A.1. General
S. Asadi Amiri
Abstract
Removing salt and pepper noise is an active research area in image processing. In this paper, a two-phase method is proposed for removing salt and pepper noise while preserving edges and fine details. In the first phase, noise candidate pixels are detected which are likely to be contaminated by noise. ...
Read More
Removing salt and pepper noise is an active research area in image processing. In this paper, a two-phase method is proposed for removing salt and pepper noise while preserving edges and fine details. In the first phase, noise candidate pixels are detected which are likely to be contaminated by noise. In the second phase, only noise candidate pixels are restored using adaptive median filter. In terms of noise detection, a two-stage method is utilized. At first, a thresholding is applied on the image to initial estimation of the noise candidate pixels. Since some pixels in the image may be similar to the salt and pepper noise, these pixels are mistakenly identified as noise. Hence, in the second step of the noise detection, the pixon-based segmentation is used to identify the salt and pepper noise pixels more accurately. Pixon is the neighboring pixels with similar gray levels. The proposed method was evaluated on several noisy images, and the results show the accuracy of the proposed method in salt and pepper noise removal and outperforms to several existing methods.
H.5.10. Applications
Z. Dorrani; M.S. Mahmoodi
Abstract
The edges of an image define the image boundary. When the image is noisy, it does not become easy to identify the edges. Therefore, a method requests to be developed that can identify edges clearly in a noisy image. Many methods have been proposed earlier using filters, transforms and wavelets with Ant ...
Read More
The edges of an image define the image boundary. When the image is noisy, it does not become easy to identify the edges. Therefore, a method requests to be developed that can identify edges clearly in a noisy image. Many methods have been proposed earlier using filters, transforms and wavelets with Ant colony optimization (ACO) that detect edges. We here used ACO for edge detection of noisy images with Gaussian noise and salt and pepper noise. As the image edge frequencies are close to the noise frequency band, the edge detection using the conventional edge detection methods is challenging. The movement of ants depends on local discrepancy of image’s intensity value. The simulation results compared with existing conventional methods and are provided to support the superior performance of ACO algorithm in noisy images edge detection. Canny, Sobel and Prewitt operator have thick, non continuous edges and with less clear image content. But the applied method gives thin and clear edges.