K. Kiani; R. Hematpour; R. Rastgoo
Abstract
Image colorization is an interesting yet challenging task due to the descriptive nature of getting a natural-looking color image from any grayscale image. To tackle this challenge and also have a fully automatic procedure, we propose a Convolutional Neural Network (CNN)-based model to benefit from the ...
Read More
Image colorization is an interesting yet challenging task due to the descriptive nature of getting a natural-looking color image from any grayscale image. To tackle this challenge and also have a fully automatic procedure, we propose a Convolutional Neural Network (CNN)-based model to benefit from the impressive ability of CNN in the image processing tasks. To this end, we propose a deep-based model for automatic grayscale image colorization. Harnessing from convolutional-based pre-trained models, we fuse three pre-trained models, VGG16, ResNet50, and Inception-v2, to improve the model performance. The average of three model outputs is used to obtain more rich features in the model. The fused features are fed to an encoder-decoder network to obtain a color image from a grayscale input image. We perform a step-by-step analysis of different pre-trained models and fusion methodologies to include a more accurate combination of these models in the proposed model. Results on LFW and ImageNet datasets confirm the effectiveness of our model compared to state-of-the-art alternatives in the field.
H. Sadr; Mir M. Pedram; M. Teshnehlab
Abstract
With the rapid development of textual information on the web, sentiment analysis is changing to an essential analytic tool rather than an academic endeavor and numerous studies have been carried out in recent years to address this issue. By the emergence of deep learning, deep neural networks have attracted ...
Read More
With the rapid development of textual information on the web, sentiment analysis is changing to an essential analytic tool rather than an academic endeavor and numerous studies have been carried out in recent years to address this issue. By the emergence of deep learning, deep neural networks have attracted a lot of attention and become mainstream in this field. Despite the remarkable success of deep learning models for sentiment analysis of text, they are in the early steps of development and their potential is yet to be fully explored. Convolutional neural network is one of the deep learning methods that has been surpassed for sentiment analysis but is confronted with some limitations. Firstly, convolutional neural network requires a large number of training data. Secondly, it assumes that all words in a sentence have an equal contribution to the polarity of a sentence. To fill these lacunas, a convolutional neural network equipped with the attention mechanism is proposed in this paper which not only takes advantage of the attention mechanism but also utilizes transfer learning to boost the performance of sentiment analysis. According to the empirical results, our proposed model achieved comparable or even better classification accuracy than the state-of-the-art methods.
A. Alijamaat; A. Reza NikravanShalmani; P. Bayat
Abstract
Multiple Sclerosis (MS) is a disease that destructs the central nervous system cell protection, destroys sheaths of immune cells, and causes lesions. Examination and diagnosis of lesions by specialists is usually done manually on Magnetic Resonance Imaging (MRI) images of the brain. Factors such as small ...
Read More
Multiple Sclerosis (MS) is a disease that destructs the central nervous system cell protection, destroys sheaths of immune cells, and causes lesions. Examination and diagnosis of lesions by specialists is usually done manually on Magnetic Resonance Imaging (MRI) images of the brain. Factors such as small sizes of lesions, their dispersion in the brain, similarity of lesions to some other diseases, and their overlap can lead to the misdiagnosis. Automatic image detection methods as auxiliary tools can increase the diagnosis accuracy. To this end, traditional image processing methods and deep learning approaches have been used. Deep Convolutional Neural Network is a common method of deep learning to detect lesions in images. In this network, the convolution layer extracts the specificities; and the pooling layer decreases the specificity map size. The present research uses the wavelet-transform-based pooling. In addition to decomposing the input image and reducing its size, the wavelet transform highlights sharp changes in the image and better describes local specificities. Therefore, using this transform can improve the diagnosis. The proposed method is based on six convolutional layers, two layers of wavelet pooling, and a completely connected layer that had a better amount of accuracy than the studied methods. The accuracy of 98.92%, precision of 99.20%, and specificity of 98.33% are obtained by testing the image data of 38 patients and 20 healthy individuals.
Seyedeh S. Sadeghi; H. Khotanlou; M. Rasekh Mahand
Abstract
In the modern age, written sources are rapidly increasing. A growing number of these data are related to the texts containing the feelings and opinions of the users. Thus, reviewing and analyzing of emotional texts have received a particular attention in recent years. A System which is based on combination ...
Read More
In the modern age, written sources are rapidly increasing. A growing number of these data are related to the texts containing the feelings and opinions of the users. Thus, reviewing and analyzing of emotional texts have received a particular attention in recent years. A System which is based on combination of cognitive features and deep neural network, Gated Recurrent Unit has been proposed in this paper. Five basic emotions used in this approach are: anger, happiness, sadness, surprise and fear. A total of 23,000 Persian documents by the average length of 24 have been labeled for this research. Emotional constructions, emotional keywords, and emotional POS are the basic cognitive features used in this approach. On the other hand, after preprocessing the texts, words of normalized text have been embedded by Word2Vec technique. Then, a deep learning approach has been done based on this embedded data. Finally, classification algorithms such as Naïve Bayes, decision tree, and support vector machines were used to classify emotions based on concatenation of defined cognitive features, and deep learning features. 10-fold cross validation has been used to evaluate the performance of the proposed system. Experimental results show the proposed system achieved the accuracy of 97%. Result of proposed system shows the improvement of several percent’s in comparison by other results achieved GRU and cognitive features in isolation. At the end, studying other statistical features and improving these cognitive features in more details can affect the results.
H. Gholamalinejad; H. Khosravi
Abstract
In recent years, vehicle classification has been one of the most important research topics. However, due to the lack of a proper dataset, this field has not been well developed as other fields of intelligent traffic management. Therefore, the preparation of large-scale datasets of vehicles for each country ...
Read More
In recent years, vehicle classification has been one of the most important research topics. However, due to the lack of a proper dataset, this field has not been well developed as other fields of intelligent traffic management. Therefore, the preparation of large-scale datasets of vehicles for each country is of great interest. In this paper, we introduce a new standard dataset of popular Iranian vehicles. This dataset, which consists of images from moving vehicles in urban streets and highways, can be used for vehicle classification and license plate recognition. It contains a large collection of vehicle images in different dimensions, viewing angles, weather, and lighting conditions. It took more than a year to construct this dataset. Images are taken from various types of mounted cameras, with different resolutions and at different altitudes. To estimate the complexity of the dataset, some classic methods alongside popular Deep Neural Networks are trained and evaluated on the dataset. Furthermore, two light-weight CNN structures are also proposed. One with 3-Conv layers and another with 5-Conv layers. The 5-Conv model with 152K parameters reached the recognition rate of 99.09% and can process 48 frames per second on CPU which is suitable for real-time applications.
A. Lakizadeh; Z. Zinaty
Abstract
Aspect-level sentiment classification is an essential issue in sentiment analysis that intends to resolve the sentiment polarity of a specific aspect mentioned in the input text. Recent methods have discovered the role of aspects in sentiment polarity classification and developed various techniques to ...
Read More
Aspect-level sentiment classification is an essential issue in sentiment analysis that intends to resolve the sentiment polarity of a specific aspect mentioned in the input text. Recent methods have discovered the role of aspects in sentiment polarity classification and developed various techniques to assess the sentiment polarity of each aspect in the text. However, these studies do not pay enough attention to the need for vectors to be optimal for the aspect. To address this issue, in the present study, we suggest a Hierarchical Attention-based Method (HAM) for aspect-based polarity classification of the text. HAM works in a hierarchically manner; firstly, it extracts an embedding vector for aspects. Next, it employs these aspect vectors with information content to determine the sentiment of the text. The experimental findings on the SemEval2014 data set show that HAM can improve accuracy by up to 6.74% compared to the state-of-the-art methods in aspect-based sentiment classification task.
N. Majidi; K. Kiani; R. Rastgoo
Abstract
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model ...
Read More
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks simultaneously. We use the residual layers in our model to make repetitive layers, increase the depth of the model, and make an end-to-end model. Furthermore, we employed a deep network in up-sampling step instead of bicubic interpolation method used in most of the previous works. Since the image resolution plays an important role to obtain rich information from the medical images and helps for accurate and faster diagnosis of the ailment, we use the medical images for resolution enhancement. Our model is capable of reconstructing a high-resolution image from low-resolution one in both medical and general images. Evaluation results on TSA and TZDE datasets, including MRI images, and Set5, Set14, B100, and Urban100 datasets, including general images, demonstrate that our model outperforms state-of-the-art alternatives in both areas of medical and general super-resolution enhancement from a single input image.
H.3. Artificial Intelligence
M. Kurmanji; F. Ghaderi
Abstract
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement ...
Read More
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total frames of a video. So far, both 2D and 3D convolutional neural networks have been used to manipulate the temporal dynamics of the video frames. 3D CNNs can extract the changes in the consecutive frames and tend to be more suitable for the video classification task, however, they usually need more time. On the other hand, by using techniques like tiling it is possible to aggregate all the frames in a single matrix and preserve the temporal and spatial features. This way, using 2D CNNs, which are inherently simpler than 3D CNNs can be used to classify the video instances. In this paper, we compared the application of 2D and 3D CNNs for representing temporal features and classifying hand gesture sequences. Additionally, providing a two-stage two-stream architecture, we efficiently combined color and depth modalities and 2D and 3D CNN predictions. The effect of different types of augmentation techniques is also investigated. Our results confirm that appropriate usage of 2D CNNs outperforms a 3D CNN implementation in this task.