H.5. Image Processing and Computer Vision
Farima Fakouri; Mohsen Nikpour; Abbas Soleymani Amiri
Abstract
Due to the increased mortality caused by brain tumors, accurate and fast diagnosis of brain tumors is necessary to implement the treatment of this disease. In this research, brain tumor classification performed using a network based on ResNet architecture in MRI images. MRI images that available in the ...
Read More
Due to the increased mortality caused by brain tumors, accurate and fast diagnosis of brain tumors is necessary to implement the treatment of this disease. In this research, brain tumor classification performed using a network based on ResNet architecture in MRI images. MRI images that available in the cancer image archive database included 159 patients. First, two filters called median and Gaussian filters were used to improve the quality of the images. An edge detection operator is also used to identify the edges of the image. Second, the proposed network was first trained with the original images of the database, then with Gaussian filtered and Median filtered images. Finally, accuracy, specificity and sensitivity criteria have been used to evaluate the results. Proposed method in this study was lead to 87.21%, 90.35% and 93.86% accuracy for original, Gaussian filtered and Median filtered images. Also, the sensitivity and specificity was calculated 82.3% and 84.3% for the original images, respectively. Sensitivity for Gaussian and Median filtered images was calculated 90.8% and 91.57%, respectively and specificity was calculated 93.01% and 93.36%, respectively. As a conclusion, image processing approaches in preprocessing stage should be investigated to improve the performance of deep learning networks.
Seyedeh R. Mahmudi Nezhad Dezfouli; Y. Kyani; Seyed A. Mahmoudinejad Dezfouli
Abstract
Due to the small size, low contrast, variable position, shape, and texture of multiple sclerosis lesions, one of the challenges of medical image processing is the automatic diagnosis and segmentation of multiple sclerosis lesions in Magnetic resonance images. Early diagnosis of these lesions in the first ...
Read More
Due to the small size, low contrast, variable position, shape, and texture of multiple sclerosis lesions, one of the challenges of medical image processing is the automatic diagnosis and segmentation of multiple sclerosis lesions in Magnetic resonance images. Early diagnosis of these lesions in the first stages of the disease can effectively diagnose and evaluate treatment. Also, automated segmentation is a powerful tool to assist professionals in improving the accuracy of disease diagnosis. This study uses modified adaptive multi-level conditional random fields and the artificial neural network to segment and diagnose multiple sclerosis lesions. Instead of assuming model coefficients as constant, they are considered variables in multi-level statistical models. This study aimed to evaluate the probability of lesions based on the severity, texture, and adjacent areas. The proposed method is applied to 130 MR images of multiple sclerosis patients in two test stages and resulted in 98% precision. Also, the proposed method has reduced the error detection rate by correcting the lesion boundaries using the average intensity of neighborhoods, rotation invariant, and texture for very small voxels with a size of 3-5 voxels, and it has shown very few false-positive lesions. The proposed model resulted in a high sensitivity of 91% with a false positive average of 0.5.