[1] A. Alijamaat, A. NikravanShalmani, P. Bayat, "Multiple sclerosis lesion segmentation from brain MRI using U-Net based on wavelet pooling," International journal of computer assisted radiology and surgery.; vol. 16, no. 9, pp. 1459-67, Sep 2021.
[2] A. Alijamaat, A. NikravanShalmani, P. Bayat, "Multiple sclerosis identification in brain MRI images using wavelet convolutional neural networks," International journal of imaging systems and technology, vol. 31, no. 2, pp. 778-85, Jun 2021.
[3] A. Alijamaat, A. NikravanShalmani, P. Bayat, "Diagnosis of Multiple Sclerosis Disease in Brain MRI Images using Convolutional Neural Networks based on Wavelet Pooling," Journal of AI and Data Mining, vol. 9, no. 2, pp. 161-168, Apr 2021.
[4] M. Cabezas, A. Oliver, E. Roura, J. Freixenet, JC, Vilanova, L. Ramió-Torrentà, À. Rovira, X. Lladó, "Automatic multiple sclerosis lesion detection in brain MRI by FLAIR thresholding" Computer methods and programs in biomedicine, vol. 115, no. 3, pp. 147-61, Jul 2014.
[5] C.A. Cocosco, V. Kollokian, R.K.-S. Kwan, and A.C. Evans: "BrainWeb: Online Interface to a 3D MRI Simulated Brain Database" NeuroImage, vol. 5, no. 4, part 2/4, S425, May 1997.
[6] A. Cerasa, E. Bilotta, A. Augimeri, A. Cherubini, P. Pantano, G. Zito, P. Lanza, P. Valentino, M. C. Gioia, and A. Quattrone, "A cellular neural network methodology for the automated segmentation of multiple sclerosis lesions,” Journal of neuroscience methods, vol. 203, no. 1, pp. 193-199, Jan 2012.
[7] A. Chaudhuri, "Multiple sclerosis is primarily a neurodegenerative disease." Journal of Neural Transmission, vol. 120, no. 10, pp. 1463-1466, Oct 2013.
[8] S. Datta, B. R. Sajja, R. He,R. K. Gupta, J. S. Wolinsky, and P. A. Narayana, "Segmentation of gadolinium‐enhanced lesions on MRI in multiple sclerosis," Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 25, no. 5, pp. 932-937, May 2007.
[9] K. B. Dev, P. S. Jogi, S. Niyas, S. Vinayagamani, C. Kesavadas, and J. Rajan, "Automatic detection and localization of Focal Cortical Dysplasia lesions in MRI using fully convolutional neural network," Biomedical Signal Processing and Control, vol. 52, pp. 218-225, Jul 2019.
[10] P. H. B. Diniz, , T. L. A. Valente, J. O. B. Diniz, A. C. Silva, M. Gattass, N. Ventura, B. C. Muniz, and E. L. Gasparetto, "Detection of white matter lesion regions in MRI using SLIC0 and convolutional neural network," Computer methods and programs in biomedicine, vol. 167, pp. 49-63, Dec 2018.
[11] D.L. Collins, A.P. Zijdenbos, V. Kollokian, J.G. Sled, N.J. Kabani, C.J. Holmes, and A.C. Evans: "Design and Construction of a Realistic Digital Brain Phantom", IEEE Transactions on Medical Imaging, Vol. 17, no. 3, pp.463-468, June 1998.
[12] P. G. Freire, and R. J. Ferrari, "Multiple sclerosis lesion enhancement and white matter region estimation using hyper-intensities in FLAIR images," Biomedical Signal Processing and Control, vol. 49, pp. 338-348, Mar 2019.
[13] D. García-Lorenzo, S. Francis, S. Narayanan, D. L. Arnold, and D. L. Collins, "Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging," Medical image analysis, vol. 17, no. 1, pp. 1-18, Jan 2013.
[14] C. Gros, B. De Leener, A. Badji, J. Maranzano, D. Eden, S. M. Dupont, J. Talbott, R. Zhuoquiong, Y. Liu, and T. Granberg. "Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks," Neuro-image, vol. 184, pp. 901-915, Jan 2019.
[15] S. Jain, D. M. Sima, A. Ribbens, M. Cambron, A. Maertens, W. Van Hecke, J. De Mey, F. Barkhof, M. D. Steenwijk, and M. Daams, "Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images," Neuro-Image: Clinical, vol. 8, pp. 367-375, Jan 2015.
[16] Z. Karimaghaloo, D. L. Arnold, and T. Arbel. "Adaptive multi-level conditional random fields for detection and segmentation of small enhanced pathology in medical images," Medical image analysis, vol. 27, pp. 17-30, Jan 2016.
[17] N. K. Kasabov, "NeuCube: A spiking neural network architecture for mapping, learning and understanding of Spatio-temporal brain data," Neural Networks, vol. 52, pp. 62-76, Apr 2014.
[18] P. A. Narayana, Coronado, I., S. J. Sujit, J. S. Wolinsky, F. D. Lublin, and R. E. Gabr, Deep learning for predicting enhancing lesions in multiple sclerosis from non-contrast MRI. Radiology, vol. 294, no. 2, pp. 398-404, Feb 2020.
[19] R.K.-S. Kwan, A.C. Evans, and G.B. Pike, "MRI simulation-based evaluation of image-processing and classification methods," IEEE Transactions on Medical Imaging, Vol. 18, no. 11, pp. 1085-97, Nov 1999.
[20] R.K.-S. Kwan, A.C. Evans, and G.B. Pike, "An Extensible MRI Simulator for Post-Processing Evaluation", Visualization in Biomedical Computing (VBC'96). Lecture Notes in Computer Science, Springer-Verlag, vol. 1131., pp. 135-140, Sep 1996.
[21] M. Salem, S. Valverde, M. Cabezas, D. Pareto, A. Oliver, J. Salvi, and X. Lladó, "A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis," NeuroImage: Clinical, vol. 25, pp. 102149, Jan 2020.
[22] N. P.-L Shiee, A. Bazin, D. S. Ozturk, P. Reich, A. Calabresi and D. L. Pham, "A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions," Neuro-Image, vol. 49, no. 2, pp. 1524-1535, Jan 2010.
[23] A. Shoeibi, , M. Khodatars, M. Jafari, P. Moridian, M. Rezaei, R. Alizadehsani, and U. R. Acharya, "Applications of Deep Learning Techniques for Automated Multiple Sclerosis Detection using Magnetic Resonance Imaging: A Review," arXiv preprint arXiv, pp. 2105.04881, Sep 2021.
[24] R. Wang, C. Li, J. Wang, X. Wei, Y. Li, C. Hui, Y. Zhu, and S. Zhang, "Automatic segmentation of white matter lesions on magnetic resonance images of the brain by using an outlier detection strategy," Magnetic resonance imaging, vol. 32, no. 10, pp. 1321-1329, Dec 2014.
[25] Y. Wang, Y. Zhou, H. Wang, J. Cui, B. A. Nguchu, X. Zhang, B. Qiu, X. Wang, and M. Zhu, "Voxel-based automated detection of focal cortical dysplasia lesions using diffusion tensor imaging and T2-weighted MRI data," Epilepsy & Behavior, vol. 84, pp. 127-134, Jul 2018.