Y. Sharafi; M. Teshnelab; M. Ahmadieh Khanesar
Abstract
A new multi-objective evolutionary optimization algorithm is presented based on the competitive optimization algorithm (COOA) to solve multi-objective optimization problems (MOPs). Based on nature-inspired competition, the competitive optimization algorithm acts between animals such as birds, cats, bees, ...
Read More
A new multi-objective evolutionary optimization algorithm is presented based on the competitive optimization algorithm (COOA) to solve multi-objective optimization problems (MOPs). Based on nature-inspired competition, the competitive optimization algorithm acts between animals such as birds, cats, bees, ants, etc. The present study entails main contributions as follows: First, a novel method is presented to prune the external archive and at the same time keep the diversity of the Pareto front (PF). Second, a hybrid approach of powerful mechanisms such as opposition-based learning and chaotic maps is used to maintain the diversity in the search space of the initial population. Third, a novel method is provided to transform a multi-objective optimization problem into a single-objective optimization problem. A comparison of the result of the simulation for the proposed algorithm was made with some well-known optimization algorithms. The comparisons show that the proposed approach can be a better candidate to solve MOPs.
H.6.4. Clustering
P. Shahsamandi Esfahani; A. Saghaei
Abstract
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering ...
Read More
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two contradictory objective functions based on maximum data compactness in clusters (the degree of proximity of data) and maximum cluster separation (the degree of remoteness of clusters’ centers) is proposed. In order to solve this model, a recently proposed optimization method, the Multi-objective Improved Teaching Learning Based Optimization (MOITLBO) algorithm, is used. This algorithm is tested on several datasets and its clusters are compared with the results of some single-objective algorithms. Furthermore, with respect to noise, the comparison of the performance of the proposed model with another multi-objective model shows that it is robust to noisy data sets and thus can be efficiently used for multi-objective fuzzy clustering.
H.3. Artificial Intelligence
H. Motameni
Abstract
This paper proposes a method to solve multi-objective problems using improved Particle Swarm Optimization. We propose leader particles which guide other particles inside the problem domain. Two techniques are suggested for selection and deletion of such particles to improve the optimal solutions. The ...
Read More
This paper proposes a method to solve multi-objective problems using improved Particle Swarm Optimization. We propose leader particles which guide other particles inside the problem domain. Two techniques are suggested for selection and deletion of such particles to improve the optimal solutions. The first one is based on the mean of the m optimal particles and the second one is based on appointing a leader particle for any n founded particles. We used an intensity criterion to delete the particles in both techniques. The proposed techniques were evaluated based on three standard tests in multi-objective evolutionary optimization problems. The evaluation criterion in this paper is the number of particles in the optimal-Pareto set, error, and uniformity. The results show that the proposed method searches more number of optimal particles with higher intensity and less error in comparison with basic MOPSO and SIGMA and CMPSO and NSGA-II and microGA and PAES and can be used as proper techniques to solve multi-objective optimization problems.