
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 9, No. 4, 2021, 555-570.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

 Research paper

An Executive Model to Improve Reasoning and Realization in Ontology

using Fuzzy-Colored Petri Nets

Mojtaba Shokohinia, Abbas Dideban
*

and Farzin Yaghmaee

Department of Electrical and Computer Engineering, Semnan University, Semnan, Iran,

Article Info Abstract

Article History:
Received 12 April 2021

Revised 11 June 2021
Accepted 01 November 2021

DOI:10.22044/JADM.2021.10706.2206

 Despite the success of ontology in knowledge representation, its

reasoning is still challenging. The main challenge in the reasoning of

the ontology-based methods is to improve the reasoning process

realization. The time complexity of the realization problem-solving

process is equal to that of NEXP Time. This can be achieved by

solving the subsumption and satisfiability problems. In addition,

uncertainty and ambiguity are inevitable in these characteristics.

Considering these requirements, using fuzzy theory is necessary. A

method is proposed in this work in order to overcome this problem,

which provides a new solution with a suitable time position. This

work aims to model and improve the reasoning and realization in an

ontology using Fuzzy-Colored Petri Nets (FCPNs). To this end, an

algorithm for improving the realization problem is presented. Then,

the Unified Modeling Language (UML) class diagram is used for

standard description and representation of the efficiency

characteristics. The Resource Description Framework Schema

(RDFS) representation is converted to the UML diagram. Then, the

fuzzy concepts are introduced in FCPNs. Then, an algorithm for

converting the ontology description based on the UML class diagram

into an executive model based on FCPNs is presented. Using this

approach, a simple method is developed in order to obtain the desired

results from an executive model and reasoning based on FCPNs

through various queries. Finally, the efficiency of the proposed

method is evaluated. The results obtained show that the performance

of the proposed method is improved from various aspects.

Keywords:
Reasoning, Ontologies, Unified

Modelling Language (UML),

Fuzzy-Colored Petri Nets

(FCPNs).

*Corresponding author
:adideban@semnan.ac.ir (A. Dideban).

1. Introduction

Recently, many real-world and experimental

applications have been developed that focus on

the data, that originates from the challenges posed

by the data nature. One of these challenges is the

efficient and accurate processing of the real-world

data, or data analysis, in order to infer the data and

extract its inherent logic and laws. When the data

is semantic and inference should also be semantic

and correspond to the data, a challenge is

required. Ontology is one of the concepts that can

significantly influence this area and solve most of

the related problems. Therefore, it is used as an

efficient tool in this context [1]. Petri net is a

graphical and mathematical tool used in various

systems such as discrete event systems, intelligent

systems, and communication protocols. Ontology

and modeling can be combined in order to obtain

a favorable result for reasoning, which is of great

importance. Fuzzy-colored Petri nets (FCPNs)

have attracted attention since their properties and

mathematical basis make them suitable for

modeling ontology [2]. Yim et al. [3] have

proposed a method that uses Petri nets to evaluate

the ontology of Location-Based Services (LBS).

In this method, a model of the ontology based on

Petri nets was first developed and then analyzed

Dideban et al./ Journal of AI and Data Mining, Vol. 9, No. 4, 2021

556

by running the Petri net. Zhu et al. [4] have

proposed an approach in which a platform has

been developed to evaluate the efficiency of the

software systems using UML and CPNs. For this

purpose, the case diagrams and UML were used to

obtain the efficiency data of a software system.

Then, these models were transformed into

hierarchical CPNs that allow evaluating the

efficiency of the software systems. In [5], a

workflow scheduling method based on fuzzy-

colored Petri nets has been proposed. Compared

to the other methods, which are simpler and more

informal, the ontology-based methods have more

capabilities and advantages, in terms of simplicity

and integration. However, the development of

ontology models based on Ontology Web

Language Description Logics (OWL-DL) shows

that this technique is insufficient when it comes to

define and understanding complicated

descriptions and relationships. This problem

originates from the fact that the existing builders

of OWL-DL are selected such that the reasoning

procedures support decision-making, and any

other procedure in OWL-DL is not reasonable and

determinable [6]. Recently, some studies have

been conducted in the Semantic Web community

in order to extend the capabilities of OWL-DL.

They have led to logical languages such as the

Semantic Web Rule Language (SWRL), which

has been used in [7]. A new method for extending

queries has been presented in [8]. This method,

which is a combination of the relevant feed-back

and latent semantic analysis, finds the terms

relative to the topics of the user's original query

based on the relevant documents selected by the

user in the relevant feed-back step. However, the

main problem with OWL-DL is reasoning, which

requires a large amount of computation.

Combining and integrating laws make reasoning

indeterminable. Over and above all, ontology-

based reasoning in OWL-DL suffers from other

problems. The natural solution for obtaining

complex data using ontological reasoning is to

solve the realization problem. The realization

problem is about finding the most associated class

of an object. Unfortunately, the realization

problem is a problem with NEXP Time

complexity. Online execution of ontology-based

reasoning has fundamental problems in terms of

scalability and execution time, especially when

the ontology includes a large number of

individuals [9]. With this in mind, in this paper,

we present a modeling method and propose an

algorithm in order to improve the realization

problem with FCPNs. In general, the advantages

of this innovation can be summarized as follows:

1. Decomposing the realization problem into some

sub-categories and solving these sub-categories in

a reasonable time and with a proper proficiency.

2. The logical division of the problem into some

sub-categories provides computational simplicity

and logical support for the realization

requirements.

3. This work aims to find a solution to improve

reasoning in ontology based on FCPNs. Using

fuzzy logic has improved reasoning.

4. The fuzzy concepts in colored Petri nets are

introduced. A clearer and simpler explanation

than fuzzy logic is given for semantic reasoning

with Petri nets. The rest of the paper is organized

as what fallows.

First, a description of the ontology is given, and

all aspects of the ontology are described using the

UML. Also an easy-to-develop execution model is

presented, which primarily aims to develop an

execution model for ontology reasoning based on

CPNs. Then, an algorithm is presented in order to

convert the ontology description based on the

UML class diagram into an executive model

based on CPNs. UML is an extremely important

tool that can be used to describe ontology. In

Section 2, the basic concepts are introduced. In

Section 3, the proposed method is presented,

which is done in different steps. First, the

ontology is represented using RFDS, and then

described using UML class diagram. Moreover,

the ontology description based on the UML class

diagram is introduced into the CPN-based model

and a standard description using UML is

presented. Finally, the fuzzy concepts in FCPNs

are introduced. Fuzzy Petri nets are a type of Petri

nets in which the principles of fuzzy logic are

observed. Fuzzy Petri nets can model and

represent the fuzzy systems and the systems based

on fuzzy data. With fuzzy Petri nets, we can

achieve the best of both worlds, in the sense that

we can benefit from the advantages of Petri nets

and fuzzy logic at the same time. Fuzzification,

inference, and defuzzification are applied to the

fuzzy Petri net according to the defined functions.

In Section 4, the results obtained are implemented

and evaluated by developing an ontology about

automobiles and applying queries. By running the

ontology model, the ontology structure can be

evaluated from different aspects. The topic that

has attracted attention in this work is reasoning in

ontology queries, where the executive reasoning

model based on CPNs can dynamically receive

various queries and present the corresponding

results favorably. In each section, we consider the

reasoning structure. We can also interrupt the

reasoning at each step. In Section 5, the proposed

An Executive Model to Improve Reasoning and Realization in Ontology using Fuzzy-Colored Petri Nets

557

method is compared with the HermiT and

FaCT++ reasoners in terms of speed and accuracy,

and the results are provided. Finally, Section 6

concludes the work.

2. Basic Concepts

2.1. Ontology

Definition 1 [10]: Ontology is defined as a 5-

tuple model: O = { C; H
c
; R; rel; A

o
 }, where O is

the name of the ontology, C is the set of concepts,

and Hc is a taxonomy of concepts with multiple

inheritances. For example, H
c
 (C1;C2) states that

C1 is the sub-concept of C2. R is a set of non-

taxonomic relations described by their domain and

rank constraints. rel(R) describes a hierarchy of

relations. For example, rel(R) = (C1; C2)

indicates that there is a relation R between C1 and

C2. A
o
 is the set of axioms. In [11], a new

ontology-based approach to detect human activity

from GPS data has been presented, aiming to

detect cross-linguistic plagiarism. A framework

called Multilingual Plagiarism Detection (MLPD)

has been presented for cross-linguistic plagiarism

analysis, aiming to detect plagiarism.

2.2. Reasoning and Descriptive Logic

Reasoning is considered to be at the heart of many

domains, such as machine learning, system

analysis, context-aware systems, search engines,

and reasoning engines. In fact, reasoning provides

the concept of understanding and intelligence in

various applications. In particular, the concept of

reasoning and perceptions between the data is

defined in Ontology Web Language (OWL) and

Resource Description Framework (RDF)

standards. In other words, the goal of meaning and

semantic reasoning is to use the semantic data and

ontology in specific applications. Descriptive

Logic (DL) provides a formal and logical

definition for ontologies and the semantic web, in

general, the DL models concepts, roles,

individuals, and their correlations. An axiom (i.e.,

a logical statement related to the roles and/or

concepts) is modeled in the most basic concepts in

DL. DL uses different terminologies for

nomination than first-order logic (FOL) and

OWL. In general, ontology languages presented

for the semantic web are a syntactic variant of DL

[12]. The authors of [13] have proposed the

BUNDLE algorithm to compute the probability of

queries from DISPONTE knowledge bases that

follow the ALC semantics. The explanations are

encoded in a Binary Decision Diagram from

which the query probability of the query is

computed. The experiments performed by

applying BUNDLE to probabilistic knowledge

bases show that it can handle ontologies of

realistic sizes. This reasoner does not support

realization and fuzzy logic [14]. CEL is a reasoner

for small description logic that can be used to

compute the subsumption hierarchy induced by

EL++ ontologies.

The most outstanding feature of CEL is that,

unlike all the other modern DL reasoners, it is

based on a polynomial-time subsumption

algorithm, which allows it to process very large

ontologies in a reasonable time. This reasoner

does not support realization and fuzzy logic. In

[15], DBOWL has been provided, which is a

persistent and scalable OWL reasoner. Ontologies

are stored in a relational database, where a

description logic reasoner is used to precompute

the class and property hierarchies to obtain all the

ontology information (i.e.., properties, domain,

and range), which is also stored in the database.

Moreover, a simple but expressive query language

has been implemented to query and reason about

these ontologies. This reasoner does not support

realization and fuzzy logic. [16] has described

DELOREAN, the first ontology reasoner that

supports fuzzy extensions of the standard

languages OWL and OWL 2. In a strict sense,

DELOREAN is not a reasoner, but a translator

from fuzzy rough ontology languages to classical

ontology languages. This allows using classical

Description Logic inference engines to reason

with the representation resulting from the

transformation. With large ontologies posing a

challenge for reasoners with ever-increasing data

generation rates, large ontologies challenge the

reasoners from both perspectives in terms of

memory and computation power. In such cases ,

the distributed reasoners provide a viable solution.

The authors of [17] have presented a distributed

approach to EL + ontology classification, called

DistEL, was where it was shown that the classifier

can handle large ontologies and the classification

time decreases as the number of nodes increases.

However, this reasoner does not support fuzzy

logic and satisfiability.

DRAGON makes systematic systematically using

a general abstract model to represent each one of

the knowledge sources necessary for automatic

recognition of continuous speech recognition [18].

The model of a probabilistic function of a Markov

process is very flexible, and leads to features that

allow DRAGON to function despite high error

rates of individual knowledge sources. The

repeated use of a simple abstract model produces

a system that is structurally simple, but powerful

in capabilities. The main features of the

DRAGON system are 1) delayed decisions; 2)

Dideban et al./ Journal of AI and Data Mining, Vol. 9, No. 4, 2021

558

generative form of the model;, 3) hierarchical

system;, 4) integrated representation;, and 5)

general theoretical framework. Various sources of

knowledge are organized in a hierarchy of

probabilistic functions of Markov processes. This

reasoner does not support satisfiability,

realization, and fuzzy logic. ELepHant reasoner, a

consequence-based reasoner for the fragment of

DLs, has been proposed in [19]. The

optimizations, implementation details, and

experimental results for classification of several

large biomedical knowledge bases have been

introduced. The consequence-based EL+ reasoner

ELepHant, has also been presented, and the

implementation details have been described and

the experimental results have been presented. This

reasoner does not support fuzzy logic and

satisfiability. The authors of [20] have provided

the main features of the fuzzyDL system (in terms

of syntax and semantics), which is an expressive

reasoner for fuzzy DLs. They also have shown

that fuzzyDL significantly extends the fuzzy SHIF

system by allowing several additional features

[20]. The also showed two use cases, namely

logic-based matchmaking and fuzzy control,

which are not yet supported by any other fuzzy

DL system. This reasoner does not support

realization.

2.3. Fuzzy Theory Architecture

A fuzzy system is a suitable solution for uncertain

environments, where the ambiguity probability is

high. Figure 1 shows a general architecture of the

systems based on the fuzzy theory. The fuzzy

logic and fuzzy system architecture have been

described in [21][22][23][24].

Figure 1. The architecture of the fuzzy theory system

and its main components.

2.4. Colored Petri Nets (CPNs)
CPN is a discrete-event modeling language that

combines the capabilities of Petri nets and a high-

level programming language [25][26], and is used

to build models related to isotropy and the

analysis of its properties [27][28][29].

A formal definition of CPNs is as follows:

Definition 2: A CPN is defined as a 9-tuple (∑, P,

T, A, N, C, G, E, I) [30], where:

∑: is a finite set of nonempty types called sets of

color ;

P is a finite set of places;

T is a finite set of transitions;

A is a set of arcs such that
 ;
N is a node function which is defined from to
 .
C is a color function which is defined from P to ∑.

G is a guard function that is defined from T to an

expression and , 𝑒(())

 𝑒((()))- ;
E is an arc expression function; and

I is an initialization function.

2.5. Unified Modeling Language

Developments in software engineering have led to

the emergence of more methods and tools for

describing and documenting the software systems.

Accordingly, many of the problems in the

realization and maintenance of the software

systems have been solved. UML is an important

and practical by-product of software engineering

with applications in many other areas. UML has

various diagrams, that represents different views

of the software system [31]. An important

advantage of the UML diagrams is their

extensibility, i.e., they can describe any feature

using the annotation function of UML. In other

words, if the diagram in question cannot describe

a feature, it will describe that feature using the

annotation concept [32].

3. Problem Definition and Solution
Ontology reasoning has clear limitations in its

implementation. Therefore, this work aims to find

a solution to improve it based on CPNs. The main

limitation of ontology reasoning is its inability to

solve the realization problem. So far, various

solutions have been used to overcome this

shortcoming. The approach used in this work is to

separate the realization problem logically. In other

words, instead of choosing a particular

subcategory of ontology, this work finds a

solution to the realization problem by

decomposing it into some sub-categories, and then

solving these sub-categories. In this way,

computational complexity and inefficiency are

avoided by minimizing the problem. In general,

the realization problem can be divided into the

following subcategories:

* Satisfiability of concept: Diagnosis of the

concept considering the one to which the

An Executive Model to Improve Reasoning and Realization in Ontology using Fuzzy-Colored Petri Nets

559

individual belongs, based on the description of the

individual.

* Subsumption of concept: Determining whether

the concept d follows from c, i.e. c is more

general than d.

In contrast, the realization problem can be defined

as "finding a concept considering to which

individual has the most attachment." In order to

solve either of the above problems, it is necessary

to separate them and integrate their results. All the

following formal definitions were taken from

[33]. As currently the data and especially its

hidden semantics are important, different

descriptions have been offered for ontology,

whose importance is specified from all

viewpoints. Considering the purpose of this paper,

a framework that can be used to obtain a

representation based on CPNs from ontology is

presented. Then the semantic reasoning, i.e. the

realization problem, is analyzed.

Definition 3 (realization): Given an assertional

box (Abox) of A, concept C, individual a, and a

set of concepts, find C as the most specific

concept from the set such that A ⊨ C(a).

An individual is called a and a collection of

concepts are given. Find C (most specific concept)

from the collection of concepts such that A ⊨

C(a).

Definition 4 (satisfiability): Given T, concept C is

satisfiable if the model I exists in T, such that is

non-empty.

Definition 5 (subsumption): Let T be a

terminological box (Tbox); then a concept C is

subsumed by a concept D with respect to T if

 for every model Ι of T. In this case, we

write

 or ⊨ .

1. Suppose that A is the collection of concepts in

the realization and a is the individual.

2. The satisfiability problem for collection A is

solved based on a, and the collection of concepts

in collection R is assumed to satisfy a.

3. Subsumption is solved for all possible pairs of

collection R, and MSC(R, a) is obtained.

4. As satisfiability is reducible to subsumption at

the second level, subsumption is used in order to

solve the satisfiability problem.

The main challenge is the efficiency of this

method for collections with a high number of

concepts. In what follows, an algorithm for

reducing and optimizing the primary collection of

concepts is presented. In other words, a solution to

the ontology partitioning problem is derived.

After partitioning the ontology into different sub-

ontologies, solving the realization problem is

performed on one of the sub-ontologies. In

ontology partitioning, ontology O is partitioned

into a collection of modules, which are not

necessarily disjoint such that the union of all

modules is equal to O:

Definition 6 (ontology partitioning function):
 𝑖 𝑖 ()

 ** + * + +
This ontology procedure is converted into a

multipartite graph so that the query result can

exist in one or some parts of the graph. If the

query result exists in one part of the graph, only

that part of the graph is examined since it is

independent from the other parts. Other parts of

the ontology are not examined. The proof of the

presented idea is as follows:

Suppose that, after partitioning the graph, the

related part of ABox A (with Tbox T) to query q is

p. Then, we solve the satisfiability problem in p:

∃ 𝐼 𝑖𝑠 ⊥ (1)

Hence, we find all C in p that are satisfiable, and

put them all in R:

 * + 𝑖𝑠 𝑠 𝑖𝑠𝑓𝑖 𝑒
𝑐 𝑐𝑒 𝑖

(2)

Then, for all pairs of satisfiable concepts in R, we

solve the subsumption problem as follows:

 (𝑖1 𝑖2) 𝐼 (3)

If i1 is subsumable under i2, then i1 is removed

from R. We apply relation (3) for every pair of i1

and i2 since there is no candidate i1 and i2, and

call the new R as . Then we apply all concepts

in to individual a such that:

 𝑖𝑓
⊭ () 𝑕𝑒 𝑒𝑚 𝑣𝑒 𝑓 𝑚

(4)

Thus has a candidate msc(A,a) such that most

real specific concept A and a is in .

On the other hand, according to theorem 1 and

[33], we can solve the satisfiablity problem

(relation (1)) only with the subsumption problem.

Thus, we find the candidate solutions for the

realization problem in a reasonable time, and use

only the subsumption problem. The general

problem-solving procedure is the same as shown

in Algorithm 1. The pseudo-code of the algorithm

is shown in Algorithm 2. In line 3 of Algorithm 2,

we used the algorithm to partition the ontology

based on the approach of [34] and applied the

pseudo-code format in Algorithm 1. After

partitioning the ontology into parts and selecting

one or more relevant parts in the ontology

partitioning phase, it is important to combine and

merge the query answers from the relevant parts

to obtain the final answer. In other words, we are

required to prove that the final answer can be

Dideban et al./ Journal of AI and Data Mining, Vol. 9, No. 4, 2021

560

generated from instance checking by the

independent Abox. Before defining the respective

theorem, we should explain some relevant notions

[35].

Algorithm 1 : Realization Solving
1: Procedure Ontology- Partitioning(A box A, Query q,

Individual a)

2: Make Ontology Partitioning using Overlapped-

Ontology- Partitioning(A)

3: Select dependent part p according to q from

partitions

4: Solve Realization according to p

5: return solve – Realization (p,q,a)

6: end procedure

7: procedure solve – Realization(A box p, Query q,

Individual a)

8: Solve Satisfiability(p,q,a) and store result in R

9: while no subsumption problem exists do

10: for each pair of items (i1,i2) in R do

11: solve subsumption(i1,i2) problem and store results

in S

12: end for

13: end while

14: return S as a result

15: end procedure

Algorithm 2 : Ontology Partitioning
1: procedure Overlapped- Ontology- Partitioning

(Ontology O)

2: Building the weighted dependency graph WG from an

ontology O

3: Finding the common concepts in WG

4: Partitioning the weighted graph WG

5: Using rank removal algorithm for cluster components

6: Extracting partitioned ontologies as PO set

7: return PO

8: end procedure

Theorem 1: Independent Abox and instance

checking

Two connected Abox and are given such that

 . If are independent then for

each query realization, we have and Tbox T:

 ⊨ if and only if 1 or

 2 .

Proof: (→)

Suppose that and are independent, and

 are domains of and ; then:

 (5)

For any concept C,

 which

 is

extended C in

 .

On the other hand, suppose that 1 ⊭

and 2 ⊭ , which means:

∃I ; I I I ¬ (6)

∃I ; I I I ¬ (7)

where I and I are explanations of and .

Since and

 , we can

create an explanation from A like I, where

𝐼 𝐼 𝐼 In other words, I that

declare as follows:

()

(ii) for any constant a, {

}

)iii) for any concept, C,

(iv) for any role R,

Thus, we can conclude from I ¬ , I ¬ and

(iii):

I╞ ¬ (8)

which means:

(¬) (¬) (¬) (9)

where I is the explanation of A. On the other

hand, we can conclude from (ii), (iii), and (iv)

that:

() ()
 ()

 (10)

As and are consistent, we just proof no

intersection between them.

For Concept C from DL, we have:

 (11)

Also, we have:

(¬) (\) (12)

Then, for C, we have:

 and (¬)

 (13)

Due to

 ,:

 (¬) (14)

This means they have no intersection. Since, we

have explanation I from A:

() ≠ and (¬)T ≠ (15)

then:

I A I ¬ (16)

which is a A Q definition.

Therefore, A Q if ╞ or ╞ that result is

<T,A> Q if <T, > Q or <T, > Q.

()

We assume that <T, > Q or <T, > Q. In

both cases we have:

<T, > Q (17)

 where <T,A > Q.

3.1. Ontology Description using UML Diagram

Table 1 shows the concept of ontology and its

representative elements in the class diagram.

Thus, with the help of the UML class diagram, the

ontology structure can be represented along with

its efficiency characteristics. However, using the

UML class diagram alone, the reasoning

execution property is not achieved. Therefore, an

executive model is required, for which CPNs have

been used in this work. In the following, a model

An Executive Model to Improve Reasoning and Realization in Ontology using Fuzzy-Colored Petri Nets

561

based on CPNs from ontology description based

on class diagrams is explained.

Table 1. Mapping in Ontology Description.
Element of the class diagram Element of ontology

 Class Class

 Association Relationship Object Property

 Sub Class Sub Class

 Generalization Generalization

 Attribute Data Property

3.2. Describing Executive Ontology Reasoning

Model based on CPNs

The description of the ontology structure alone is

not sufficient for query execution. Therefore,

CPNs are used to apply the reasoning executive

properties to the ontology structure. For this

purpose, a mapping from the structure description

based on the UML class diagram to CPNs will be

established. Accordingly, some hypotheses for

mapping the structure description based on the

UML class diagram to the executive model based

on CPNs are made, which include the following:

Hypothesis 1: Each class element in the class

diagram is converted to a place element in the

CPN.

Hypothesis 2: Each relationship element

(association and generalization) in the class

diagram is converted into a transition element

with a sub-network in the CPN.

Hypothesis 3: Each sub-class element in the class

diagram is converted into a place element in the

CPN.

Hypothesis 4: Each class or sub-class properties

is converted into a closet representing tokens of

each place.

Hypothesis 5: there is a place element in each

sub-net that refers to each association to represent

the Object Property information so that the

association information is complete for the

ontology structure. Therefore, this element has a

color set proportional to the tags of stereotype,

where each record that contains the name of the

domain sample and a list of the range samples.

Hypothesis 6: All samples are in the last sub-

classes.

Considering the given rules for mapping the class-

based description to an executive model based on

CPNs, the mapping samples are shown in Figure

2.

3.3. Converting Ontology based on UML Class

Diagram to Executive Model based on CPNs
This section presents an algorithm that can be

used to obtain an executive model based on CPNs

from an ontology description based on UML.

First, algorithm 1 is presented to solve the

realization problem optimally for reasoning in an

ontology, and then algorithm 3 is applied to model

the problem to form CPNs.

Algorithm 3: Constituting a CPN from the UML class diagram

Input : UML class diagram

Output : CPN model

1. CList = CList[(ID, As)] //UML Class Diagram Classes with id and attribute list

2. AList = AList[(C1ID, C2ClassIDList, ObjectPropertyInfoStr, PerformanceStr)] //UML Class Diagram

Associations

3. GList = GList[(C1ID, C2ClassIDList, PerformanceStr)] //UML Class Diagram Generalizations

4. SCList = SCList[(ID, As)] //UML Class Diagram SubClasses with id and attribute list

5. PList = PList[(ID,Type)]:=new list[] //CPN Place List

6. T = (ID, InList, OutList,Time)] //CPN Transition

7. SubCPN = (ID,PList,T) //CPN Sub Model

8. STList = STList[(ID, InList, OutList,SubCPN)] := new List[] //CPN SubTransition List

9. CPNModel = (ID, PList, STList)

10. for each c CList

11. PList.Add(c.ID, c.As)

12. End for each

13. for each a AList

14. SPList := SPList[(ID,Type)] = [PList(a.C1ID), PList(a.C2ID), (‖ObjectProperty‖, a. ObjectPropertyInfo)]

15. T:= (a.ID, [PList(a.C1ID), PList(a.C2ID), (‖ObjectProperty‖)], [PList(a.C1ID), PList(a.C2ID),

(‖ObjectProperty‖)], a.Performance.Demand)

16. SubCPN := (a.ID, SPList, T)

17. STList.Add(a.ID, InList.AddList([a.C1ID, a.C2ID]), OutList.AddList([a.C1ID, a.C2ID]), SubCPN)

18. End for each

19. for each g GList

20. SPList := SPList[(ID,Type)] = [PList(g.C1ID)]^^[PList(g.C2ClassIDList)]

21. T := (g.ID, SPList, SPList, g.Performance.Demand)

22. SubCPN := (g.ID, SPList, T)

23. STList.Add(g.ID, InList.AddList(SPList), OutList.AddList(SPList), SubCPN)

24. End for each

25. CPNModel := (―Main‖, PList, STList)

Stepe 1

Stepe 2

Stepe 3

Stepe 4

Stepe 5

Stepe 6

Dideban et al./ Journal of AI and Data Mining, Vol. 9, No. 4, 2021

562

Figure 2. Mapping the class diagram to the model based on CPN.

In step 1, the input of the algorithm includes the

elements of the class diagram, which includes a

list of classes, a list of relations with respect to

associations, a list of relations with respect to

generalization, and a list of sub-classes. The

elements of the colored Petri net including the list

of places, transitions, subCPNs, and subtransitions

are created in step 2 and form a model of CPN. In

step 3, a place is created for each class in the

CList according to hypothesis 1. In step 4, a

mapping is created from the association in the

UML class diagram to its equivalent in CPN. The

relation of the associations is a relation in which

an object property is present. For example, the

class of the first side of the associations is

automobile, while the class of the second side of

the associations is feature. These two classes are

related by an object property called has_a. Figure

10 shows a class diagram, where this relationship

is obvious. In step 5, we create a mapping from

the generalization in the UML class diagram to its

equivalent in CPN, which are shown in Figure 11.

The final model of CPN with model ID, the list of

places, and the list of transitions with a sub-

network are obtained in step 6.

3.4. Fuzzy Concepts in Colored Petri Nets
In order to obtain more complete and real results

in the presence of uncertainties, the fuzzy theory

should be used. This work applies fuzzification,

inference, and defuzzification to fuzzy-colored

Petri nets. Moreover, the steps involved in

applying the fuzzy system to the colored Petri net

are presented completely for two inputs and one

output, which can be extended to other inputs and

outputs. The first input is denoted as A1, the

second as A2, and the output as A3. A trapezoid is

used to represent the membership functions. The

input membership functions consist of low,

medium, and high membership functions, which

are shown in Figure 3. According to this method,

the weight of each rule, which is its effectiveness

in the inputs and outputs, is calculated. Our rules

are applied to the inputs, and the weight is

calculated for each rule. The range of each rule at

the output is obtained by calculating the weights.

The inputs of the fuzzy system are the tokens

present in places and can be any kind of language

variable, which are in this section the maintenance

An Executive Model to Improve Reasoning and Realization in Ontology using Fuzzy-Colored Petri Nets

563

cost and fuel cost. When a fuzzy-colored Petri net

is asked, the reasoning is performed considering

the question demand. The transition that performs

reasoning retrieves the information from the

tokens available at places considering its

requirement. In order to represent the membership

function, a trapezoidal membership function is

used. Each trapezoid is composed of four points.

Membership function of the first linguistic input

variable A1;

val A1Low_range = (0,0,a1,b1) ;

val A1 Medium_range = (c1, d1, e1, f1) ;

val A1 High _range = (g1, h1, 100, 100)

Membership function of the second input

linguistic variable A2 ;

val A2Low_range = (0,0,a2,b2) ;

val A2 Medium_range = (c2, d2, e2, f2) ;

val A2 High _range = (g2, h2, 100, 100) ;

Index i is used in the figure so that it can be

extended to an arbitrary number of inputs.

Figure 3. Membership function of input values.

 Figure 4. Range of weights after applying the rules.

In this section, considering the rule weights

obtained in the previous section, the new form of

the membership function shape is obtained, which

has a new coordinate. Since the trapezoidal

function is used, our range has four points shown

in Figure 4. In order to obtain the points, the line

equation and the line slope equation are used,

shown in Figure 5.

Figure 5. Determining the weight range.

Line slope equation:

 𝑚 =
𝑦−𝑦0

𝑥−𝑥0
 =

 −0

𝑎 −𝑏

(18)

Line equation:

 -0 =
 −0

𝑎 −𝑏
 (𝑥 − 1)

 (19)

 =
 −0

𝑎 −𝑏
 (𝑥 − 1) (20)

𝑥 = (1 − 1) + 1 (21)

val r1_range = (0.0, 0.0, ((#1(r1_w))*

 1 1
((#3(A3 Low_range)) - (#4(A3 Low _range)))) +

 1
(#4(A3 Low _range)) , (#4(A3 Low _range))) ;

In this step, considering the points obtained in the

previous step, the area under the curve of each

trapezoid is calculated at the output.

Area of the trapezoid

𝑆
 𝑓 𝑕𝑒 𝑠𝑒𝑠 ∗ 𝑕𝑒𝑖𝑔𝑕

2

 ,(𝑐 −) + (𝑑 −) ∗ - ∗ 0 5
(22)

 𝑑

val r1_area = 0.5*(((#4(r1_range)) –

 𝑐
(#1(r1_range))) + ((#3(r1_range)) –

(#2(r1_range)))) * (#1(r1_w)) .

Calculating the area obtained by applying rule a.

After obtaining the area of all rules, the center of

each rule is calculated, and the total mean area of

all rules is obtained using the center law.

center of the area =
∑𝑋𝑖𝐴𝑖

∑𝑋𝑖
 (23)

4. Illustration Example
A case study is conducted for each proposed

method considering the importance of the issue to

evaluate the proposed method. Accordingly, in

order to demonstrate the performance of the

proposed method, a sample ontology in the

context of automobile information is considered,

which includes information of the manufacturers

of the automobile, tire, and ring, as shown in

Figure 6. It also includes information about

automobiles of different classes and information

about facilities, motor type, and devices of the

automobiles. In the further course of the proposed

method, one should achieve a description based

on the UML class diagram of the ontology. Thus,

Dideban et al./ Journal of AI and Data Mining, Vol. 9, No. 4, 2021

564

a complete and standard description is obtained

based on the proposed method. In the following,

an executive model is developed according to the

presented algorithm for developing the executive

reasoning model based on CPNs and using the

given hypotheses.

Figure 6. An excerpt from car manufacturing indicating

(a) classes, (b) data type properties, (c) object properties,

and (d) individuals.

Since the inference process is long, the sub-nets

used in the inference steps are not shown.

First Execution: The purpose of the execution is

to answer the question "Which companies made

which automobiles that cost less than 50?"

Query 1: ‖?Company has ?Automobiles has Cost

Less Than 50.0‖

There is a price concept in neither the ontology

nor its corresponding colored Petri net, and the

fuzzy-colored Petri net is used to obtain the price.

Two parameters, Maintenance Cost Fuzzy Value

(MCFV) and Fuel Cost Fuzzy Value (FCFV), are

used as inputs in order to determine the price. In

the first step, the query entered into the

automobile has a sub-class sub-net to find the

automobiles that cost less than 50. This bus is

fuzzy, so the two parameters of Maintenance Cost

Fuzzy Value (MCFV) and Fuel Cost Fuzzy Value

(FCFV) are considered as the inputs, and the cost

values that are not present in the place data are

returned as the output. After firing a transition, the

automobiles that cost less than 50 are selected,

and the price of each one is given in the token

information, as shown in Figure 7. Finally, two

automobiles that cost less than 50 and are

manufactured by Kia and Peugeot are found, as

shown in Figure 8. By applying the above query,

the following result is found. It refers to Kia,

which manufactured Car1, and Peugeot, which

manufactured Car3. The execution is completed in

8.65 ms.

1 ["Company = Kia","Automobile = Car1"]

1`["Company = Peugot","Automobile = Car3"]

Second Execution: The purpose of the secend

question is to answer the question “which

companies have manufactured which automobiles

whose ring is Bbs?”

Query: 2`"?Company has ?Automobile has_a

?Rim Rim_Producer Rim_Manufacture is Bbs"

Since the reasoning procedure of the second

question is long and more sub-networks are used,

only the last section that answers the query is

shown. The sub-networks used in the reasoning

steps are not shown. In this section, CPN has

formed satisfiability set, i.e. the samples are

found and the Transition called Get Result

transfers the token obtained from executing the

sub-networks located in a place called things to

the decision. Three samples are found for the

second question. The transition called Get Process

gives each sample to the item section one by one.

Subsumption operation is performed for each

sample, separately. After firing the transition

called Get Subsumption for the samples, the sub-

sumption operation is performed. where the first,

second and third responses for the query and its

reasoning result and the time taken to perform

reasoning for the samples are shown in Figure 9.

Reasoning Result:

By applying the above query, the reasoning result

is obtained in which three samples related to

Benz, Kia and Peugeot, which are the

manufactures of Car2, Car1 and Car3, and are

found, respectively; The execution is completed in

19.48 ms.

1`["Company = Benz","Automobile = Car2","Rim

= Rim2"]++

1`["Company = Kia","Automobile = Car1","Rim

= Rim1"]++

1`["Company = Peugot","Automobile =

Car3","Rim = Rim2"]

Accordingly, the obtained reasoning results are

based on the data recorded in ontology, and if the

recorded data of the companies is completely

defined in the ontology, more real results are

obtained and different queries can be applied to

the model that process them dynamically and the

proposed CPN represents the results of the query

after reasoning.

5. Result Analysis

The significance of the current work lies in its

proposal of an optimal method for semantic

reasoners. Moreover, the reasoner is modeled

An Executive Model to Improve Reasoning and Realization in Ontology using Fuzzy-Colored Petri Nets

565

using the colored Petri net, and all the reasoner

steps can be observed and evaluated. Table 4

compares the capabilities and supported elements

of the proposed methods with eight reasoner

engines.

Figure 7. Fuzzy transition that makes the reasoning.

Figure 8. Query and the result related to the first execution.

Five features are important in this comparison.

The first column represents the satisfiability and

whether the reasoner engines can perform it. The

second column represents the reasoner process

during the execution time, and models the

reasoner.

This feature is an important point of this work,

which is performed using the colored Petri net.

The third column compares the fuzzy property of

this work with other reasoner engines. The fourth

column discusses whether the execution can be

stopped at each step of the reasoner process.

Finally, the fifth column considers the optimal

solution of the realization problem and compares

different inference engines. HermiT is a reasoner

for ontologies written using the Web Ontology

Language (OWL). Given an OWL file, HermiT

can determine whether or not the ontology is

consistent, identify the subsumption relationships

between classes, and more.

Dideban et al./ Journal of AI and Data Mining, Vol. 9, No. 4, 2021

566

Figure 9. Query and results of the first, second, and third samples for the secend execution.

Figure 10. Description of the case study ontology using a class diagram together with the associated annotations.

HermiT uses direct semantics and passes all OWL

2 conformance tests for direct semantics reasoners

[36]. FaCT++ is a tableaux-based reasoner for

expressive Description Logics. It covers OWL

and OWL 2 (lacking support for key constraints

and some data types) DL-based ontology

languages. Now it is used as one of the default

reasoners in the Protege 4 OWL editor [37]. The

proposed method is compared with HermiT and

FaCT++ reasoners in terms of speed and accuracy,

and the results are provided in Tables 2 and 3. The

scores in the tables show the accuracy of the

answers given by the reasoner. In other words, a

score of 253 out of 264 means that 253 correct

answers were given out of 264 questions. The

error rate shows the incorrect answers given by

the reasoner. The tables clearly show that the

proposed method outperforms other methods.

The dataset is used in the framework created by

the ontology Reasoner Evaluation Workshop in

2019 [38], which has a standard structure for

evaluating ontology reasoning in order to evaluate

the proposed method.

An Executive Model to Improve Reasoning and Realization in Ontology using Fuzzy-Colored Petri Nets

567

Table 2. Comparison of different methods based on the

Realization parameter.

Time(s) Error Score Reasoner Rank

545.68 s 11 253/264
Proposed

Reasoner
1

1111.3 s 92 172/264 FaCT++ 2

2934.9 s 101 163/264 HermiT 3

3022.5 s 102 162/264 HermiT-OA4 4

Table 3. Comparison of different methods based on the

classification parameter.

Time(s) Error Score Reasoner Rank

1318.18 s 14 292/306
Proposed

Reasoner
1

5808.2 s 69 237/306 HermiT-OA4 2

5416.4 s 70 236/306 HermiT 3

1361.3 s 106 200/306 FaCT++ 4

6. Conclusion

In this paper, a visual method for modeling and

solving the realization problem based on the

subsumption and satisfiability problems in

ontology using fuzzy-colored Petri nets was

proposed. The main issue in solving the

realization problem is its computational

complexity, which has been solved by introducing

the proposed algorithm. For an easier

implementation, an executive reasoning model

was developed in different steps and a mapping

algorithm for simpler transformations was

presented. RDFS was used to better represent the

ontology, and the UML class diagram was used in

order to provide a standard description of the

ontology. Thus, using the ontology information,

an executive reasoning model of the ontology

could be presented using the proposed method.

This method tries to develop an executive

reasoning model that can receive various queries

in a simpler format and offer the optimal result

and evaluate the results. Moreover, this model

could respond to the query that was not previously

defined at any point, where each token was fuzzy

using the colored Petri net.

Table 4. List of reasoners with their supported services.

Realization
Stop the inference

process at each

stage of execution

Fuzzzy
Displays the

reasoning process

at runtime

Satisfiab

ility
Details Institution Reasoner

No No No No

Yes

Probabilistic reasoner based

on Pellet
University
of Ferrara

BUNDLE

[13]

No No No No

Yes

Lisp-based reasoner

Technische

Universität

Dresden
CEL [14]

No No No No Yes
scalable reasoner for OWL

ontologies with very large

Aboxes

University
of Malaga

DBOWL

[15]

Yes No Yes No Yes Fuzzy rough Description

Logic reasoner Not given
DeLorean

[16]

Yes No

No

No

No

Distributed reasoner that runs

on a cluster of machines

Wright
State

University

DistEL

[17]

No No No No No
OWL reasoner that supports

distributed reasoning over a

networked ontologies

University
of Paris 8,

IUT of

Montreuil

DRAGON

[18]

Yes No No No

No

Consequence-based reasoner

that currently supports part of

the OWL 2 EL fragment for

the reasoning tasks

classification, consistency and

realization.

Not given
ElepHant

[19]

No

No Yes No

Yes

Free Java/C++ based reasoner

for fuzzy SHIF with concrete

fuzzy concepts
ISTI–CNR

FuzzyDL

[20]

Yes Yes Yes Yes Yes
Fuzzy-Colorcolored Petri

Netsnets-based reasoner

Semnan

University
F-CPN

Tools

Dideban et al./ Journal of AI and Data Mining, Vol. 9, No. 4, 2021

568

Figure 11. Executive reasoning model based on CPNs from the case study ontology.

An Executive Model to Improve Reasoning and Realization in Ontology using Fuzzy-Colored Petri Nets

569

References

[1] P. Křemen and Z. Kouba, "Ontology-driven

information system design," IEEE Transactions on

Systems, Man, and Cybernetics, Part C (Applications

and Reviews), Vol. 42, pp. 334-344, 2012.

[2] T. Murata, "Petri nets: Properties, analysis and

applications," Proceedings of the IEEE, Vol. 77, pp.

541-580, 1989.

[3] J. Yim, J. Joo, and G. Lee, "Petri net-based

ontology analysis method for indoor location-based

service system," International Journal of Advanced

Science and Technology, Vol. 39, pp. 75-92, 2012.

[4] L. Zhu and W. Wang, "UML diagrams to

hierarchical colored petri nets: an automatic software

performance tool," Procedia Engineering, Vol. 29, pp.

2687-2692, 2012.

[5] Z. Xiao and Z. Ming, "A method of workflow

scheduling based on colored Petri nets," Data and

Knowledge Engineering, Vol. 70, pp. 230-247, 2011.

[6] A. Agostini, C. ,Bettini, and D. Riboni, "Online

ontological reasoning for context-aware internet

services". In 2nd International Workshop on Contexts

and Ontologies: Theory, Practice and Applications,

Collocated with the 17th European Conference on

Artificial Intelligence, ECAI 2006 (Vol. 210).

[7] I. Horrocks, P. F. Patel-Schneider, H. Boley, S.

Tabet, B. Grosof, and M. Dean, "SWRL: A semantic

web rule language combining OWL and RuleML,"

W3C Member submission, Vol. 21, pp. 1-31, 2004.

[8] M. Rahimi and M. Zahedi, "Query expansion based

on relevance feedback and latent semantic analysis,"

Journal of AI and Data Mining, Vol. 2, pp. 79-84,

2014.

[9] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska,

D. Nicklas, A. Ranganathan, et al., "A survey of context

modelling and reasoning techniques," Pervasive and

Mobile Computing, Vol. 6, pp. 161-180, 2010.

[10] A. Maedche and S. Staab, "Ontology learning for

the semantic web," IEEE Intelligent systems, Vol. 16,

pp. 72-79, 2001.

[11] A. Mousavi, A. Sheikh Mohammad Zadeh, M.

Akbari, and A. Hunter, "A New Ontology-Based

Approach for Human Activity Recognition from GPS

Data," Journal of AI and Data Mining, Vol. 5, pp. 197-

210, 2017.

[12] I. Horrocks, and S. Ulrike ,"Ontology reasoning in

the SHOQ (D) description logic." IJCAI. Vol. 1. No. 3.

2001.

 [13] F. Riguzzi, E. Bellodi, E. Lamma, and R. Zese,

"BUNDLE: A reasoner for probabilistic ontologies," in

International Conference on Web Reasoning and Rule

Systems, pp. 183-197, 2013.

 [14] F. Baader, C. Lutz, and B. Suntisrivaraporn,

"CEL—a polynomial-time reasoner for life science

ontologies," in International Joint Conference on

Automated Reasoning, pp. 287-291, 2006.

 [15] M. del Mar Roldan-Garcia, and J. F. Aldana-

Montes, "DBOWL: Towards a Scalable and Persistent

OWL reasoner," in Third International Conference on

Internet and Web Applications and Services, 2008, pp.

174-179, 2008.

 [16] F. Bobillo, M. Delgado, and J. Gómez-Romero,

"DeLorean: A reasoner for fuzzy OWL 2". Expert

Systems with Applications, 39(1), 258-272, (2012).

 [17] R. Mutharaju, P. Hitzler, P. Mateti, and F. Lécué,

"Distributed and scalable OWL EL reasoning". In

European Semantic Web Conference (pp. 88-103).

Springer, 2015.

 [18] J. Baker, "The DRAGON system--An overview,"

IEEE Transactions on Acoustics, speech, and signal

Processing, Vol. 23, pp. 24-29, 1975.

 [19] B. Sertkaya, "The ELepHant Reasoner System

Description", OWL Reasoner Evaluation (ORE)

workshop 2013.

 [20] F. Bobillo and U. Straccia, "fuzzyDL: An

expressive fuzzy description logic reasoner," in

International Conference on Fuzzy Systems (IEEE

World Congress on Computational Intelligence), pp.

923-930, 2008.

 [21] E. Inelmen, and A. Ibrahim, "A new approach to

teaching fuzzy logic system design". In International

Fuzzy Systems Association World Congress (pp. 79-

86). Springer, Berlin, Heidelberg , 2003.

 [22] K. Tanaka, "An introduction to fuzzy logic for

practical applications", Springer, New York ,1997.

 [23] G. Klir and B. Yuan, "Fuzzy sets and fuzzy logic"

vol. 4: Prentice Hall New Jersey, 1995.

 [24] H.-J. Zimmermann, "Fuzzy set theory—and its

applications" Springer Science and Business Media,

2011.

 [25] C. Petri, "Kommunikation mit Automaten", Bonn:

Institut fur Instrumentelle Mathematik, Schriften des

IIM Nr. 3, also, English translation," Communication

with Automata," Tech. Rep. RADC-TR-65-377, 1966.

 [26] W. Reisig and P. Nets, "An Introduction EATCS"

Monographs on Theoretical Computer Science, Vol. 4,

1985.

 [27] K. Jensen, "Book Review: Coloured Petri Nets:

Basic Concepts, Analysis Methods and Practical Use"

(volume 1) by Kurt Jensen: SIGOPS Oper. Syst. Rev.,

Vol. 28, pp. 1-2, 1994.

 [28] K. Jensen, "Coloured Petri nets: basic concepts,

analysis methods and practical" Vol. 1: Springer

Science and Business Media, 2013.

 [29] J. Kurt, "Coloured Petri nets: Basic concepts,

analysis methods and practical use," EATCS

Monographs on Theoretical Computer Science. 2nd

edition, Berlin: Springer-Verlag, 1997.

Dideban et al./ Journal of AI and Data Mining, Vol. 9, No. 4, 2021

570

 [30] K. Jensen and L. M. Kristensen, "Coloured Petri

nets: modelling and validation of concurrent systems"

Springer Science and Business Media, 2009.

 [31] G. Booch, "The unified modeling language user

guide" Pearson Education India, 2005.

 [32] F. Aquilani, S. Balsamo, and P. Inverardi,

"Performance analysis at the software architectural

design level," Performance Evaluation, Vol. 45, pp.

147-178, 2001.

 [33] F. Baader, D. Calvanese, D. McGuinness, P.

Patel-Schneider, and D. Nardi,"The description logic

handbook: Theory, implementation and applications"

Cambridge University Press, 2003.

 [34] K. Etminani, A. R. Delui, and M. Naghibzadeh,

"Overlapped ontology partitioning based on semantic

similarity measures," in 5th International Symposium

on Telecommunications, pp. 1013-1018. 2010.

 [35] P. Pothipruk and G. Governatori, "A formal

ontology reasoning with individual optimization: a

realization of the semantic web," in International

Conference on Web Information Systems Engineering,

, pp. 119-132, 2005.

[36] B. Glimm, I. Horrocks, B. Motik, and G. Stoilos,

“HermiT: reasoning with large ontologies, Computing

Laboratory”, Oxford University, (2009).

[37] D. Tsarkov, I. Horrocks, “FaCT++ description

logic reasoner: System description, in: International

Joint Conference on Automated Reasoning”, pp. 292-

297. (Springer, 2006).

[38] N. Pour, A. Algergawy, R. Amini, D. Faria, I.

Fundulaki, I. Harrow, ... and L. Zhou, "Results of the

ontology alignment evaluation initiative". In

Proceedings of the 15th International Workshop on

Ontology Matching , 2019.

 .0011سال ،چهارم شماره دوره نهم، ،کاویمجله هوش مصنوعی و داده و همکاران دیده بان

 هایشبکه از استفاده با آنتولوژی در فهم و ادراک مساله حل و استنتاج بهبود برای اجرایی مدل ارائه

 (FCPN)فازی رنگی پتری

 فرزین یغمایی و *عباس دیدبان، مجتبی شکوهی نیا

 کامپیوتر، دانشگاه سمنان، سمنان، ایران. دانشکده مهندسی برق و

 10/00/1110پذیرش ؛ 00/10/1110بازنگری ؛ 01/10/1110ارسال

 چکیده:

 اما دانش، ارائه در آنتولوژی موفقیت وجود با. است شده ارائه مربوطه دانش میان از نتایج استخراج و استنتاج دانش، ارائه برای زیادی هایروش امروزه،

 مساله حل بهبود دارد، وجود آنتولوژی بر مبتنی هایروش در استنتاج در که چالشی ترین مهم. است روبرو هاییچالش با روش این در آن استنتاج نحوه

 چارچوبی مستلزم و بوده ناپذیر انکار واقعیت یک هامشخصه این در قطعیت عدم وجود طرفی، از. است استنتاج فرآیند در (Realization) فهم و ادراک

 در فهم و ادراک مساله حل و استنتاج بهبود و مدلسازی هدف مقاله این در. کند بیان هاداده سطح در را قطعیت عدم هایمشخصه بتواند که باشد می

 داده ارائه فهم و ادراک مساله بهینه حل جهت الگوریتمی ابتدا هدف، این به رسیدن برای. باشدمی فازی رنگی پتری هایشبکه از استفاده با آنتولوژی

 توصیف آن، از استفاده با که شده ارائه الگوریتمی بعد مرحله در. است شده ارائه و معرفی رنگی پتری هایشبکه در فازی مفاهیم سپس. است شده

 برای روش یک کار، راه این توسط. شودمی تبدیل فازی رنگی پتری هایشبکه بر مبتنی اجرایی مدل یک به UML کلاس نمودار بر مبتنی آنتولوژی

 نتایج به مختلف جوهای و پرس اعمال با توانمی که شودمی ایجاد آنتولوژی از فازی رنگی پتری هایشبکه بر مبتنی استنتاج و اجرایی مدل تشکیل

 ارائه روش بهینه عملکرد دهنده نشان نتایج که است گرفته قرار ارزیابی مورد عملکرد نظر از شده ارائه روش کارایی نیز انتها در. یافت دست موردنظر

 .باشدمی مختلف های جنبه از کارایی ارزیابی و شده

 .های پتری رنگی فازی، شبکهیکپارچه سازیمدل زباناستنتاج، آنتولوژی، :کلمات کلیدی

