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Deploying the m-connected k-covering (MK) wireless sensor networks
(WSNSs) is crucial for a reliable packet delivery and target coverage.
This paper proposes implementing random MK WSNs based on the
expected m-connected k-covering (EMK) WSNs. We define EMK
WSNs as random WSNs mathematically, expected to be both m-
connected and k-covering. Deploying random EMK WSNs is
conducted by deriving a relationship between m-connectivity and k-
coverage, together with a lower bound for the required number of
nodes. It is shown that EMK WSNs tend to be MK asymptotically. A
polynomial worst-case and linear average-case complexity algorithm is
presented in order to turn an EMK WSN into MK in non-asymptotic
conditions. The m-connectivity is founded on the concept of support
sets to strictly guarantee the existence of m disjoint paths between
every node and the sink. The theoretical results are assessed via the
experiments, and several metaheuristic solutions are benchmarked to

reveal the appropriate size of the generated MK WSNS.

1. Introduction

The advent of technologies such as the Internet of
things [1], pervasive computing [2], smart
environments/cities [3], e-healthcare [4], and
surveillance systems [5] has multiplied the
importance of a proper deployment of Wireless
sensor networks (WSNSs) in the recent years.
WSNs are the cornerstone of data acquisition in
such high-end contemporary applications. A WSN
consists of a bunch of communicating motes,
sensing an area of interest (Aol). The sensors are
required to cover the areas, barriers or individual
targets in Aol [6]. They collect a broad range of
data types: temperature, humidity, pressure,
vibration, sound, biomedical information, etc.
Generally, WSNs can be deployed by either a pre-
planned or a stochastic strategy [7, 8]. However,
preserving connectivity among the sensor nodes
and target coverage are two challenging facets in
both scenarios. It is due to the fact that the sensor
nodes have limited resources (such as
communication range and power supplies), and
are also susceptible to failure by external events.

Therefore, there may be link outages (which in
turn corrupt routing packets toward the sink) and
also target coverage loss in Aol. M-connected k-
covering (MK) WSNs are deployed to cope with
these problems. In a k-covering WSN, every
target point/area is covered by at least k sensor
nodes. Also a WSN is called m-connected if there
exist at least m disjoint paths between each pair of
nodes. The definition of m-connectivity can be
reduced to the existence of m disjoint paths
between each node and the sink. Having selected
proper values for m and k, MK WSNs provide a
reliable packet delivery (via multi-hop routing)
and target coverage. It is typically struggled to
minimize the number of nodes in an MK WSN to
lower the deployment costs. However, deploying
an MK WSN with a minimum number of nodes is
an NP-complete problem [9-11].

Recently, a number of works have grappled with
solving the MK WSN problem via metaheuristic
algorithms [12, 13]. These methods generate a
random dense primary potential network in order
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to ensure a primitive MK WSN from scratch.
Then the potential nodes are pruned via a
metaheuristic minimization process such that the
MK constraint is preserved. Notwithstanding
these methods are dramatically prone to local
minima due to the network size, the question of:
“how much dense an initial random WSN should
be, to expect both m-connectivity and k-coverage
properties” has been ignored. On one hand, if the
size of the initial random network is too small, the
MK constraint may be violated; on the other hand,
a dense network infuses a great number of
optimization variables (i.e. associated with the
network size) into the meta-heuristic optimization
process, increasing the chance of suboptimal local
minima solutions. In fact, an overlooked crux in
the presented metaheuristic approaches has been
to generate a primary random MK WSN of a
proper size and avoid overestimations. Although
the study of m-connectivity and k-coverage in
random WSNs has been conducted in some
works, a relaxed hypothesis for m-connectivity
has been applied [8]. In such works, a WSN is
typically considered m-connected if the degree of
every node is greater than or equal to m. This
hypothesis can violate m-connectivity literally.
Figure 1 illustrates a violating scenario for m = 2.
In this figure, the neighboring nodes in a WSN are
connected by solid line edges. As it can be seen,
the degree of every node is greater than or equal
to 2. However, no 2 disjoint paths exist from
nodes at either regions A and B (inside the dashed
borders) to the sink because all paths from the
nodes at these regions to the sink pass through the
common node 18. Therefore, the nodes at regions
A and B are not 2 connected despite the degrees
of all nodes are greater than or equal to 2. This
paper is motivated by the above question, under
the strict definition of m-connectivity. The answer
can yield a fair-sized random MK WSN.
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Figure 1. A random WSN that is not 2-connected,
despite the degree of every node is greater than or equal
to 2.
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A novel heuristic is proposed in this paper to cope
with the problem of size overestimation in random
MK WSN. The idea is to generate a random MK
WSN whose size is approximated based on the
mathematical expectations of m-connectivity and
k-coverage. For this purpose, we introduce
expected m-connected k-covering (EMK) WSNs,
which are random WSNs mathematically
expected to be both k-covering and m-connected.
This way, a lower bound on the size of a random
EMK WSN is calculated as a function of m, k,
and some network characteristics, a priory. We
show that an EMK WSN tends to be MK in
asymptotic conditions (i.e. for large values of m
and k). An EMK WSN can be turned into an MK
by adding a limited number of nodes, with
polynomial worst-case and linear average-case
complexities, as will be discussed. Therefore, to
create a random MK WSN, it is proposed to
generate an interim EMK WSN with a pre-
determined size based on m and k, and then
reform it to become MK. Also the m-connectivity
is studied under the strict condition of existence of
m disjoint paths from every node to the sink based
on the concept of support sets. This way, m-
connectivity can be guaranteed. Several
metaheuristic solutions have been benchmarked to
reveal the proper size of the generated MK WSNSs.
The main contributions of the present work can be
summarized as:

- EMK WSNs are introduced for deploying
random MK WSNs.

- The m-connectivity is defined based on the
concept of support sets to guarantee the
existence of m disjoint paths from every
node to the sink.

- The size of the expected m-connected, the
expected k-covering, and the EMK WSNs
have been analyzed mathematically and then
assessed via simulations.

- A probabilistic algorithm with polynomial
worst-case and  linear  average-case
complexities is delivered to turn an EMK
WSN into an MK WSN.

- A relationship between m-connectivity and
k-coverage is presented analytically and
assessed via simulations.

- Some metaheuristic approaches for solving
the minimum MK WSN problem are
benchmarked to reveal the suitable size of
the random MK WSNs generated based on
the EMK structure.

The remainder of the paper is organized as what
follows. Some related works are reviewed in
Section 2. Some preliminary definitions and the
network model are taken in Section 3. We define
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support sets in Section 4, and prove their
contribution in m-connected WSNSs. Sections 6
and 7 analyze the expectations of support and
cover set sizes, respectively. Section 8 discusses
the relation between m-connectivity and k-
coverage and how to generate EMK WSNs.
Section 9 presents a probabilistic algorithm to
reform an EMK WSN into MK. The complexity
of this algorithm is calculated in Section 10.
Section 11 delivers the experimental results, and
finally, Section 12 concludes the paper.

2. Related Works

The low-cost development of MK WSN is an np-
hard problem [9-11]. Therefore, an approximate
solution is required. The problem is generally
solved via heuristic and metaheuristic approaches.
The cost is directly associated with the number of
nodes. Therefore, it is always struggled to
minimize the number of nodes. Some heuristic
methods solve this problem by scattering a
number of sensor nodes based on pre-defined
regular topologies (e.g. triangular, rectangular,
hexagonal, etc.) [7, 14]. Along with the regular
topology-based solutions, metaheuristic
algorithms solve this problem by generating and
optimizing random topologies. Some recent
metaheuristic approaches are as follow:

In [6], a scheme based on biogeography-based
optimization (BBO) is used in order to solve the
problem. The proposed method provides an
encoding for the habitat representation, and
formulates an objective function along with the
BBO’s operators.

In [15, 16], a network of potential positions for
placing sensor nodes is pre-specified in a grid or a
random style. Then a scheme based on the
imperialist competitive algorithm (ICA) is
proposed to solve the MK WSN problem by
selecting a subset of initial potential sensor
positions for node placement. Also [16] improves
the ICA method by enveloping the possibility of
immigration for colonies from weak to stronger
empires into the standard ICA. This method is
called immigrant ICA (IICA).

In [17], an optimization approach based on a
hybrid tunicate swarm optimizer (TSO) and salp
swarm optimizer (SSO) is proposed in order to
solve the minimum MK WSN problem. In this
approach, a potential initial WSN is generated and
pruned to yield a final MK WSN. In [18] and [19],
two schemes based on genetic algorithm (GA)
and gravitational search algorithm (GSA) have
been proposed, respectively. These methods are
identically based on generating the initial potential
WSNs and minimizing the same objective
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function as in [17] to yield an optimal MK WSN.
Particle swarm optimization (PSO) and
differential evolution (DE) have been other
instances of metaheuristic evolutionary algorithms
for solving the minimum MK WSN problem in
the same way [12].

In [20], a mathematical model called Nelder-
Mead method is applied in the shuffled frog
leaping algorithm to improve the local search for
solving the minimum MK WSN problem. Like the
previous approaches, the idea has been to generate
a potential network and prune the potential
positions by optimizing a specific objective
function.

In addition to the previous approaches, some fault
tolerant WSN schemes opt the same strategy to
obtain the initial MK WSNs [21, 22]. They restore
connectivity or coverage status by relocating the
nodes in the sense of failures. All of the above-
mentioned schemes generate primitive random
potential WSNs, which are taken m-connected and
k-covering for granted. Therefore, studying the m-
connectivity and k-coverage properties in random
WSN is of crucial importance. This issue has been
studied in some other works as follows.

In [8], m-connectivity and k-coverage problem for
uniformly deployed 3D Aols has been studied. In
this work, the sensors are heterogeneous in terms
of the sensing range, communication range, and
the possibility of being alive. Similar to this work,
[23] analyzes the coverage and connectivity in
homogenous directional 2D WSNs, considering
the in- and out-degree of nodes. In [24] and [25],
the critical density of sensor nodes has been
calculated to achieve both network connectivity
phase transition (NCPT) and sensing-
coverage phase transition (SCPT). Both of these
works focus on 1-coverage and 1-connectivity.

In [26], the critical sensor density (CSD) for the
desired coverage ratio is calculated. In this work,
the sensors are uniformly deployed in a 2D
convex polygon-shaped Aol. The approaches of
[27] and [28] are two other instances that study
coverage in WSNs. The first studies the coverage
in bounded areas, while the latter exploits the
fundamental limits of coverage based on the
stochastic data fusion models that fuse noisy
measurements of multiple sensors. M-connectivity
is not considered in the above-mentioned works.
When it comes to the m-connectivity analysis, the
characteristic is typically attributed to the number
of neighboring nodes in most related works
including those mentioned above. It can violate m-
connectivity, as shown in Figure 1. In addition,
the metaheuristic methods manage to solve the
minimum EMK problem without assessing the m-
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connectivity and k-coverage properties in the
primary random potential WSNs. This work
analyzes both properties under the strict condition
of m-connectivity, and proposes a method for
generating random MK WSNs to plug the gap.

3. Primary Definitions and Network Model

WSN is considered as a set of uniformly scattered
sensor nodes, namely V, and a sink node S, in a
given 2D Aol. The sensing and communication
ranges of all sensor nodes are considered static,
and denoted by R and R, respectively. The
sensors are considered omnidirectional with a
binary communication/sensing model. The target
point coverage is considered for the purpose of
this paper, i.e. a set of targets, namely T, are
uniformly distributed in Aol. General notations
are summarized in Table 1, and some preliminary

definitions are taken in the following.
Table 1. General notations.

Notation Description
A Area of Aol
S Sink node
T Set of targets in WSN
%4 Set of sensor nodes in WSN
R, Sensing rang.
R, Communication range

N(Q2 Set of neighbors of node 2
sup(2) Support set of node/set of nodes 2
cov(Q) Cover set of target 2
12 -9, Euclidian distance between
nodes/targets 2 and 9
2] Size of a set 2
n Number of nodes
N*(2) Set of neighbors at a maximum h-hop
distance from node 2
v o A path sequence from node v; to v;
<> An ordered sequence of nodes
E() Mathematical expectation
1,(B) Indicator function
AP orALY Support area of a node v or a node
located at (x, y)
ALY Coverage area of a target, located at

)

Definition 2 (cover set). The cover set of a target t is
denoted by cov(t), and defined as:

cov(t)={x eVH|x—t||2 < RS}. 1)

cov(t) includes the nodes that cover target t. The
geometrical location of such nodes, known as the
coverage area of t, is a disk of radius R, centered
at the target.

Definition 3 (k-coverage). A target t is k-covered if
[cov(t)| = k, and a WSN is called k-covering if all its
targets are k-covered.
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Definition 4 (m-connectivity). Anode v ¢ N(S) ism-
connected if there exist at least m disjoint paths from v
to the sink S, and a WSN is m-connected if every node
v & N(S) is m-connected.

Definition 5 (MK WSN). A WSN is called m-
connected k-covering (MK) if it is both m-connected
and k-covering.

Definition 6 (expected k-covering WSN). A random
WSN is called expected k-covering if E(|Jcov(t)]) =
k, for an arbitrary target t, where E(.) is the
mathematical expectation.

20

2 4 6 8 10 12 14 16 18

Figure 2. Shaded area (i.e. A,S:;”) is geometrical
bounds of support area of v.

4, Support Sets
The support set of a node includes the neighbor
nodes closer to the sink than itself. These nodes
are geometrically placed in the intersection area of
the disk centered at S with radius d = ||S — v||,
and the communication area of v. This region,
called the support area of v, is depicted in Figure
2. The support sets are defined as:
Definition 7 (support set). A support set is denoted
by sup(v) for every node v ¢ N(S), and defined as:

up(v)={xeN (x-S, fv-sl,}.

Also the support set of a set of sensor nodes V' is
defined as the union of support sets of all nodes in
V', as:

sup (V') =U,- sup(v). ®)

The support sets are crucial since their size can
guarantee m-connectivity in a WSN. The
following lemma addresses this issue.
Lemma 1. A WSN is m-connected if
N(S) |sup(v)| = m.

Proof. Order the sink’s non-neighboring nodes
based on their distance to it, non-decreasingly. Let
denote this ordered sequence by @, =<
Vi, ., U, >, Where Vi < j ||v; = S||, < ”V]- — S||2.

The proof is conducted by induction on z. Let
z =1 as the base case. There exist at least m
disjoint paths from v; to the sink because
[sup(vy)| =m and sup(v,) < N(S) N N(vy).
Now, assume the induction hypothesis that the

Vv &
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nodes of @, are m-connected and prove for
Q41 =< Q,v,.1 >, Wherez > 1.

Based on the Menger’s theorem [29], a node v; is
m-connected if the size of the minimum vertex cut
for v; and the sink equals m (i.e. at least m nodes
must be omitted to disconnect v; from the sink).
Therefore, to prove m-connectivity for the nodes
in Q44 it is sufficient to prove that the minimum
size of vertex cuts for each node in Q,,, and the
sink equals m. For this purpose, since the nodes of
Q, are m-connected, the minimum size of their
vertex cuts equals m. Also if node v, is added
to Q,, it will not reduce the minimum vertex cut
size because it is connected to at least m
supporting neighbors in Q, (i.e. |[sup(v,41)| = m
and sup(v,41) < Q,). Thus the minimum vertex
cut size for nodes in Q,,, and the sink equals m
and the proof is complete. |j

Inspired by lemma 1, we define an expected m-
connected WSN based on the support sets as
follows. Such networks are mathematically
expected to be m-connected.

Definition 8 (expected m-connected WSN). A
random WSN is called expected m-connected if
E(| sup(v) |) = m for an arbitrary node v € N(S).
Similarly, an expected m-connected k-covering
(EMK) WSN is defined as follows:

Definition 9 (EMK WSN). A random WSN is
called expected m-connected k-covering (EMK) if
it is both expected m-connected and expected k-
covering.

A random EMK WSN can yield an appropriate
initialization for generating a random MK WSN.
It is crucial since it will be asymptotically m-
connected and k-covering with a probability
tending to 1, as will be discussed.

5. Problem Statement

Random EMK WSNs can be regarded as
approximations of MK WSNs. Such networks are
expected to be both m-connected and k-covering
mathematically. The problem of deploying
random MK WSNs is defined based on EMK
WSNs in this paper.

Problem statement- Given an Aol with a set of
random targets T, generate a random MK WSN
by reforming an EMK WSN.

An EMK WSN is required in advance to solve the
problem mentioned above. The following sections
provide the essential analysis for creating random
EMK WSNs. We deliver a probabilistic algorithm
to turn an EMK WSN into an MK, with
polynomial worst-case and linear average-case
complexities (section 10). The border effect is not
considered in the calculations of the forthcoming
sections.
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6. Expectation of Support Set Size in Random
WSNs

Consider the support area of an arbitrary node
v & N(s) located at (x,y). The area of this

region, denoted by A;";f‘yp (Figure 2), depends on
the coordinates of v. Since the nodes are scattered
uniformly in the Aol, for a node v & N(s),
located at (x,y), the probability that an arbitrary

node w falls within sup(v) will be:
Sup

px,y(a)esup(v))zT’y. 4
Af;f‘yp can be generally calculated as:
o =d?arccos [1— R°22 )+
2d
J— ®)

where d = /x2 + y2. A7) is highly dependent
on the distance of node v from the sink, i.e.
parameter d. Albeit, a lower bound for p, , (w €
sup(v)) can be calculated. The more v gets closer
to the sink, the less A3 will be. Thus Ay is
minimized when v is at the closest possible
distance, i.e. d = R., from the sink. Replacing
d = R, in (5) and then (4) yields:
2

Py.y (a)esup(v))z aAR\C \ (6)

where a = (2?” — ?).
Since 15,p)(w) can be regarded as a Bernoulli
variable with parameter p, ,(w € sup(v)), the

size of sup(v), i.e. [sup(V)| = Xpev Lsup) (W),
will be a binomial variable with distribution:

Pxy([sup(v)| = m) =

Pyy (|sup(v)| = m) =

(”m’l). Dy (a) e sup(v))m 3
(1— Py (@e sup(v)))n_m_ :

()

Therefore, the expectation of |sup(v)|, given that
node v & N(S) is placed at (x, y) will be:

E,, (|sup(v)|) =(n-1)p,,

(wesup(v)). ®
Replacing (6) in (8) yields:

aR?
Exvy(|sup(v)|)2(n—1) e 9)
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The expected size of the support set of an
arbitrary node v, independent from its position,
can be calculated as:

E (|sup(v)|) =

1 (10)
1.5 B (sup(v))d (x)d (y).
where A’ = A—mR? . Applying (9) in (10)
yields:
E(|sup(v)| >

~1)aR?
”A(n A)\a ~d(x)d(y)= (11)
a(n-1)RZA

AZ

The following proposition results directly from
a(n—1)R2As
A2

. A%m
Result 1. A minimum number of n = ARE

(11) by solving m = for n.

uniformly scattered nodes is required to achieve
an expected m-connected WSN.

Therefore, to generate an expected m-connected
WSN, it is sufficient to uniformly scatter a

. A?
minimum number of n = [%] +1 nodes
aA'R2

based on result 1 in Aol.

It should be noted that given an Aol, when
m — oo, an expected m-connected WSN will be
m-connected with a probability tending to 1. The
weak law of large numbers (LLN) can justify this
issue, i.e. since |sup(v)| is a binomial variable,
the relation P(||sup(v)| — E(lsup(v)])| =€) - 0
holds as m — oo, according to the weak LLN
(note that n —» o as m — o0). Therefore, the
support set size of an arbitrary node v approaches
E(|sup(v)]) with a probability tending to 1, i.e.
plim,,_ . |sup(v)| = E(Jsup(v)|). As a result,
since E(|sup(v)|) = m, we will have |sup(v)| =
m with a probability tending to 1, asymptotically.
This issue is assessed experimentally and stated
by the following proposition.

Result 2. Given an Aol, R., and R, an expected
m-connected WSN will be m-connected with a
probability tending to 1 as m — co.

7. Expectation of a Cover Set Size in Random
WSNs

In order to calculate the expectation of the cover
set size, consider an arbitrary target t € T, located
at (x,y). We have:

p(wecov(t))= :yv .

Similar to the support sets, |cov(t)| is also a
binomial variable with distribution:

(12)
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p(|cov(t)|= k):

(E).p(a)ecov(t))k. (13)
(1— p(ewe cov(t)))n_k

Thus the expectation of |cov(t)| will be:

E,, (|cov(t)]) =np(eecov(t)). (14)

Replacing p(w € cov(t)) from (12) in (14)
yields:

cov

E,, (jcov(t))) :nT'y.

The expected size of the cover set of an arbitrary
target t, independent from its position, can be
calculated as:

E (|cov(t)|) =
1

I, 2., (cov(t)o (e (»)
A%y is dependent on the position of the target. If
a target is located at a distance less than R from
the brim, then a portion of its coverage area falls
outside Aol. The more t gets closer to the brim,
the less its coverage area will be. The minimum
coverage area, denoted by A%5%7,, is achieved when
a target is placed at the brim. Applying A%Y >
ATM in (15) and then (16) yields:

(15)

(16)

(|cov () |)2
M _ AW 17)
[l d (x)d (y) ==y

If the border effect is ignored, then we have
AS%Y = mR2. The following proposition results

min
cov

directly from (17) by solving k = AX“" for n.

Result 3. A minimum number of [ Cov] uniformly

min

scattered nodes are required to achieve an
expected k-covering WSN.

Therefore, in order to generate an expected k-
covering WSN, it is sufficient to scatter a

minimum number of uniformly [Co,,] nodes

mm

based on result 3 in Aol.

Similar to the expected m-connectivity, the
expected k-covering WSNs will be k-covering
with a probability tending to 1, asymptotically.
Since [cov(t)] is a binomial variable for a random
target t, we have P(||cov(t)| — E(Jcov(t)])| =€
)= 0 as k — oo, according to the weak LLN
(note that n — oo as k — oo). Therefore, the size
of the cover sets approaches to E(Jcov(t)|) with a
probability tending to 1, i.e. plimy_|cov(t)| =
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E(Jcov(t)]). As a result, since E(|cov(t)]) = k,
we will have |cov(t)|=kfor a target ¢t
asymptotically. Thus the following result ensues.
It is assessed experimentally too.

Result 4. Given an Aol, R., and R, an expected
k-covering WSN will be k-covering with a
probability tending to 1 as k — oo.

8. Generating an EMK WSN

In order to generate EMK WSNSs, one must first
study the relationship between m-connectivity and
k-coverage. The following lemma addresses this
issue.

Lemma 2. In a uniformly deployed WSN, if the
WSN is expected m-connected, then it is expected

2
k-covering with k = lZm (%) J
Proof. Lets A3"? and B, "F denote the support area
of an arbitrary node v and its mirror reflection
across line 1, as depicted in Figure 3. Both A4}

and B,"? are sub-areas of the communication area
of v.

,
. 0
— . / sSup
NS E
\{
K ‘a.\
d \ N
Asp
7

Figure 3. Support area A}"F mirror reflected across line I,
yielding B3P in communication area of v.
Lets ngyp, n'gyp, and n, denote the number of
nodes in 4,7, B;"?, and the communication area
of v, respectively. Since |B;"" | =|4;" |, the
expected number of nodes in B,"? and 4;"? are
identical, and greater than or equal to m, i.e.
E(n,) = E(n’',) = m since the WSN is expected
m-connected. Also since 4;*P and B,"? are sub-
areas of the communication area, we have:
E(n,)=E(n,,)+E(n,)>2m. (18)
Since the nodes and the targets are uniformly
scattered, the density of nodes will be %;
therefore, the expectation of a target’s cover set
size will be proportional to the relationship
between sensing and communication areas, as:

(oo t) [ 2 0

Equations (18) and (19) yield:

(19)
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E (|cov(t)))> (%Jz 2m>

R 2
{Zm[—sj J
RC
Therefore, the network is expected k-covering
. _ Rg\2
with k = |2m (R—C)
Regarding lemma 2, increasing m in an expected

m-connected WSN will also increase k, and, in
turn, make the random WSN k-covering with

Rs
Therefore, the following result also holds. This
result is assessed via experiments too.

Result 5. An m-connected WSN resulted by
increasing m in a uniformly deployed expected
m-connected WSN (i.e. in asymptotic

conditions), will be k-covering with a
probability tending to 1 such that k=

Rs\2
An EMK WSN can be straightly generated by
uniformly deploying a WSN whose minimum
number of nodes is calculated based on lemma 3.
Lemma 3. A uniformly deployed WSN with
random targets is EMK, if the following relation
holds for the number of nodes, i.e. n:

(20)

2
| in the asymptotic conditions.

{ ’f, :Ju Vk{zm[&]z
n>{'""" .
max Am +1, kA Vk> Zm[&J2 (21)
aARZ || A Re) |
2
Proof. Firstly, let k < [2m . Generally, a

minimum number of [‘2, 2]+1 randomly

scattered nodes yield an expected m-connected
WSN based on result 1. According to lemma 2,
this WSN is inherently expected k-connected with

2
k= [Zm J Therefore, for k < [2m J
the WSN is EMK

2
Secondly, let k > lZm (%) J

According to results 3 and 1, a minimum number
of [w,,] and [

Arnin A'R?
expected k -covering and expected m-connected
WSNSs,  respectively.  Therefore, if n=>
max([ TR ] +1 [AC""]) a uniformly deployed

min

WSN will have both properties, hence, will be
EMK.

]+ 1 random nodes vyield
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Algorithm 1. Structure of REMK.

1. Inputs:

2. Aol, T,m,k;

3. random EMK WSN , based on lemma 4.

4, Output:

5. V = final set of nodes in the output WSN

6. Body:

7. V = set of nodes in the input EMK WSN

8. Foreacht € T:

9. If |cov(t)| < k

10. v' = Generate k — |cov(t)|random nodes in cov(t);

11. V=V Uuv, © Stage 1
12. Endif

13. Endfor

14. temp =V;

15. Foreach v € temp:

16. If v N(S)& |sup(v)| <m

1r. v’ = Generate m — |sup(v)| random nodes on Ai in the Aol ;
18. V=V UU,; StageZ
19. temp = temp U v';

20. Endif

21. remove v from temp;

22. Endfor

v
o

€
\ w

Az
Figure 4. Arc A%, the bolded solid curve, is the
intersection of borders of communication and support
areas of node v, with distance e from the endpoints. It is
the geometrical location where newly generated nodes at
stage 2 of REMK are added to make node v m-connected.

9. Generating a Random MK WSN

In order to generate a random MK WSN, firstly, a
random EMK WSN with the minimum number of
nodes, based on lemma 3, is produced. Secondly,
an algorithm, named REMK, is applied to turn it
into an MK WSN. The structure of REMK is
depicted in algorithm 1. It is composed of two
stages. Stage 1 makes the input EMK WSN k-
covering, while stage 2 makes it m-connected.

At stage 1, i.e., lines 7 to 13 of algorithm 1, a
number of k — |cov(t)| nodes are added to the
neighborhood of each target t with |cov(t)| < k.
Therefore we have |cov(t)| = k for every target t
at the end, and the WSN will be k-covering. All of
the generated nodes are added to set V, which had
already been initialized with the nodes of the input
EMK WSN. At stage 2, the arc AS is defined as
the intersection of borders of communication and
support areas of every node v, with distance e
from the endpoints, as depicted in Figure 4. At
this stage, i.e. lines 14 to 22 of algorithm 1, a
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number of m — |sup(v)| nodes are randomly
generated at the arc A% for every node v, if
|sup(v)| < m. The reason is that this arch is the
geometrical location of the furthest points in the
support area of a node. Therefore, by adding the
nodes on this arch, fewer number of nodes will be
required to connect v to the sink. The newly
generated nodes are added to set V, as well. Since
A% s located at the support area of v, all of the
newly generated nodes belong to sup(v).
Therefore, we have |sup(v)| = m for every node
at the end, and WSN will be m-connected
according to lemma 1.

It should be noted that stage 2 will converge in a
finite number of iterations since the distance of
the newly generated nodes from the sink
diminishes gradually. Two resulting MK WSNs
are depicted in Figure 5.

10. Complexity Analysis of REMK

The time complexity of REMK is addressed as the
total number of iterations of both loops since they
are the most expensive steps, as follows:

The input EMK WSN has a minimum number of
nodes n, based on lemma 3. Thus the complexity
of the first stage is 6(|T|). An upper bound of
k|T| nodes will be generated at this stage if the
cover sets of all targets are empty. Accordingly,
there will be an upper bound of n + k|T| nodes at
the end/start of stagel/stage 2. The worst-case for
stage 2 occurs when all nodes are located at the
brim of the deployment area, without being
neighbors to each other and with empty cover
sets.
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Figure 5. Output of REMK for a square Aol of
length 300, R, = R; =100, anda)y m=1,k=1,and b) m
= 2, k = 2. Firstly, an EMK WSN is generated, and
secondly, it is reformed to an MK WSN by REMK.

In this case, for a node, namely v in Figure 6, m
nodes are generated at A5 with the furthest
possible distance from the sink, i.e. point [, in the
figure. Similarly, a number of m neighbors are
generated for the nodes at I,, i.e. point [, in Figure
6. This process is repeated in the following rounds
until all newly generated nodes are placed at the
neighborhood of the sink, leading to the sequence
of points [y, l,, ...l,,. Therefore, the upper bound
of the number of newly generated nodes will be
hm for a single initial node. Since there are at
most n + k|T| initial nodes at the start of stage 2,
an upper bound for the number of nodes in set V
will be (n + k|T|)hm + (n + k|T|) at the end of
stage 2. Since the second loop iterates once for
each node in V, the worst-case complexity of the
second stage will be O((n+ k|T|)(hm + 1)).
Parameter h is constant for a given Aol, R, and €.
Having summed up and simplified the complexity
terms of both stages, the worst-case complexity of
REMK will be O(nm + k|T|m), i.e. a polynomial
complexity.
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Figure 6. Worst case of REMK for a single node,
namely v. In the worst case, newly generated nodes will
be added at points ;,i = 1, ..., h.

10.1. Average-case complexity

The average-case complexity is studied in
asymptotic conditions. The asymptotic conditions
take place when k or m grow larger in the input
EMK WSN. In such situations, the polynomial
worst-case complexity of REMK would not
happen, thanks to the initial input EMK WSN.
That is, according to results 2 and 4, the input
EMK WSN tends to be both m-connected and k-
covering with a probability tending to 1,
asymptotically. This fact, in turn, reduces the
average-case complexity of REMK to 8(|T| + n)
since no more nodes are added to the input EMK
WSN at stages 1 or 2 of REMK. Likewise, the
number of nodes in the output MK WSN will
remain intact and of linear order asymptotically
(ie. |V]| €6(n)). The experimental studies
confirm this analysis as well.

11. Experimental Studies and Simulation
Results

The simulations are logically divided into two
parts. Firstly, in sections 11.1 to 11.4, the network
characteristics are studied by assessing the
theoretical results through simulations. In these
experiments, a circular Aol of diameter 300 is
considered centered at the sink. This way, the
border effect exerted on the support areas is
voided since all of the support areas fall within the
Aol. Also the minimum coverage area, i.e. A5,
can be calculated similar to (5) since it is the
intersection of two circular areas (Aols of toroidal
shapes are common to void the border effects
[26]). Secondly, in section 11.5, the performances
of some metaheuristic approaches for solving the
minimum MK WSN problem have been
benchmarked by REMK. In this experiment, a
square Aol of length 300 is deployed. The Aol is
centered at the sink. The targets and nodes are
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deployed uniformly across Aol in both parts.
Table 3 summarizes the incorporated parameters.
Simulations are carried out via MATLAB. The
specifications of the underlying system have been
Intel(R) Core(TM) i7 CPU @ 4GHz with 16 GB
RAM and windows 10.

Table 3. Incorporated parameters.

Parameter Value
Network diameter 300
€ 0.01
|T| 100
R, 100
R, 75, 100, 125
m,k 1,...,200

11.1. Empirical network characteristics

In this experiment, the m-connectivity and k-
coverage characteristics of random WSNs, and
EKM WSNs are studied.

Firstly, the empirical support and cover set sizes
in random WSNs of various sizes are studied. A
set of random networks was generated for each
network size, and the observed average size of
support and cover sets was calculated. Empirical
average support and cover set sizes have been
compared with their minimum expected
theoretical values based on equations (11) and
(17), respectively, in figure 7. As it can be seen,
the empirical average is always greater than or

101 a ot
— L
= ..-'/
z & e
S .t
2 61 L
gJD .,-/.'/

41 o
o e
<>r_ 21 .’/I. sseesse Impirical sizel

el Theoratical minimum
1 r T T T T T T

5 155 305 455 605 755 905
Number of nodes

equal to the expected theoretical minimum; hence,
Equations (11) and (17) hold.

To assess results 2 and 4, several expected m-
connected and expected k-covering WSNs were
generated with various values of R, and Rg. For
this purpose, the minimum number of required
nodes for an expected m-connected and k-
covering WSN was calculated based on results 1
and 3, respectively. Then the nodes were spread
uniformly across Aol. The percentage of m-
connected nodes and k-covered targets are
depicted in Figure 8. As it can be seen, the ratio of
k-covered and m-connected nodes increases by
increasing k and m, respectively. Hence, the
outcomes are in compliance with results 2 and 4.
Efficiency of EMK WSNSs is based on lemma 3.
The calculated size of each EMK WSN is partially
depicted in Figure 9. The efficiency of the
generated EMK WSNs is measured in terms of the
average number of violating nodes and targets
(i.e. nodes/targets that are not m-connected/k-
covered). The results are depicted in Figure 10
and Figure 11. As it can be seen, by increasing k
and m, the number of violating nodes and targets
decrease (it should be noted that the number of
violating targets has a dwindling trend, though
with a low rate). This result also complies with
results 2, 4, and the discussion of section 10.1.

Average |cov(t)|
=
[s)]
=
\

et e Impirical size
g Theoratical minimum

5 155 305 455 605 755 905
Number of nodes

Figure 7. Comparing theoretical minimum and empirical expectations of a) support and b) cover set sizes.
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Figure 8. Percentage of m-connected nodes, and k-covered targets for various sensing and communication ranges, in a)
expected m-connected WSN, and b) expected k-covering WSN, respectively. Number of nodes is calculated based on results 1
and 3.
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1F 12 12 16 22 27 32 37 43 48 53

2F 22 22 22 22 27 32 37 43 48 53

3F 33 33 33 33 33 33 37 43 48 53 o

4 43 43 43 43 43 43 43 43 48 53

5F 83 53 53 53 53 53 53 53 53 53

6 64 64 64 64 64 64 64 64 64 64

7F 74 74 74 74 74 74 74 74 74 74

1 2 3 4 5 6 7 8 9 10
k

Figure 9. Minimum number of required nodes for an
EMK WSN, calculated based on lemma 3 (equation (21)).
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Figure 10. average number of violating targets in
EMK WSN.
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Figure 11. Average number of violating nodes in
EMK WSN.

11.2. Size of Generated MK WSN

The average number of nodes in an m-connected
k-covering WSN, generated by REMK is depicted
in Figure 12 for various values of m and k. For a
precise analysis, a set of EMK WSNs was
generated for each specific pair (k,m), and the
results were averaged. A comparison with the
number of nodes in the initial EMK WSN (i.e.
Figure 9) unveils that a limited number of nodes
are added by REMK. In order to further study this
issue, the total amount of augmented nodes by
REMK is depicted in Figure 13.a, for a broad
range of k and m. As it can be seen, by increasing
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m for a fixed k, the EMK WSN becomes m-
connected k-covering since no further nodes have
been added. Also by increasing k for a fixed m, a
limited number of nodes (less than 13) have been
added. Figure 13.b pictures the average number of
added nodes for m = 1,5,10,20, and various
values of k, more precisely. The number of added
nodes fluctuates around an average of 9.40, with
variance 0.88, for k > 80. This result shows that
for a large enough k and m, most of the initially
generated nodes and targets are m-connected and
k-covering, respectively. Thus a scalar number of
nodes has been added by REMK, just to reform a
limited number of violating nodes/targets.

11.3. Relationship between m-connectivity and
k-coverage

To assess lemma 2, several expected m-connected
WSNs were randomly generated, and their k-
coverage property was studied. For this purpose,
the average size of the cover sets was calculated
empirically for each expected m-connected
network. Also the theoretical anticipated value of
|cov(t)| was calculated based on lemma 2. The
results obtained are compared in Figure 14. As it
can be seen, the empirical mean of |cov(t)| is
always greater than or equal to its theoretical
approximation for various values of Ry; this result
is in keeping with lemma 2, i.e., the expected m-
connected WSNs are also expected k-connected

2
with k = lZm(%) J for large enough m. A

further assessment was conducted based on result
5, in which the relation between m-connectivity
and k-coverage was studied empirically. For this
purpose, a number of expected m-connected
WSNs were randomly generated by increasing m
from 1 to 50. Then the approximate number of
required nodes to turn the EMK WSN into an MK
WSN was calculated by REMK, as an inclusive
measure of m-coverage and k-connectivity
properties.

T T T T T T T T T
1113.15 | 15.02 | 19.52 | 26.03 | 31.22 | 36.56 | 42.19 | 48.01 | 53.26 | 58.64 -

2 [-23.07 | 23.34 | 24.19 | 26.08 | 31.02 | 36.48 | 42.08 | 48.11 | 53.08 | 58.51

w

34.00 | 34.01 | 34.06 | 34.52 | 35.74 | 36.92 | 42.20 | 47.76 | 52.94 | 58.93 -

4 -44.06 | 44.07 | 43.93 | 44.16 | 44.24 | 45.10 | 46.48 | 48.36 | 52.99 | 57.94

5 -53.92 | 53.77 | 53.95 | 53.91 | 53.81 | 54.06 | 54.14 | 55.52 | 56.99 | 58.60

6 64.60 | 64.67 | 64.59 | 64.63 | 64.75 | 64.87 | 64.87 | 65.01 | 65.66 | 65.98

7 [74.67 | 74.61 | 74.54 | 74.55 | 74.65 | 74.70 | 74.63 | 74.66 | 74.58 | 75.04

1 2 3 4 5 6 7 8 9 10
k

Figure 12. Average number of nodes in an m-connected k-
covering WSN, generated by REMK.
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Number of added nodes
Number of added nodes
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81 101 121 141 161 181
k

1 21 41 61

Figure 13. average number of nodes added to input random EMK WSN by REMK for a) a broad range of m, and k, and
b) m=1,5, 10, 20 and various values of k.
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Figure 14. Relation between m and average size of cover sets, for R, = 100 and R; = 75,100, and 125.

The color maps of Figure 15 depict the results for
R, =100 and Rg = 75,100, and 125. Each point
in the diagrams depicts the number of required
nodes. The darker the point is, the more nodes are

between MK WSNs and non-MK WSN should

1 (R:\2 L ..
have been E(R_C) , resulting in anticipated slopes

S

of 0.89, 0.50, and 0.32 for sensing ranges 75, 100,

and 125, respectively. Based on the empirical
results, the slopes of the frontier line have been
0.84, 0.54, and 0.39, respectively, which are very
close to their theoretical counterparts.

required, e.g. white points show an MK WSN. A
solid line sketches the frontier between MK
WSNs and non-MK WSNs. The frontier lines are
in outright compliance with result 5. Based on this
result, the slope of the discriminating border

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
k, K, k,

R_=75 R_=100 R =125
S S S

Figure 15. Relation between m-connectivity and k-coverage for R, = 100, and a) R = 75, b) R, = 100, and c) R; =
125. Darkness of points shows amount of added nodes to EMK WSN by REMK.
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As an instance, consider R, = R; = 100. Based
on result 5, when R, = R, it is anticipated with a
high probability that an expected m-connected
WSN becomes m-connected and k-covering
withk =2m, for a sufficiently large m; in
keeping with this analysis, as Figure 15.c conveys,
no more reformation by adding nodes is required

1 . .
when mgzk in practice too. The same

interpretation exists for the other two cases. It
should be noted that there are some jitters for
small values of k (e.g. the dotted ellipse in Figure
15.¢), which is diminished by the growth of either
k or m.

11.4 Empirical complexities

As it can be seen in Figure 13, a scalar number of
nodes have been added to the input EMK by
REMK (a maximum of 12.07 on average) for
various values of m and k. Therefore, the time
complexity of REMK has been linear empirically.
Also evident from Figure 10 and Figure 11, by
increasing m and k, there will be no further

Time overhead (ms)

Figure 16. Computational time overhead of REMK for R, = R; = 100 and m, k € {1

20

violating nodes or targets. This result proves that
in asymptotic conditions, the EMK WSN tends to
be both m-connected and k-covering from scratch;
hence, no further node is added to WSN by
REMK, and the average-case complexity will be
8(n + |T|). Likewise, the size of the network will
be 6(n), where n is calculated through lemma 3.
This issue is in compliance with the discussion of
section 10.1.

The empirical time overhead of REMK is
depicted in Figure 16 for R. = R; = 100, and
various values of m and k. Fifty random EMK
WSNs were generated for each pair of m and k,
and the time overheads were averaged. As shown,
the time overhead has been less than 15 ms for m
= 100 and k = 100. Moreover, the approximately
constant gradient of the diagram for large enough
m and k approves the linear average time
complexity, as discussed in section 10.1. The
reason is that EMK WSNs become MK with a
probability tending to 1 asymptotically.

” 0 80 100

, ..., 100}.

BREMK HIICA BICA BBBO HGA [GSA

60
50
40
30
20

Number of nodes

10

Figure 17

(2,1)
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(3.2)

(k,m)

. Comparison of various methods regarding number of nodes in MK WSNE.
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11.5. Benchmarking meta-heuristic
approaches

Even though the presented work aims not to solve
the np-complete problem of minimum MK WSNs,
the performance of some  metaheuristic
approaches for this problem has been
benchmarked to reveal the suitable size of the
generated random MK WSNSs. For this purpose,
REMK is compared with some approaches based
on ICA [15], IICA [16], BBO [6], GA [18], and
GSA [19] in terms of the number of nodes. In all
of the benchmarked approaches, a number of
initial  potential positions for sensor node
placement are generated randomly. This potential
WSN must be taken m-connected and k-covering
for granted. Therefore, many potential positions
are generated to make sure that the potential WSN
is MK. Then a subset of the potential positions is
selected by minimizing some objective functions
such that m-connectivity and k-coverage
properties are preserved.

The results for the typical values of m = 1,2, and
k =1,2,3 are depicted in Figure 17. For each
pair of (m,k) the number of nodes resulting from
50 trials has been averaged and rounded up. The
variances have been less than 0.01. As it can be
seen, in such cases, the number of nodes resulting
from the metaheuristic approaches is greater than
those of the proposed random system. The reason
is that the metaheuristic methods are susceptible
to local extremums. The above-mentioned
benchmarked approaches typically choose many
potential positions uninformedly since a fair
number is unknown a priory. Hence, they return
suboptimal local extremums. It is exacerbated
when there are many unknown variables, i.e.
potential positions. As the results show, the
proposed method can yield a rule for generating
random MK WSNs with a fair number of nodes.
The metaheuristic methods can further process
this initial random MK WSN.

some

12. Conclusion

This paper proposed EMK WSNs as a building
block for generating random MK WSNs. The
concept of m-connectivity was founded based on
the support sets to guarantee the existence of m
disjoint paths between each pair of nodes. We
showed that EMK WSNs tended to MK WSNSs in
asymptotic  conditions and  delivered a
probabilistic algorithm of average-case and worst-
case complexities of orders 6(n+|T|) and
O(nm + k|T|m), to turn an EMK WSN into MK,
where n is the size of the input EMK WSN, and
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|T| is the number of targets. A lower bound on the
size of an EMK WSN was calculated as a function
of k, m, and some network characteristics (i.e. Aol
and communication and sensing ranges). It turned
out that an expected m-connected WSN is also

. . Rs\?
expected k-covering with k = [2m (R—S) J and

this relation holds in asymptotic conditions in
which the network becomes m-connected, and
hence k-covering. The empirical studies
confirmed the theoretical results as well.
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