 50% dropout 50% dropout 

18 Fully Connected 1000 fully connected layer 1000 fully connected 

layer 

1000 fully connected 

layer 

19 softmax ~ ~ ~ 

20 Classification Output ~ ~ ~ 
 

Table 3. Representation of optimized hyperparameters of the LSTM network employed in scenario 3. 
 Epochs Learning  

rate 

Batch 

size 

No. of 

nods 

Interpolate 

method 

Dropout  

rate 

Dimension of 

hidden state 

No. of units in 

fully connected 
layer 

LSTM 100 10-4 64 40 N/A 50% 200 40 

 

TP
Sen

TP FN
=

+
 

(4) 

 

2
Ppr Sen

F Measure
Ppr Sen


− =

+
 

(5) 

 

TP, TN, FP, and FN represent True Positive, True 

Negative, False Positive, and False Negative rates, 

respectively. TP indicates correctly detected 

classes, TN represents correctly identified 

negatives, FP counts false positives, and FN 

denotes false negatives. Higher TP and TN rates 

with lower FP and FN rates indicate better 

classification. These metrics enable a thorough 

evaluation and comparison of classifier 

performance, with high scores across all metrics 

reflecting accuracy and effectiveness. 
 

4.3. The Proposed Rice Classification Based on 

Different CNN Scenarios 

Preprocessing is vital for image classification, as 

depicted in Figure 4. Steps include resizing, 

normalization, and median filtering, followed by 

CNN blocks extracting deep features. These 

features pass through fully connected layers, with a 

softmax function estimating class probabilities. 

The 5-fold cross-validation approach (Section 2.4) 

divides training data into five groups, iteratively 

training on four and validating on one. 

Performance metrics—accuracy, specificity, 

positive predictive value, sensitivity, and F-

Measure—are detailed in Table 4. The Friedman 

test [39] assesses algorithm efficiency, calculating 

 −Values compared to a 0.05 significance level. 

The lower  −Value indicates significant 

differences. Table 5 shows the CNN-LSTM 

algorithm achieves the best performance, with  −

Values below 0.05, confirm its superiority over 

alternative methods, including dictionary-based 

and traditional algorithms. 

The CNN-LSTM model demonstrates high 

accuracy and stability in rice classification, as 
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shown in Table 6. The confusion matrix highlights 

minimal misclassification, and metrics like 

specificity, prediction rate, sensitivity, and F-

Measure confirm its effectiveness. Figure 5 

illustrates the training and testing accuracy and 

loss, offering insights into the model's learning 

process and optimal hyperparameters. 

 

Table 4. The overall performance of various rice classifiers, as measured by Accuracy, Specificity, Positive Prediction 

Rate, Sensitivity, and F-Measure metrics. 
    Acc (%) Spe (%) Ppr (%) Sen (%) F-Measure (%) 

 
 

MLP [13] 
 

Tarom 94.24 94.89 93.49 94.31 93.89 
Shiroodi 95.39 94.80 94.57 93.43 93.99 

Fajr 94.98 94.32 94.53 94.91 94.72 
Neda 95.62 95.49 94.58 94.96 94.77 

Behnam 95.87 95.44 94.32 94.70 94.51 

 
 

CNN [6] 

 

Tarom 97.53 97.46 97.56 98.11 97.83 
Shiroodi 97.89 97.70 98.15 97.43 97.79 

Fajr 97.39 97.64 97.21 97.41 97.31 

Neda 97.88 97.47 98.22 97.58 97.89 
Behnam 97.82 97.78 97.84 97.69 97.76 

 

 
RNN 

 

Tarom 95.86 96.05 96.70 95.96 96.34 

Shiroodi 95.51 94.07 96.04 96.54 96.29 
Fajr 96.74 96.13 95.78 96.27 96.02 

Neda 95.85 95.91 95.91 96.41 96.16 

Behnam 95.77 95.82 96.75 96.53 96.64 
 

 

GMM-based [21] 

Tarom 93.81 93.61 94.23 93.13 93.68 

Shiroodi 93.58 93.24 93.21 93.14 93.17 

Fajr 93.25 93.53 93.28 94.36 93.82 
Neda 94.17 93.31 93.16 93.79 93.47 

Behnam 94.06 94.11 93.77 93.28 93.52 

 
Dictionary learning-

based [22] 

Tarom 93.35 93.43 94.33 94.34 94.33 
Shiroodi 93.41 94.65 93.56 94.45 94.00 

Fajr 93.87 93.83 93.54 94.22 93.88 

Neda 94.11 93.43 95.02 93.98 94.49 
Behnam 93.21 93.18 93.43 93.56 93.49 

 

CNN 
(Scenario 1) 

Tarom 98.32 98.16 98.78 98.49 98.63 

Shiroodi 98.80 98.69 97.98 98.21 98.09 
Fajr 99.13 98.55 98.65 98.64 98.64 

Neda 98.64 98.48 97.93 99.10 98.51 

Behnam 98.33 98.67 98.80 98.64 98.72 
 

CNN-TL 

(Scenario 2) 

Tarom 99.61 100 99.85 99.23 99.54 

Shiroodi 99.65 99.49 99.67 99.21 99.44 

Fajr 100 100 99.59 99.32 99.45 

Neda 99.63 99.82 99.76 99.40 99.58 

Behnam 99.70 99.79 99.85 99.01 99.43 

 
CNN-LSTM 

(Scenario 3) 

 

Tarom 99.68 99.48 100 99.67 99.83 

Shiroodi 99.82 99.80 99.80 100 99.90 

Fajr 100 99.63 99.69 99.74 99.71 

Neda 100 99.56 100 99.83 99.91 

Behnam 99.77 99.68 99.81 100 99.90 

 

3.4. The Proposed Procedure for Rice 

Quality Detection Based on Different CNN 

Scenarios 

In many countries, rice is blended with lower-

quality varieties due to factors like cost, supply 

shortages, consumer preferences, or 

misconceptions. Blending lowers product costs, 

maximizes retailer profits, and addresses 

shortages caused by climate change or drought. 

Some consumers also prefer the taste or texture 

of mixed rice. Assessing rice purity can be 

achieved using grain analyzers to measure 

properties like grain size, impurities, and 

moisture, or through high-resolution imaging 

for detailed structural analysis. Signal 

processing-based methods offer faster, more 

accurate analysis, enabling real-time 

monitoring and detailed chemical composition 

insights, benefiting breeding, quality control, 

and production processes. 

This paper investigates rice cultivar 

authenticity and classification, focusing on the 

use of deep learning to detect rice purity after 

classification. In northern Iran, lower-priced 

rice varieties, such as Shiroodi, are mixed with 

higher-quality ones like Tarom for texture, 

color, and taste. This study examines the purity 

of Tarom rice mixed with Shiroodi at 10%, 

20%, and 40% levels. The authenticity and 

quality of rice are assessed using a CNN-LSTM 

classifier, showing remarkable accuracy in 

detecting rice quality. The success of CNN-

LSTM models is due to their ability to learn 

complex features from large datasets. The paper 

concludes that the quality of data and model 

optimization are key to effective machine-

learning solutions in rice quality detection. The 
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authenticity of the rice is tested to ensure it 

meets the required standards, and the results are 

shown in Figure 6. The results of the proposed 

CNN-LSTM classifier for rice quality detection 

are presented in Table 7, highlighting their 

remarkable accuracy.  
Table 5. The results of the Friedman test to analysis the different rice classification algorithms and proposed 

scenarios. 

 Acc (%)  −Value  Mean  −Value  Mean Acc (%) 

 
 

MLP [13] 

 

Tarom 94.24 0.024 

0.0274 

 

95.22 
Shiroodi 95.39 0.026 

Fajr 94.98 0.027 

Neda 95.62 0.031 
Behnam 95.87 0.029 

 

 
CNN [6] 

 

Tarom 97.53 0.019 

0.0130 

 

 
  97.70 

Shiroodi 97.89 0.009 
Fajr 97.39 0.016 

Neda 97.88 0.011 

Behnam 97.82 0.010 

 

RNN 

 
 

Tarom 95.86 0.020 

0.0234 

 

95.95 Shiroodi 95.51 0.018 

Fajr 96.74 0.029 
Neda 95.85 0.031 

Behnam 95.77 0.019 

 
GMM-based [21] 

Tarom 93.81 0.034 

0.0324 

 
 

93.77 

Shiroodi 93.58 0.033 

Fajr 93.25 0.029 

Neda 94.17 0.035 
Behnam 94.06 0.031 

 

Dictionary learning-based 
[22] 

Tarom 93.35 0.040 

0.0382 

 

 
93.59 

Shiroodi 93.41 0.039 
Fajr 93.87 0.038 

Neda 94.11 0.037 

Behnam 93.21 0.037 
 

CNN 

(Scenario 1) 

Tarom 98.32 0.009  

 

0.0078 

 

 

98.64 

Shiroodi 98.80 0.006 

Fajr 99.13 0.007 

Neda 98.64 0.008 

Behnam 98.33 0.009 
 

CNN-TL 

(Scenario 2) 

Tarom 99.61 0.004  

 

0.0042 

 

 

99.72 

Shiroodi 99.65 0.003 

Fajr 100 0.005 

Neda 99.63 0.005 

Behnam 99.70 0.004 

 
CNN-LSTM 

(Scenario 3) 

 

Tarom 99.68 0.002 

0.0018 

 
 

99.85 
Shiroodi 99.82 0.003 

Fajr 100 0.001 

Neda 100 0.002 

Behnam 99.77 0.001 
 

Table 6. Confusion matrix for the CNN-LSTM proposed method for rice cultivars classification. 
 Tarom (%) Shiroodi (%) Fajr (%) Neda (%) Behnam (%) 

Tarom (%) 99.68 0.00 0.00 0.14 0.18 

Shiroodi (%) 0.05 99.82 0.09 0.04 0.00 

Fajr (%) 0.00 0.00 100 0.00 0.00 

Neda (%) 0.00 0.00 0.00 100 0.00 

Behnam (%) 0.06 0.07 0.06 0.04 99.77 
 

 
(a) 

 
(b) 

Figure 5. Training progress plots related to, a) the accuracy, and b) the loss function, for the proposed CNN-LSTM model 

used to resolve the rice classification problem. 
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(c)  

 
(b) 

 
(a) 

 
(e) 

 
(d) 

Figure 6. Examples of training data used for rice quality detection, include: a) Tarom1 rice data, 

b) Shiroodi rice data, c) 90% of grains from Tarom1 in combination with 10% of rice grains from the Shiroodi 

cultivar, d) 80% of grains from Tarom1 in combination with 20% of rice grains from the Shiroodi cultivar, 

e) 60% of grains from Tarom1 in combination with 40% of rice grains from Shiroodi cultivar. 

 

Table 7. The statistical test analysis of different rice quality detection scenarios. 
  Acc (%)  −Value  Mean  −Value  Mean Acc (%) 

 

 
 

CNN 

(Scenario 1) 
 

Tarom    99.07 0.004  

 
 

  

 0.0055 

 

 
 

 

98.69 

Shiroodi    99.14 0.004 
Fajr    98.31 0.005 

Neda    99.28 0.004 

Behnam    99.33 0.005 
90% Tarom_10%Shiroodi    98.21 0.007 

80% Tarom_20%Shiroodi    98.07 0.008 

60% Tarom_40%Shiroodi    98.18 0.007 
 

 

 

CNN-TL 

(Scenario 2) 
 

 

Tarom   99.23 0.003  

 

 

 

0.0047 

 

 

 

 

98.99     

Shiroodi    99.49 0.003 

Fajr    99.54 0.005 

Neda    99.66 0.005 

Behnam    99.17 0.006 
90% Tarom_10%Shiroodi    98.20 0.006 

80% Tarom_20%Shiroodi    98.32 0.005 

60% Tarom_40%Shiroodi    98.33 0.005 
 

 

 
CNN-LSTM 

(Scenario 3) 

Tarom    99.38 0.002  

 

 

 

0.0026 

 

 

 

 

99.18   

Shiroodi    99.80 0.001 

Fajr    99.70 0.002 

Neda    99.71 0.002 

Behnam    99.80 0.003 

90% Tarom_10%Shiroodi    98.27 0.004 

80% Tarom_20%Shiroodi    98.36 0.003 

60% Tarom_40%Shiroodi    98.41 0.004 

Table 8. Confusion matrix for proposed CNN-LSTM method for rice cultivars classification. 
 Tarom  Shiroodi  Fajr Neda  Behnam  90% Tarom 

_10%Shiroodi 

80% Tarom 

_20%Shiroodi 

60%Tarom_ 

40%Shiroodi 

Tarom 99.38 0.10 0.13 0.09 0.03 0.14 0.04 0.09 

Shiroodi 0.00 99.80 0.00 0.03 0.00 0.03 0.08 0.06 

Fajr 0.03 0.06 99.70 0.02 0.04 0.06 0.04 0.05 

Neda 0.05 0.07 0.05 99.71 0.03 0.02 0.03 0.04 
Behnam 0.03 0.05 0.00 0.06 99.80 0.02 0.03 0.01 

90% Tarom 

_10%Shiroodi 

0.31 0.33 0.21 0.24 0.18 98.27 0.28 0.18 

80% Tarom 

_20%Shiroodi 

0.29 0.13 0.29 0.17 0.19 0.29 98.36 0.28 

60% Tarom 
_40%Shiroodi 

0.26 0.22 0.17 0.19 0.16 0.28 0.31 98.41 

 

Table 8 shows the confusion matrix for the 

proposed CNN-LSTM model in detecting rice 

quality across eight categories of pure and impure 

rice. The training time for the model depends on 

factors like dataset size, model complexity, and the  

 

training algorithm. Training the model on 70% of 

the dataset takes about 21 hours, with a runtime of 

approximately 19 seconds, making it efficient for 

online applications. The CNN effectively extracts 

features from rice images, which are then 

processed by the LSTM network to identify 
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patterns over time, improving classification 

accuracy and speed. Transfer learning enhances the 

model's ability to generalize to new, varied data, 

boosting its performance in real-world 

applications. This combination of CNN, LSTM, 

and transfer learning makes the classifier highly 

accurate and efficient for agricultural use. 

While the proposed CNN-LSTM model 

demonstrates impressive accuracy in controlled 

experiments, several challenges may arise when 

deploying the system in real-world agricultural 

settings. One major challenge is the computational 

power required for processing bulk samples, 

especially in environments with limited access to 

advanced hardware. To address this, edge 

computing techniques and model compression 

strategies, such as pruning and quantization, can be 

employed to reduce the computational load. 

Additionally, variability in lighting conditions and 

background noise during image acquisition could 

impact the model’s performance. Employing 

robust data augmentation techniques and adaptive 

preprocessing pipelines can help mitigate these 

issues. Future work will focus on developing 

hardware-friendly versions of the model to 

facilitate deployment in resource-constrained 

settings. 

In real-world scenarios, processing high-resolution 

images of rice grains in bulk could pose 

computational challenges. Optimizing the model's 

architecture for deployment on edge devices and 

exploring lightweight alternatives will be essential 

steps in future research. 
 

5. Conclusion 

Rice classification and quality detection are 

essential for agriculture, food security, and 

consumer safety. Rice is a staple food but is also 

perishable and vulnerable to damage and 

contamination. Effective rice quality detection is 

crucial for ensuring food safety and consumer 

satisfaction. This can be applied in breeding, seed 

selection, field management, processing, 

marketing, and food safety. Deep learning 

algorithms are effective for detecting and 

classifying rice defects, extracting features from 

images or spectral data. This paper proposes CNN-

based models with transfer learning and hybrid 

CNN-LSTM models for rice classification and 

quality detection. The CNN extracts visual 

features, while LSTM handles temporal data, 

making the combination effective for sequential 

tasks. Transfer learning enhances model 

performance, enabling faster convergence and 

better generalization. These models classify five 

rice cultivars and three mixed rice classes in 

northern Iran. The CNN-LSTM model improves 

classification accuracy, making it a reliable choice 

for rice quality detection, as demonstrated through 

simulations and statistical tests. This approach also 

evaluates rice purity and quality, highlighting its 

importance for food safety. In real-world scenarios, 

processing high-resolution images of rice grains in 

bulk could pose computational challenges. 

Optimizing the model's architecture for 

deployment on edge devices and exploring 

lightweight alternatives will be essential steps in 

future research. 
 

Future Work 

While this study has demonstrated the 

effectiveness of the proposed model using rice 

varieties from northern Iran, we acknowledge the 

importance of enhancing the model’s 

generalizability. Future work will focus on 

expanding the dataset to include a more diverse 

range of rice varieties from different regions 

globally. This will ensure that the model is 

applicable across various agricultural practices and 

addresses challenges specific to different rice-

producing areas. Additionally, we aim to explore 

hardware optimization techniques for more 

efficient real-world deployment of the system in 

large-scale agricultural settings. By doing so, we 

can improve both the model’s accuracy and its 

practical applicability in diverse agricultural 

environments. 

Although the model demonstrates high accuracy, 

future work will focus on evaluating its 

computational performance, including processing 

time, resource consumption, and scalability across 

various hardware platforms. Optimizing the model 

for efficiency using techniques such as model 

compression and parallel processing will also be 

explored to ensure its applicability in large-scale 

agricultural settings. By addressing these 

computational aspects, we aim to enhance the 

model's real-world feasibility and its potential for 

widespread deployment in agriculture. 

A limitation of this study is the dataset's focus on 

specific rice varieties. Future work will involve 

collecting and analyzing a more diverse dataset 

representing global varieties to enhance the 

model's generalizability and applicability in 

diverse agricultural contexts. 

Future work will focus on addressing challenges 

related to the deployment of the system in real-

world agricultural settings. Key challenges include 

hardware limitations, processing bulk samples 

efficiently, and ensuring scalability across different 

agricultural operations. Optimizing the system for 

handling large datasets and ensuring timely 
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processing will be prioritized. Strategies such as 

hardware acceleration, distributed computing, and 

batch processing techniques will be explored to 

improve the system’s efficiency and feasibility for 

large-scale agricultural environments. 

While deep learning models like the CNN-LSTM 

often provide excellent performance, their "black-

box" nature can make them difficult to interpret. To 

address this limitation, future work will focus on 

enhancing the model's interpretability. Techniques 

such as activation maps, feature importance 

analysis, and model explanation methods like 

SHAP and LIME will be explored to provide 

transparent insights into the model's decision-

making process. This will improve the 

understanding and trust in the proposed solution, 

especially for real-world agricultural applications. 
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 چکیده:

بندی کند. مشکلات مرتبط با طبقهها نفر فراهم میترین محصولات غذایی جهان است که منبع قابل توجهی از غذا و درآمد را برای میلیونبرنج یکی از مهم

توانند تأثیر چشمگیری بر سودآوری و پایداری کشت برنج داشته باشند، از این رو اهمیت حل این مشکلات قابل انکار نیست. کیفیت برنج می و تشخیص

 وری و سودآوری کشت برنج را ارتقاتوان ایمنی و کیفیت محصولات برنج را تضمین کرد و بهرهبندی و تشخیص کیفیت، میهای طبقهبا بهبود تکنیک

زمینه و کیفیت تصویر های برنج به دلیل عوامل مختلفی مانند شرایط نوری، پسبندی دقیق دانههایی اغلب در توانایی طبقهداد. با این حال، چنین تکنیک

های که از قدرت شبکهبندی مبتنی بر یادگیری عمیق معرفی شده است ها، در این مقاله یک الگوریتم طبقهمحدودیت دارند. برای غلبه بر این محدودیت

گیرد. این های برنج بهره میبرای نمایش بهتر محتوای ساختاری انواع مختلف دانه (LSTM) مدت بلندهای حافظه کوتاهو شبکه (CNN) عصبی پیچشی

کند. در این مقاله رنج ترکیب میهای بتر دانهبندی مؤثرتر و دقیقنام دارد، مزایای هر دو نوع شبکه عصبی را برای طبقه CNN-LSTM مدل ترکیبی که

بررسی شده است. عملکرد این سناریوها با  CNN-LSTM با تکنیک یادگیری انتقالی، و مدل عمیق CNN ، ترکیبCNN ازسه سناریو شامل استفاده 

دهند که الگوریتم پیشنهادی انواع بندهای مبتنی بر یادگیری دیکشنری مقایسه شده است. نتایج تجربی نشان میهای یادگیری عمیق و طبقهدیگر مدل
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