Maryam Khazaei; Nosratali Ashrafi-Payaman
Abstract
Nowadays, whereas the use of social networks and computer networks is increasing, the amount of associated complex data with graph structure and their applications, such as classification, clustering, link prediction, and recommender systems, has risen significantly. Because of security problems and ...
Read More
Nowadays, whereas the use of social networks and computer networks is increasing, the amount of associated complex data with graph structure and their applications, such as classification, clustering, link prediction, and recommender systems, has risen significantly. Because of security problems and societal concerns, anomaly detection is becoming a vital problem in most fields. Applications that use a heterogeneous graph, are confronted with many issues, such as different kinds of neighbors, different feature types, and differences in type and number of links. So, in this research, we employ the HetGNN model with some changes in loss functions and parameters for heterogeneous graph embedding to capture the whole graph features (structure and content) for anomaly detection, then pass it to a VAE to discover anomalous nodes based on reconstruction error. Our experiments on AMiner data set with many base-lines illustrate that our model outperforms state-of-the-arts methods in heterogeneous graphs while considering all types of attributes.
H. Rahmani; H. Kamali; H. Shah-Hosseini
Abstract
Nowadays, a significant amount of studies are devoted to discovering important nodes in graph data. Social networks as graph data have attracted a lot of attention. There are various purposes for discovering the important nodes in social networks such as finding the leaders in them, i.e. the users who ...
Read More
Nowadays, a significant amount of studies are devoted to discovering important nodes in graph data. Social networks as graph data have attracted a lot of attention. There are various purposes for discovering the important nodes in social networks such as finding the leaders in them, i.e. the users who play an important role in promoting advertising, etc. Different criteria have been proposed in discovering important nodes in graph data. Measuring a node’s importance by a single criterion may be inefficient due to the variety of graph structures. Recently, a combination of criteria has been used in the discovery of important nodes. In this paper, we propose a system for the Discovery of Important Nodes in social networks using Genetic Algorithms (DINGA). In our proposed system, important nodes in social networks are discovered by employing a combination of eight informative criteria and their intelligent weighting. We compare our results with a manually weighted method, that uses random weightings for each criterion, in four real networks. Our method shows an average of 22% improvement in the accuracy of important nodes discovery.