V. Ghasemi; A. Ghanbari Sorkhi
Abstract
Deploying m-connected k-covering (MK) wireless sensor networks (WSNs) is crucial for reliable packet delivery and target coverage. This paper proposes implementing random MK WSNs based on expected m-connected k-covering (EMK) WSNs. We define EMK WSNs as random WSNs mathematically expected to be both ...
Read More
Deploying m-connected k-covering (MK) wireless sensor networks (WSNs) is crucial for reliable packet delivery and target coverage. This paper proposes implementing random MK WSNs based on expected m-connected k-covering (EMK) WSNs. We define EMK WSNs as random WSNs mathematically expected to be both m-connected and k-covering. Deploying random EMK WSNs is conducted by deriving a relationship between m-connectivity and k-coverage, together with a lower bound for the required number of nodes. It is shown that EMK WSNs tend to be MK asymptotically. A polynomial worst-case and linear average-case complexity algorithm is presented to turn an EMK WSN into MK in non-asymptotic conditions. The m-connectivity is founded on the concept of support sets to strictly guarantee the existence of m disjoint paths between every node and the sink. The theoretical results are assessed via experiments, and several metaheuristic solutions have been benchmarked to reveal the appropriate size of the generated MK WSNs.
B.3. Communication/Networking and Information Technology
Seyed M. Hosseinirad
Abstract
Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters ...
Read More
Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasing a layer of cluster is a tradeoff between time complexity and energy efficiency. In this study, regarding the most important WSN’s design parameters, a novel dynamic multilayer hierarchy clustering approach using evolutionary algorithms for densely deployed WSN is proposed. Different evolutionary algorithms such as Genetic Algorithm (GA), Imperialist Competitive Algorithm (ICA) and Particle Swarm Optimization (PSO) are used to find an efficient evolutionary algorithm for implementation of the clustering proposed method. The obtained results demonstrate the PSO performance is more efficient compared with other algorithms to provide max network coverage, efficient cluster formation and network traffic reduction. The simulation results of multilayer WSN clustering design through PSO algorithm show that this novel approach reduces the energy communication significantly and increases lifetime of network up to 2.29 times with providing full network coverage (100%) till 350 rounds (56% of network lifetime) compared with WEEC and LEACH-ICA clsutering.
B. Computer Systems Organization
F. Hoseini; A. Shahbahrami; A. Yaghoobi Notash
Abstract
One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of ...
Read More
One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tracking Based on Virtual Grid (TTBVG), which integrates on-demand dynamic clustering into a cluster- based WSN for target tracking. This protocol converts on-demand dynamic clusters to scalable cluster-based WSNs, by using boundary nodes and facilitates sensors’ collaboration around clusters. In this manner, each sensor node has the probability of becoming a cluster head and apperceives the tradeoff between energy consumption and local sensor collaboration in cluster-based sensor networks. The simulation results of this study demonstrated that the efficiency of the proposed protocol in both one-hop and multi-hop cluster-based sensor networks.
B.3. Communication/Networking and Information Technology
A. Ghaffari; S. Nobahary
Abstract
Wireless sensor networks (WSNs) consist of a large number of sensor nodes which are capable of sensing different environmental phenomena and sending the collected data to the base station or Sink. Since sensor nodes are made of cheap components and are deployed in remote and uncontrolled environments, ...
Read More
Wireless sensor networks (WSNs) consist of a large number of sensor nodes which are capable of sensing different environmental phenomena and sending the collected data to the base station or Sink. Since sensor nodes are made of cheap components and are deployed in remote and uncontrolled environments, they are prone to failure; thus, maintaining a network with its proper functions even when undesired events occur is necessary which is called fault tolerance. Hence, fault management is essential in these networks. In this paper, a new method has been proposed with particular attention to fault tolerance and fault detection in WSN. The performance of the proposed method was simulated in MATLAB. The proposed method was based on majority vote which can detect permanently faulty sensor nodes with high detection. Accuracy and low false alarm rate were excluded them from the network. To investigate the efficiency of the new method, the researchers compared it with Chen, Lee, and hybrid algorithms. Simulation results indicated that the novel proposed method has better performance in parameters such as detection accuracy (DA) and a false alarm rate (FAR) even with a large set of faulty sensor nodes.