M. Shokohi nia; A. Dideban; F. Yaghmaee
Abstract
Despite success of ontology in knowledge representation, its reasoning is still challenging. The most important challenge in reasoning of ontology-based methods is improving realization in the reasoning process. The time complexity of the realization problem-solving process is equal to that of NEXP Time. ...
Read More
Despite success of ontology in knowledge representation, its reasoning is still challenging. The most important challenge in reasoning of ontology-based methods is improving realization in the reasoning process. The time complexity of the realization problem-solving process is equal to that of NEXP Time. This can be done by solving the subsumption and satisfiability problems. On the other hand, uncertainty and ambiguity in these characteristics are unavoidable. Considering these requirements, use of the Fuzzy theory is necessary. This study proposed a method for overcoming this problem, which offers a new solution with a suitable time position. The purpose of this study is to model and improve reasoning and realization in an ontology using Fuzzy-Colored Petri Nets (FCPNs).To this end, an algorithm is presented for improve the realization problem. Then, unified modelling language (UML) class diagram is used for standard description and representing efficiency characteristics; RDFS representation is converted to UML diagram. Then fuzzy concepts in Fuzzy-colored Petri nets are further introduced. In the next step, an algorithm is presented to convert ontology description based on UML class diagram to an executive model based on FCPNs. Using this approach, a simple method is developed to from an executive model and reasoning based on FCPNs which can be employed to obtain the results of interest by applying different queries. Finally, the efficiency of the proposed method is evaluated with the results indicating the improve the performance of the proposed method from different aspects.