Mohammad Reza Keyvanpour; Zahra Karimi Zandian; Nasrin Mottaghi
Abstract
Regression testing reduction is an essential phase in software testing. In this step, the redundant and unnecessary cases are eliminated, whereas software accuracy and performance are not degraded. So far, various researches have been proposed in regression testing reduction field. The main challenge ...
Read More
Regression testing reduction is an essential phase in software testing. In this step, the redundant and unnecessary cases are eliminated, whereas software accuracy and performance are not degraded. So far, various researches have been proposed in regression testing reduction field. The main challenge in this area is to provide a method that maintain fault-detection capability while reducing test suites. In this paper, a new test suite reduction technique is proposed based on data mining. In this method, in addition to test suite reduction, its fault-detection capability is preserved using both clustering and classification. In this approach, regression test cases are reduced using a bi-criteria data mining-based method in two levels. In each level, the different and useful coverage criteria and clustering algorithms are used to establish a better compromise between test suite size and the ability of reduced test suite fault detection. The results of the proposed method have been compared to the effects of five other methods based on PSTR and PFDL. The experiments show the efficiency of the proposed method in the test suite reduction in maintaining its capability in fault detection.
N. Taghvaei; B. Masoumi; M. R. Keyvanpour
Abstract
In general, humans are very complex organisms, and therefore, research into their various dimensions and aspects, including personality, has become an attractive subject of research. With the advent of technology, the emergence of a new kind of communication in the context of social networks has also ...
Read More
In general, humans are very complex organisms, and therefore, research into their various dimensions and aspects, including personality, has become an attractive subject of research. With the advent of technology, the emergence of a new kind of communication in the context of social networks has also given a new form of social communication to humans, and the recognition and categorization of people in this new space have become a hot topic of research that has been challenged by many researchers. In this paper, considering the Big Five personality characteristics of individuals, first, categorization of related work is proposed, and then a hybrid framework based on Fuzzy Neural Networks (FNN), along with, Deep Neural Networks (DNN) has been proposed that improves the accuracy of personality recognition by combining different FNN-classifiers with DNN-classifier in a proposed two-stage decision fusion scheme. Finally, a simulation of the proposed approach is carried out. The proposed approach is using the structural features of Social Networks Analysis (SNA), along with a linguistic analysis (LA) feature extracted from the description of the activities of individuals and comparison with the previous similar researches. The results, well-illustrated the performance improvement of the proposed framework up to 83.2 % of average accuracy on myPersonality dataset.
H.3. Artificial Intelligence
Z. Karimi Zandian; M. R. Keyvanpour
Abstract
Fraud detection is one of the ways to cope with damages associated with fraudulent activities that have become common due to the rapid development of the Internet and electronic business. There is a need to propose methods to detect fraud accurately and fast. To achieve to accuracy, fraud detection methods ...
Read More
Fraud detection is one of the ways to cope with damages associated with fraudulent activities that have become common due to the rapid development of the Internet and electronic business. There is a need to propose methods to detect fraud accurately and fast. To achieve to accuracy, fraud detection methods need to consider both kind of features, features based on user level and features based on network level. In this paper a method called MEFUASN is proposed to extract features that is based on social network analysis and then both of obtained features and features based on user level are combined together and used to detect fraud using semi-supervised learning. Evaluation results show using the proposed feature extraction as a pre-processing step in fraud detection improves the accuracy of detection remarkably while it controls runtime in comparison with other methods.