Volume 12 (2024)
Volume 11 (2023)
Volume 10 (2022)
Volume 9 (2021)
Volume 8 (2020)
Volume 7 (2019)
Volume 6 (2018)
Volume 5 (2017)
Volume 4 (2016)
Volume 3 (2015)
Volume 2 (2014)
Volume 1 (2013)
Automatic Grayscale Image Colorization using a Deep Hybrid Model

K. Kiani; R. Hematpour; R. Rastgoo

Volume 9, Issue 3 , July 2021, , Pages 321-328

https://doi.org/10.22044/jadm.2021.9957.2131

Abstract
  Image colorization is an interesting yet challenging task due to the descriptive nature of getting a natural-looking color image from any grayscale image. To tackle this challenge and also have a fully automatic procedure, we propose a Convolutional Neural Network (CNN)-based model to benefit from the ...  Read More

Convolutional Neural Network Equipped with Attention Mechanism and Transfer Learning for Enhancing Performance of Sentiment Analysis

H. Sadr; Mir M. Pedram; M. Teshnehlab

Volume 9, Issue 2 , April 2021, , Pages 141-151

https://doi.org/10.22044/jadm.2021.9618.2100

Abstract
  With the rapid development of textual information on the web, sentiment analysis is changing to an essential analytic tool rather than an academic endeavor and numerous studies have been carried out in recent years to address this issue. By the emergence of deep learning, deep neural networks have attracted ...  Read More

Diagnosis of Multiple Sclerosis Disease in Brain MRI Images using Convolutional Neural Networks based on Wavelet Pooling

A. Alijamaat; A. Reza NikravanShalmani; P. Bayat

Volume 9, Issue 2 , April 2021, , Pages 161-168

https://doi.org/10.22044/jadm.2021.9783.2109

Abstract
  Multiple Sclerosis (MS) is a disease that destructs the central nervous system cell protection, destroys sheaths of immune cells, and causes lesions. Examination and diagnosis of lesions by specialists is usually done manually on Magnetic Resonance Imaging (MRI) images of the brain. Factors such as small ...  Read More

Automatic Persian Text Emotion Detection using Cognitive Linguistic and Deep Learning

Seyedeh S. Sadeghi; H. Khotanlou; M. Rasekh Mahand

Volume 9, Issue 2 , April 2021, , Pages 169-179

https://doi.org/10.22044/jadm.2020.9992.2136

Abstract
  In the modern age, written sources are rapidly increasing. A growing number of these data are related to the texts containing the feelings and opinions of the users. Thus, reviewing and analyzing of emotional texts have received a particular attention in recent years. A System which is based on combination ...  Read More

IRVD: A Large-Scale Dataset for Classification of Iranian Vehicles in Urban Streets

H. Gholamalinejad; H. Khosravi

Volume 9, Issue 1 , January 2021, , Pages 1-9

https://doi.org/10.22044/jadm.2020.8438.1982

Abstract
  In recent years, vehicle classification has been one of the most important research topics. However, due to the lack of a proper dataset, this field has not been well developed as other fields of intelligent traffic management. Therefore, the preparation of large-scale datasets of vehicles for each country ...  Read More

A Novel Hierarchical Attention-based Method for Aspect-level Sentiment Classification

A. Lakizadeh; Z. Zinaty

Volume 9, Issue 1 , January 2021, , Pages 87-97

https://doi.org/10.22044/jadm.2020.9579.2091

Abstract
  Aspect-level sentiment classification is an essential issue in sentiment analysis that intends to resolve the sentiment polarity of a specific aspect mentioned in the input text. Recent methods have discovered the role of aspects in sentiment polarity classification and developed various techniques to ...  Read More

A Deep Model for Super-resolution Enhancement from a Single Image

N. Majidi; K. Kiani; R. Rastgoo

Volume 8, Issue 4 , November 2020, , Pages 451-460

https://doi.org/10.22044/jadm.2020.9131.2052

Abstract
  This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model ...  Read More

H.3. Artificial Intelligence
Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

M. Kurmanji; F. Ghaderi

Volume 8, Issue 2 , April 2020, , Pages 177-188

https://doi.org/10.22044/jadm.2019.7903.1929

Abstract
  Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement ...  Read More