H.5. Image Processing and Computer Vision
A. Asilian Bidgoli; H. Ebrahimpour-Komle; M. Askari; Seyed J. Mousavirad
Abstract
This paper parallelizes the spatial pyramid match kernel (SPK) implementation. SPK is one of the most usable kernel methods, along with support vector machine classifier, with high accuracy in object recognition. MATLAB parallel computing toolbox has been used to parallelize SPK. In this implementation, ...
Read More
This paper parallelizes the spatial pyramid match kernel (SPK) implementation. SPK is one of the most usable kernel methods, along with support vector machine classifier, with high accuracy in object recognition. MATLAB parallel computing toolbox has been used to parallelize SPK. In this implementation, MATLAB Message Passing Interface (MPI) functions and features included in the toolbox help us obtain good performance by two schemes of task-parallelization and dataparallelization models. Parallel SPK algorithm ran over a cluster of computers and achieved less run time. A speedup value equal to 13 is obtained for a configuration with up to 5 Quad processors.
H.3.2.2. Computer vision
M. Askari; M. Asadi; A. Asilian Bidgoli; H. Ebrahimpour
Abstract
For many years, researchers have studied high accuracy methods for recognizing the handwriting and achieved many significant improvements. However, an issue that has rarely been studied is the speed of these methods. Considering the computer hardware limitations, it is necessary for these methods to ...
Read More
For many years, researchers have studied high accuracy methods for recognizing the handwriting and achieved many significant improvements. However, an issue that has rarely been studied is the speed of these methods. Considering the computer hardware limitations, it is necessary for these methods to run in high speed. One of the methods to increase the processing speed is to use the computer parallel processing power. This paper introduces one of the best feature extraction methods for the handwritten recognition, called DPP (Derivative Projection Profile), which is employed for isolated Persian handwritten recognition. In addition to achieving good results, this (computationally) light feature can easily be processed. Moreover, Hamming Neural Network is used to classify this system. To increase the speed, some part of the recognition method is executed on GPU (graphic processing unit) cores implemented by CUDA platform. HADAF database (Biggest isolated Persian character database) is utilized to evaluate the system. The results show 94.5% accuracy. We also achieved about 5.5 times speed-up using GPU.