
1

Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 11, No. 2, 2023, 161-186.

Shahrood University of

Technology

Journal of Artificial Intelligence and Data Mining (JAIDM)
Journal homepage: http://jad.shahroodut.ac.ir

 Research paper

BRTSRDM: Bi-Criteria Regression Test Suite Reduction based on Data

Mining
Mohammad Reza Keyvanpour1*, Zahra Karimi Zandian2 and Nasrin Mottaghi2

1. Department of Computer Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran.

2. Data Mining Lab, Department of Computer Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran.

Article Info Abstract

Article History:
Received 21 October 2022
Revised 09 December 2022

Accepted 15 January 2023

DOI:10.22044/jadm.2023.12208.2374

 Regression testing reduction is an essential phase in software testing.

In this step, the redundant and unnecessary cases are eliminated,

whereas software accuracy and performance are not degraded. So far,

various research works have been proposed in the regression testing

reduction field. The main challenge in this area is to provide a method

that maintains fault-detection capability, while reducing test suites. In

this paper, a new test suite reduction technique is proposed based on

data mining. In this method, in addition to test suite reduction, its fault-

detection capability is preserved using both clustering and

classification. In this approach, regression test cases are reduced using

a bi-criteria data mining-based method in two levels. In each level, the

different and useful coverage criteria and clustering algorithms are

used to establish a better compromise between test suite size and the

ability of reduced test suite fault detection. The results of the proposed

method are compared with the effects of five other methods based on

PSTR and PFDL. The experiments show the efficiency of the proposed

method in the test suite reduction in maintaining its capability in fault

detection.

Keywords:
Test suite reduction, Software,

Data mining, Coverage criteria,

Clustering, Classification.

*Corresponding author:

Keyvanpour@alzahra.ac.ir (M. R.

Keyvanpour).

1. Introduction

As the software and applications are progressing,

the demands for developing more reliable ones

with fewer faults are increasing. On the other

hand, with software development, its performance

may be decreased or some parts of software

changed undesirably. To evolve, maintain the

software, and evaluate its quality, software

testing, and especially regression testing are the

essential activities [1][2][3]. They run the

program to find errors or faults [4]. Software

testing includes some levels, which are shown in

Figure 1. One of the levels is regression including

three manners: test case selection, prioritization,

and reduction [5]. One of the main challenges in

regression testing is that as the test suite evolves,

so does its size [6]. Not only is executing all of

these test cases unnecessary or redundant [7], but

it also takes much time and huge costs. Therefore,

test suite reduction is an essential solution [8],

which is carried out immediately after test suite

creation or after first regression test.

Figure 1. Different levels in software testing.

The declining test cases lead a sufficient subset to

be identified. This powerful subset is used in the

software maintenance phase and decreasing the

mailto:Keyvanpour@alzahra.ac.ir%20(M

Keyvanpour et al./ Journal of AI and Data Mining, Vol. 11, No. 2, 2023

162

cost of software tests. In contrast, test suite

reduction should not lessen the software accuracy

and performance [9][10]. Indeed, this subject is

the main challenge in test suite reduction. So far,

different techniques have been proposed to reduce

test suite. Their main idea is to remove repeated or

unnecessary test cases based on a particular

criterion. One of the test suite techniques is based

on data mining. The significant feature of the

methods based on data mining is to extract hidden

patterns of test cases, and find the similarity

between them, automatically and intelligently

[11][12]. On the other hand, test coverage has

attracted the attention of the researchers as a

means of ensuring that the testing process is

adequate. Test coverage is to measure the amount

of program execution by tests.

Test coverage level is an indicator of test accuracy

that helps testers decide when to stop testing.

Thus several coverage criteria have been

developed in the recent years. The effort of the

test community is more focused on producing the

coverage criteria. Therefore, in this paper, a new

test suite reduction method is proposed based on

data mining on two levels with two coverage

criteria to use the advantages of both approaches.

Using the data mining technique can help to

reduce test suits more accurately, and coverage

based approach can lead to reduce more quickly.

In this method, test cases are divided into efficient

and non-efficient ones for fault detection. Only

efficient test cases are used in regression testing.

According to the proposed method, after test case-

classification, to remove repeated and unnecessary

test cases and test suite reduction; useful cases are

only chosen from the efficient group. Other test

cases are maintained, and test suites are prioritized

and used in necessary times to avoid lessening

accuracy of fault detection. In this work, hierarchy

clustering, K-means, and CLOPE algorithms as

data mining techniques are utilized. The results

show the efficiency of the proposed method in

reducing test suites with maintaining its capability

in fault detection. The rest of the paper is

organized as what follows. In Section 2, the

related works are discussed. In Section 3, the

proposed method is introduced. Experiments and

evaluation results are presented in Section 4,

followed by the concluding remarks in Section 5.

2. Related Works

Before explaining the related works, the test suite

reduction (TSR) problem needs to be defined. As

mentioned in [13], suppose that 𝑇 is a test suite;

𝑟1, 𝑟2, … , 𝑟𝑛 are test requirements, which must be

considered to provide the software testing, and

subsets of 𝑇, 𝑇1, 𝑇2, … , 𝑇𝑛, one associated with

each of the 𝑟𝑖𝑠 such that any one of the test cases

𝑡𝑗 belonging to 𝑇𝑖 can be used to test 𝑟𝑖. The

problem is to find a minimum set of test cases

from 𝑇 that satisfies all 𝑟𝑖𝑠.

To date, different methods have been proposed for

regression testing reduction, which can basically

be divided into two categories: pre-processing

reduction techniques and post-processing

reduction techniques. In pre-processing reduction,

test suites are reduced after test suite creation

immediately. In contrast, in post-processing

reduction, the test suits are first made, and the first

regression testing is run, and then unnecessary test

cases are removed. From another viewpoint, based

on the study in [14], regression testing reduction

methods can be divided into eight categories

based on the main idea proposed in them. Figure 2

shows this classification.

Figure 2. Regression testing reduction classification.

−Genetic algorithm-based methods: Some

researchers have used evolutionary algorithms,

mostly genetic algorithms, to test suite creation

and reduction automatically. The genetic

BRTSRDM: Bi-Criteria Regression Test Suite Reduction based on Data Mining

163

algorithm-based methods usually need to study

fault detection capabilities. The researchers in

[15] proposed a new time-aware regression

reduction method based on a genetic algorithm.

Based on the proposed method in this work,

redundant test cases are removed in the

regression testing suite, and the total running

time of the remaining test cases is minimized.

According to [16], the researchers have

proposed a genetic-based method for regression

testing reduction. In this method, the history of

tests is used for population initialization.

Finally, only the fit tests created from this

algorithm are allowed to the reduced suite.

Kaur et al. [17] have proposed a new

evolutionary-based method called HPSO for

regression testing reduction. In this paper, a

combination of Particle Swarm Optimization

(PSO) and Genetic Algorithm (GA) are used to

widen the solution’s search space.

Nagar et al. [18] have proposed a novel method

based on PSO and GA as meta-heuristic

approaches. In this method, PSO and GA are

utilized to choose a minimum set of test cases

covering all the faults and bugs in minimum

time.

Coviello et al. [19] have proposed a new

algorithm called GASSER based on genetic

algorithm. This is a multi-objective evolutionary

algorithm, which is used to reduce test suite and

minimize its size. The genetic-based algorithms

generally reduce the test cases quickly. In

addition, they are often used and appropriate to

investigate fault detection ability and big data.

−Requirement-based methods: The purpose of

regression testing reduction is to consider all

initial requirements, while reducing unnecessary

test cases. Some researchers propose methods

based on the test requirements for regression

reduction. Indeed, in these methods, the

researchers usually propose a method to

optimize the test requirements. In [20], for test

requirement optimization, a relation graph has

been used. According to [21], the researchers

have proposed a method based on the

requirement that reduces test cases using EFSM

dependence analysis. This method uses the parts

of the model that affect test requirements.

In [22], Nasir et al. have proposed a technique

that minimizes the test cases and requirement

attributes without compromising fault detection

capability. In this method, a conditional

entropy-based similarity measure is introduced

for requirement reduction. The researchers in

[23] have presented a new method for test suite

reduction based on requirements. In this

method, the test case-requirement matrix is

mapped to form the mathematical equation(s),

which are obtained from some optimized

constraints. Generally, some of these algorithms

acquire more time and memory to reduce test

cases.

−Fuzzy logic-based methods: Some methods

use fuzzy logic for suite case reduction and

optimization. Anwar et al. [24] have proposed a

method based on fuzzy logic for multi-objective

optimization of regression test suites. Haider et

al. [25] have suggested a fuzzy-based

optimization approach that safely combines all

path coverage criteria to reduce a test suite to a

single solution. The researchers in [26] have

proposed an intelligent method that finds a

trade-off among the quality aspects, technique

used, and testing level based on an objective

function using fuzzy logic-based classification.

In [27], the researchers have proposed a method

of automated prioritization of test cases based

on fuzzy logic. In this method, the prioritization

order is chosen, which increases the fault

detection rate. By investigating these methods, it

is clear that fuzzy logic-based algorithms are

safe and decrease regression testing size and

runtime. However, more investigation is

required to obtain desirable results.

−Coverage-based methods: Some methods

focus on the coverage aspect of suite case

reduction. These techniques ensure that majority

of the execution paths of the given program are

exercised [28]. Harris et al. [28] have proposed

a new method based on coverage for test suite

reduction. In this method, after identifying a

suitable and optimal test set, data flow testing is

applied to generate the program’s physical

structure and locate sub-paths. These paths are

used for test suite reduction. According to [29],

the researchers have presented an algorithm to

prioritize test cases based on total coverage

using a modified genetic algorithm. Total

coverage in this method refers to choosing test

cases based on their ability to cover more faults

and maximize code coverage. The researchers in

[30] have proposed a coverage based method for

test case reduction. In this method, after test

case generation, some proposed heuristics are

used to reduce test set sizes based on reordering

the test execution sequences. Jiang et al. [31]

believed that for test case minimization, the test

cases must make just choices and reorder them

to provide the same software coverage as the

original test suite for the regression testing. In

[32], various coverage criteria have been

proposed for test suite reduction. These methods

Keyvanpour et al./ Journal of AI and Data Mining, Vol. 11, No. 2, 2023

164

are not suitable for large systems due to the high

time and cost of reducing test cases.

−Program slicing-based methods: Program

slicing is a method for automatically

decomposing programs by analyzing their data

flow and control flow [33]. Some researchers

use this capability for test suite reduction. Arlt

et al. [34] have proposed a refined static

analysis approach based on program slicing for

test suite reduction. In this method, a slicing-

based test suite reduction algorithm is proposed

that identifies redundant event sequences. In

[35], program slicing has been used to select

useful and practical test cases. The program

slicing filters the execution profile of each test

case by highlighting the parts of the software

affected. By choosing valuable slices, they

could reduce test cases for fault detection.

Generally, they are often suitable to peruse fault

detection ability and big data.

−Greedy algorithm-based methods: According

to [36], a new greedy heuristic algorithm has

been presented for selecting a minimal subset of

a test suite. In this method, a concept analysis

framework is used. Xu et al. [37] have used

some weighted greedy-based algorithms for

removing redundant test cases. In [38], the

researchers focused on the challenge of

significantly reduced fault detection efficacy by

suite size reduction. In order to solve this

problem, a greedy algorithm has been presented

in this paper, aimed at selecting a test case that

satisfies the maximum number of testing

requirements, while having a minimum overlap

in requirements coverage with other test cases.

The researchers in [39] have used some greedy

based methods to improve suite case reduction

costs, and compared them. The greedy

algorithms choose the test cases randomly in the

same situations. In addition, they must be

optimized for large test sets. These cases are the

disadvantages of greedy algorithm-based

methods.

−Hybrid algorithms: Some researchers have

presented new methods for suite case reduction

based on more than one technique and using the

advantages of a combination of them. In [40],

the researchers proposed a method based on

genetic and bee colony algorithms for test suite

reduction. Sampath et al. [41] have proposed a

hybrid method based on the Rank, Merge, and

Choice techniques. Yoo et al. [42] have

presented a hybrid, multi-objective genetic

algorithm that combines the efficient

approximation of the greedy approach with the

capability of a population-based genetic

algorithm to produce higher-quality Pareto

fronts. Zamli et al. [43] have proposed a new

hybrid Q-learning sine-cosine-based strategy,

called the Q-learning sine-cosine algorithm, to

solve the test suite minimization problem.

Panwar et al. [44] have suggested the Cuckoo

Search (CS) algorithm followed by Modified

Ant Colony Optimization (M-ACO) algorithm

to conclude the test cases in an optimized order

in a time-constrained environment. Xia et al.

[45] have proposed a new method based on K-

means and evolutionary algorithm for test suite

reduction. They used K-means to find similar

test cases and utilized evolutionary algorithm to

remove redundant test cases. Due to

combination of some techniques, hybrid

algorithms have high complexity. Marchetto et

al. [46] have proposed a hybrid method called

MORE+. This method is based on multi-

objective test suite reduction. MORE+ is a

three-dimension approach: structural test suite

reduction, functional test suite reduction, and

investigating the cost and concerns the time to

execute test cases. In this method, a genetic

algorithm-based and application requirement-

based approaches are used to reduce test suites.

−Data mining-based methods: Data mining is a

process that uses data analysis tools to uncover

hidden patterns and relationships among data

including test cases that may lead to extracting

new information and similarities between them

[47]. This capability has led some researchers to

use this technique for suite case reduction [11].

By investigating the methods based on data

mining in this field in [48], these techniques can

be divided into classification, clustering, and

mining frequency itemset. Kansomkeat et al.

[49] have proposed the condition-classification

tree method for generating test cases from

activity diagrams. Parsa et al. [50] have

presented a new algorithm that clusters test

cases based on the similarity of their execution

profiles and samples some representatives to

form the reduced test suite. Coviello et al. [1]

have proposed a clustering based approach for

test suite reduction and several instances of the

process underlying this approach. The proposed

approach groups together test cases that are

similar and redundant into a cluster. Saifan [12]

has used two data mining classifiers, Na¨ıve

based, and J48 for test case reduction. In

[51][52][53][54][55][56], the researchers have

proposed the K-means algorithm for test case

reduction. In [57], a density-based clustering

approach is presented to reduce the test suite.

The researchers in [10] have proposed cluster

BRTSRDM: Bi-Criteria Regression Test Suite Reduction based on Data Mining

165

analysis of three different structural profiles:

function execution sequence, function call

sequence (FCS), and the function call tree. In

[58], Harris et al. have proposed a test suite

reduction approach based on maximal frequent

item-set mining. This algorithm was proposed to

select a test suite with maximum frequency.

3. BRTSRDM: Proposed Regression Test Suite

Reduction Method

Increasing accuracy and speed with low cost is the

main challenge in regression test suite reduction

[59][60]. On the other hand, data mining extracts

hidden patterns of test cases, and reduces test suite

size [47][61][62][63]. Therefore, this paper

proposes a new method that uses both

classification and clustering as two data mining-

based regression test suite reduction methods.

With these techniques, the proposed method does

not remove unnecessary or duplicated test cases

permanently. This reduces test suit size and

regression test cost, maintaining fault detection

ability in test suite. As shown in Figure 3, the

original test suite (TS), program source code

(PSC), and Test items, which failed in the

previous program execution are inputs of the

BRTSRDM method. The output of the technique

constitutes a reduced test suite (RTS).

Figure 3. General structure of the BRTSRDM method.

Accordingly, as specified in Figure 3 and

mentioned before, the proposed method uses two

coverage criteria for test suite reduction.

Therefore, BRTSRDM involves two phases:

regression test suite reduction based on the first

and second coverage criteria. In the first phase,

the proposed data mining based method is applied

based on the early coverage criterion. In the

second phase, another proposed data mining based

approach is used based on the second coverage

criterion for test suite reduction.

3.1. Regression test suite reduction based on

branch coverage criterion

According to Figure 4, PSC, TS, and Test items

that failed in the previous program execution are

sent as inputs to this phase. Efficient Test cases

(𝐸𝑇1) and Non- Efficient Test cases (𝑁𝑇1) are its

outputs. As shown in Figure 4, this phase includes

three steps: pre-processing, clustering, and

classifying. According to the proposed method,

the first test cases are divided into two clusters in

this phase. By test items that failed in the previous

program execution, these clusters are labeled as

efficient or inefficient. Clustering before

classification causes accuracy to be increased, and

decreases the time needed to determine efficient

test cases. The combination of both methods

makes use of the advantages of both. Although the

methods based on clustering reduce test cases,

they decrease fault detection ability. Against, the

classification methods impose high cost on test

case labeling, repeatedly and unnecessarily.

Consequently, in this paper, a hybrid method

based on clustering and classification is proposed

to increase the classification accuracy of test

cases.

Figure 4. Block diagram of regression test suite reduction

based on branch coverage criterion in BRTSRDM.

3.1.1. Pre-processing in first phase

As illustrated in Figure 5, PSC and TS are the

inputs for the pre-processing step, and the Matrix

mapping test cases into branch coverage

(MMTBr) is the output. The pre-processing stage

includes choosing the branch coverage criterion,

source code instrumentation based on branch

coverage criterion, and test case execution on the

source code, extraction of executive profiles of

test cases, and creation of matrix mapping test

cases into branch coverage.

Keyvanpour et al./ Journal of AI and Data Mining, Vol. 11, No. 2, 2023

166

Figure 5. Block diagram of pre-processing in regression

test suite reduction based on branch coverage criterion.

−Choosing branch coverage criterion: The

programs used in this research work are based

on the C language, have a comprehensive test

suite, and the faults produced for them are of the

implanted type. On the other hand, previous

research works [64] [65][66][67] show that the

branch coverage criterion is more effective, and

has lower overhead than others for these

programs and features. Therefore, according to

the proposed method, the branch coverage

criterion is chosen in this step. In addition, in

the experiment part, we will investigate the

effect of this coverage criterion in the first phase

on the test suite reduction. As shown in Figure

5, inputs of this step are PSC and TS. The

branch coverage criterion (BrCC) is the output.

−Source code instrumentation and test case

execution on source code: One instrumentation

collects profiles of the test cases to find the

sensitive points of codes, and analyzes or

optimizes code coverage. In this step, all

program source codes are instrumented to obtain

test case execution profiles based on the chosen

coverage criterion in the previous step. After

that, the test cases run on the source codes. The

output of this step for each source code and each

test case is a file containing the number of runs

and branches reached by the test case. This

information is specified as the coverage

information file (CIF) in Figure 5.

−Creation of matrix mapping test cases into

branch coverage: The purpose of this step is to

create a matrix where each row is related to one

test case, and each column is relevant to one

branch of the program. If one test case

coverages a branch, the corresponding cell is

specified by ’covered’. If not, the considered

cell is indicated by ’uncovered’. The input of

this step is CIF, and matrix mapping test cases

into branch coverage (MMTBr) is the output.

3.1.2. Clustering in first phase

In this step and according to the proposed method,

test cases are clustered based on two algorithms,

agglomerative hierarchical clustering algorithm,

and K-means. As shown in Figure 4, MMTBr is

the input, and two clusters are the outputs. The

clustering algorithms identify similarities or

dissimilarities between each two test cases based

on branch coverage information. To determine

similarity criteria, various functions are suitable

for different fields. For instance, the Jaccard

distance function is appropriate for categorical

values. The Levenshtein function is used for string

values, and the Euclidean distance function is

suitable for numerical and cosine values [68].

Many researchers in the test suite reduction field

have used the Euclidean distance function, as in

[12][69][51][70][55]. Considering the vast

research, it can be concluded that Euclidean

distance function is powerful in similarity

identification between test cases, is simple, and

has a lower complexity than other functions.

Therefore, this function is used as a similarity

criterion in this paper. Hierarchical clustering

provides investigating data at different levels of

details. One kind of this algorithm is

agglomerative [71][72]. Agglomerative

hierarchical clustering algorithm starts with

singleton clusters, and merges two or more

suitable clusters, recursively. Hierarchical

clustering proposes a hierarchical structure of

clusters that include more information about

clusters than a non-structured collection of

clusters offered by non-hierarchical methods.

Another advantage of hierarchical clustering is

being appropriate for data with high dimensions

[68]. These points make the agglomerative

hierarchical clustering algorithm appropriate to be

used in the paper as one of the clustering

algorithms for test case reduction. To merge or

split the clusters in this algorithm, there are three

main linkage criteria: single linkage, complete

linkage, and average linkage. The third one

completes the other ones. The equations below

explain these criteria, respectively.

1 2 1 2
(,) min (,) ,d C C d r s r C s C   (1)

1 2 1 2
(,) max (,) ,d C C d r s r C s C   (2)

1 2

1 2 1 2

1 11 2

1
(,) (,) ,

n n

r s

d C C d r s r C s C
n n  

   (3)

where 𝑑 is distance, 𝐶𝑖 is 𝑐𝑙𝑢𝑠𝑡𝑒 𝑟𝑖, and 𝑛𝑖 is the

number of 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖’s members. Given that we

need a method to identify efficient and non-

efficient test cases in test case reduction and that

BRTSRDM: Bi-Criteria Regression Test Suite Reduction based on Data Mining

167

the numbers of clusters are straightforward, using

a simple method like K-means could be useful as

another clustering algorithm. Therefore, in this

paper, test cases are clustered based on

agglomerative hierarchical clustering algorithm

and K-means.

3.1.3. Classifying in first phase

The inputs in this step are clusters created in the

previous step (𝐶) and test items that failed in the

previous program execution. The outputs are 𝐸𝑇1

and 𝑁𝑇1. The purpose of the classifying step is to

label the clusters made in the clustering step.

Using test cases that have failed in the previous

program run, the clusters are classified into 𝐸𝑇1

and 𝑁𝑇1. Test items failed in the previous

program execution are efficient test cases.

Therefore, the cluster including the efficient test

cases is labeled as 𝐸𝑇1, and the cluster covering

non-efficient ones is labeled as 𝑁𝑇1.

3.2. Regression test suite reduction based on

block coverage criterion

As shown in Figure 6, the inputs of the second

phase of BRTSRDM are PSC, 𝐸𝑇1, and test items

that failed in the previous program execution.

Reduced test suites (RTS) are the output. In fact,

the test suite of 𝐸𝑇1 obtained from the first phase

and target program source code are two main

inputs. The purpose of this phase is to propose a

better trade-off between test suite size and the

ability of reduced test suite fault detection. As

noted before, these points are the main challenges

in this field.

Given that 𝐸𝑇1 extracted from the first phase may

consist of inefficient or repeated test cases, they

are clustered in this phase. In the next step, these

clusters are prioritized. This prioritizing prevents

a decrease in the ability of fault detection. As

depicted in Figure 6, regression test suite

reduction based on the second coverage criterion

phase involves four steps: pre-processing,

clustering, classifying, and clusters prioritizing

and test cases running.

3.2.1. Pre-processing in second phase

Figure 7 shows that the inputs of the pre-

processing step are PSC and 𝐸𝑇11. The matrix

mapping test cases into block coverage (MMTBl)

is the output. This step includes choosing block

coverage criterion, source code instrumentation,

and test cases execution on the source code, and

creation of matrix mapping test cases into block

coverage. The pre-processing step in the second

phase is the same as this step in the first phase but

it has some differences:

Figure 6. Block diagram of regression test suite reduction

based on block coverage criterion in BRTSRDM.

Figure 7. Block diagram of pre-processing in regression

test suite reduction based on block coverage criterion.

−In the first and second steps, the output of the

first phase, namely efficient test cases extracted

from the first phase, is one of the inputs.

−In the first step, the block coverage criterion is

chosen, and in the second step, the source code

is instrumented based on this criterion.

−The output of the third step is matrix mapping

test cases into block coverage.

According to [68], in block and branch coverage

criteria, the relation between fault detection and

test suite size is the same, which means these

criteria identify the same percentage of faults for

the same test suite size. Therefore, in the second

phase, in this paper, the block coverage criterion

is used to fulfill the branch coverage criterion

Keyvanpour et al./ Journal of AI and Data Mining, Vol. 11, No. 2, 2023

168

used in the first phase by receiving efficient test

cases obtained from that phase as the input.

3.2.2. Clustering in second phase

In this step, by receiving MMTBl from the pre-

processing step, clustering is done to increase the

accuracy of choosing useful and efficient test

cases, while reducing the unnecessary ones.

According to the proposed method, for clustering

in this phase, the CLOPE algorithm is used. The

CLOPE clustering does not need to determine the

numbers of clusters by the users. It is suitable for

big datasets, is not sensitive to data ordering, and

does not require domain knowledgement to

control the number of clusters [73]. These features

motivated us to use this technique in this work

and this phase. Using this algorithm in the test

case reduction field makes clustering fast and the

final clusters remarkable. Figure 8 shows the

examples of CLOPE and K-Means clustering.

(a)

(b)

Figure 8. Examples of CLOPE and K-means clustering.

−𝑖 is an item in a special cluster.

− 𝑊(𝐶) is width of cluster, namely the number of

unique items in the cluster.

− 𝑂𝑐𝑐(𝑖, 𝐶) is the number of occurrences of a

unique item in the cluster.

−𝑃(𝐶) is power of cluster, namely the sum of

𝑂𝑐𝑐(𝑖, 𝐶) for each unique item.

− 𝐻(𝐶) is height of cluster, namely 𝑃(𝐶)/𝑊(𝐶).

To define the criterion function of a clustering in

CLOPE algorithm, 𝑃𝑟𝑜𝑓𝑖𝑡𝑟(𝐶) is used, where 𝑟 is

a positive real number called repulsion, used to

control the level of intra-cluster similarity [73].

1

1

()

()
Pr ()

| |

k
i

r
i i

r k

i

i

P C

W C
ofit C

C











(4)

Figures 9 and 10 show pseudo-codes of CLOPE

and K-means algorithms.

Figure 9. Pseudo-code of CLOPE algorithm [73].

Figure 10. Pseudo-code of K-means algorithm [69].

3.2.3. Classifying in second phase

As mentioned in Figure 6, clusters created from

the clustering step (𝐶) and test items that failed in

the previous program execution are the classifying

step inputs. In this phase, the clusters are

classified and labeled as efficient or inefficient

clusters. The clusters including efficient test cases

(test items failed in the previous program

execution) are labeled as 𝐸𝑇2, and the clusters

including inefficient test cases are labeled as 𝑁𝑇2.

BRTSRDM: Bi-Criteria Regression Test Suite Reduction based on Data Mining

169

3.2.4. Clusters prioritizing and test case

running

In this step, the clusters created and classified

must be used for program testing. The flowchart

of this step is shown in Figure 11.

Figure 11. Flowchart of clusters prioritizing and test cases

running in regression test suite reduction based on block

coverage criterion.

𝐸𝑇2 obtained from the previous step is the input of

this step. According to the proposed method, these

clusters are prioritized based on the number of

efficient test cases. In some proposed methods for

test suite reduction, the test suite is divided into

some clusters but one test case in each cluster is

used for running on the program. It is believed

that all test cases in a cluster cover a similar

requirement. Despite reducing the high percentage

of test suite size, the results show that this

approach decreases the fault detection ability

[54][53][52][51]. Therefore, in this paper, instead

of using an algorithm or filter to choose one test

case from each cluster, the clusters are prioritized

to obtain a trade-off between test suite size

reduction and the ability of fault detection.

According to BRTSRDM, the set of prioritized

𝐸𝑇 clusters (PCL) includes 𝐸𝑇2 clusters

prioritized, descending (Equation 5).

1 2
{ , ,..., }

n
PCL CL CL CL (5)

The cluster with the highest priority is chosen to

execute the program. Suppose the faults existing

in the fault set are detected by the main test suite,

i.e. detected by test cases existing in this cluster.

In that case, the number of faults detected in this

cluster is calculated, and this number is reduced

from the number of members of the fault set.

After that, these faults are eliminated from the

fault set (Equations 6 and 7).

FaultSet FaultSet DetectedFaultsn n n  (6)

{ }FaultSet FaultSet DetectedFaults  (7)

This process continues until the fault set is empty

or all prioritized clusters are chosen. If all clusters

are chosen, but the fault set is not empty, the

reduced test suite extracted from this method

cannot identify all program faults. The reduced

test suite (RTS) is the output of this step.

According to the proposed method, after test suite

reduction, RTS is used for the new program

testing version. It is clear that by reducing test

suite, fault detection ability decreases in that main

test suite. However, as mentioned earlier, the main

purpose of proposing BRTSRDM is to present a

new test suite reduction method, while

maintaining that the ability of fault detection is

maintained.

4. Experiments

In this section, 3 main parts are presented. In the

first part, the data set used in this paper for testing

the proposed system is explained. In the second

part, the evaluation criteria are introduced. In the

last part, the results are provided. Different test

methods are introduced and the results obtained

are analyzed and compared with each other based

on the evaluation criteria, in this part.

4.1. Dataset

Dataset or source codes used in this paper are four

C language source codes. The features of these

source codes are presented in Table 1. These

programs have code lines between 138 and 402.

Each program includes some faulted versions that

have one fault. The programs have comprehensive

test pools. These programs, versions, and pools

are collected by the Siemens research company

[74]. The researchers’ purpose in this company

has been to study the effectiveness of detecting

coverage criteria faults; therefore, they

manufactured the programs’ versions and injected

Keyvanpour et al./ Journal of AI and Data Mining, Vol. 11, No. 2, 2023

170

the fault into them. These faults are real as much

as possible. Some researchers in some

experiments have used these source codes, like

[8][75][76][50][77][74][78][79].

Table 1. Description of the programs used.

Subject
Test suite

size

Source code

line number
Program

Information
measurement

1608 138 tcas

Height

separation
1052 346 totinfo

Priority

scheduler
2710 297 schedule2

Lexical analysis 4130 402 printtokens1

4.2. Evaluation criteria

The standard and popular criteria are used to

evaluate the proposed methods in the test suite

reduction field. In order to investigate the

efficiency of the proposed method, examining the

percentage of test suit reduction (PTSR) with the

percentage of fault detection capability (PFDC),

the percentage of fault detection loss (PFDL) or

percentage of coverage achieved (PCOV) will be

useful [80]. There are some standard criteria in

data mining to evaluate clustering and

classification methods: accuracy, precision, and

recall. In this paper, to evaluate the efficiency,

PTSR, PFDC, and performance of the proposed

classification method, accuracy, precision, and

recall are used.

−Percentage of Test Suit Reduction (PTSR): In

each test suite reduction method, the primary

purpose is to obtain a reduced test suite (RS)

from the main test suite (T). This means the

effectiveness of a test suite reduction method

could be calculated based on RS measurement

[80].

()
(1) *100

()

Size RS
PTSR

Size T
  (8)

−Percentage of Fault Detection Capability

(PFDC) or Percentage of Fault Detection Loss

(PFDL): other criteria for the proposed method

evaluation are PFDC and PFDL. These two

criteria complement each other. PFDC and

PFDC are calculated according to Equations 9

and 10, respectively.

det
()

det

number of faults ected by RS
PFDC

total number of faults ected by TS

 (9)

det
(1)

det

number of faults ected by RS
PFDL

total number of faults ected by TS

  (10)

Before explaining accuracy, precision, and recall,

it is necessary to present the essential

classification evaluation criteria. Four criteria are

used for calculating accuracy, precision, and recall

namely, True Positive (TP), True Negative (TN),

False Positive (FP), and False Negative (FN).

Table 2 displays these criteria.

Table 2. Description of the essential classification

evaluation criteria.
Really

efficient

 Really

inefficient
Test case

TP

FP
Predicted as

efficient

FN

TN
Predicted as

inefficient

−Accuracy: the essential criterion for evaluating

any classification algorithm is accuracy,

calculated based on Equation 11.
TP TN

Accuracy
TP FP FN TN




  
 (11)

where TN is the number of inefficient test cases

that are labeled ’inefficient’ correctly. TP is the

number of efficient test cases that are labeled

’efficient’ correctly. FP is the number of

inefficient test cases that are labeled ’efficient

incorrectly. FN is the number of efficient test

cases that are incorrectly labeled ’inefficient’.

−Precision: As shown in Equation 12, it is the

number of test cases correctly labeled as

belonging to the efficient class (TP) divided by

the total number of test cases labeled as

belonging to the efficient class.

Pr
TP

ecision
TP FP




 (12)

−Recall: The number of true positives (efficient)

divided by the total number of test cases that

actually belong to the positive (efficient) class

(Equation 13).

Re
TP

call
TP FN




 (13)

4.3. Experiments results
In order to evaluate the proposed method, five

tests were designed and run. In Test 1, the effect

of different clustering methods on the

classification in the first phase of the BRTSRDM

method is investigated based on accuracy,

precision, and recall. Test 2 investigates the effect

of different coverage criteria in the first phase of

the proposed test suite reduction based on

accuracy, precision, and recall. In Test 3, the

BRTSRDM: Bi-Criteria Regression Test Suite Reduction based on Data Mining

171

effect of different clustering methods in the

second phase based on the PTSR is determined.

Test 4 investigates the proposed method based on

different clustering methods in the second phase

based on PFDC. In the last test, the proposed

method has been compared with other methods

based on PTSR and PFDC.

4.3.1. Test 1: Effect of different clustering

methods on classification in first phase in the

BRTSRDM method based on accuracy,

precision, and recall

In this part, the classification test results based on

the proposed clustering methods in the first phase

are investigated. The purpose of this test is to

investigate the performance of the combination of

classification with each of the proposed clustering

methods: K-means with random initializer, K-

means with canopy initializer, and hierarchy

clustering (HC). In this test, if all efficient test

cases do not fit in one cluster, the cluster with the

most efficient test cases is chosen as 𝐸𝑇1. For

each of the faults implanted in each of the

programs introduced as datasets, the performance

of the combination of classification and clustering

techniques is examined in this section based on

Accuracy (Acc), Precision (Pr), and Recall (Re).

Tables 3-6 report the results obtained on tcas,

totinfo, schedule 2, and printtokens1.

Table 3. Results of applying different clustering methods on the classification in the first phase in the BRTSRDM based on

the accuracy, precision, and recall on Printtokens1.

HC K-means (canopy) K-means (random)
Fault#

Re Pr Acc Re Pr Acc Re Pr Acc

100% 4.57% 5.95% 73.11% 4.94% 35.52% 86% 8.93% 59.90% 1

100% 7.54% 8.86% 52.76% 11.79% 67.14% 84.69% 14.42% 61.52% 2

100% 12.70% 13.97% 73.30% 12.96% 35.03% 56.28% 8.53% 19.03% 3

92.42% 12.85% 12.76% 76.40% 14.35% 34.06% 58.97% 9.84% 20.09% 4

100% 22.72% 23.84% 67.02% 20.46% 34.26% 75.24% 20.25% 28.08% 5

100% 23.21% 24.33% 67.61% 21.08% 34.69% 75.76% 20.83% 28.57% 6

100% 23.21% 24.33% 67.61% 21.08% 34.69% 75.76% 20.83% 28.57% 7

99% 15% 16% 68% 15% 39% 73% 15% 35% Average

−Discussion: As shown in Table 3, the average of

recall related to K-means (random) on

printtokens1 program is more than other criteria

relevant to our method using the K-means

(random) algorithm on printtokens 1, and its rate

is approximately fixed by increasing fault

numbers in the program (Fault#). This shows

that many test cases have efficient fault

detection to have been placed in an efficient

cluster by the proposed method in this paper. In

contrast, accuracy and precision calculated by

K-means (random) algorithm are less suitable

than recall, showing that many inefficient test

cases have been wrongly placed in the efficient

cluster. The accuracy rate has decreased with

the increase in the number of faults. This result

shows that it is necessary to apply the second

phase for screening inefficient test cases from

efficient ones and reducing regression tests.

Regarding the results of using K-means

(canopy), the recall average is more than others

but is lower than what was observed in K-means

(random). The average accuracy of this group is

more than the accuracy of using K-means

(random). As illustrated in Table 3, using

hierarchy clustering for clustering increases the

recall compared to the recall of other

algorithms. This shows that this technique can

place all test cases that are able to detect faults

in an efficient cluster. Generally, by

investigating this table, it is apparent using the

second phase is necessary for screening

inefficient test cases from efficient ones and

reducing regression tests.

−Discussion: Table 4 shows the results of

applying different clustering methods on the

classification in the first phase in the

BRTSRDM based on accuracy, precision, and

recall on Schedule 2. As shown in this table, the

results of applying K-means (random) and

(canopy) are similar. The average of recall is

85% and remarkable. Applying hierarchy

clustering increases the recall to 91%, which is

more than others. By injecting faults 8 and 9,

the recall rates of all are reduced due to

differences between test case coverage

information in these versions compared to other

versions of the Schedule 2 program. The

accuracy and precision of these tests are low, as

Keyvanpour et al./ Journal of AI and Data Mining, Vol. 11, No. 2, 2023

172

in the previous tests. This result proves the need for the second phase of our method.

Table 4. Results of applying different clustering methods on the classification in the first phase in the BRTSRDM based on

accuracy, precision, and recall on Schedule 2.

HC K-means (canopy) K-means (random)

Fault#
Re Pr Acc Re Pr Acc Re Pr Acc

100% 2.43% 3.98% 100% 3.35% 30.99% 100% 3.33% 30.44% 1

100% 4.01% 5.53% 91% 5.00% 31.69% 90.65% 4.96% 31.07% 2

100% 5.28% 6.78% 92.90% 6.75% 32.95% 92.90% 6.69% 32.28% 3

100% 5.02% 6.53% 91.79% 6.43% 33.75% 91.79% 6.43% 33.75% 4

100% 5.09% 6.60% 90.44% 6.43% 33.54% 90.44% 6.43% 33.54% 5

100% 6.03% 7.52% 90.68% 7.63% 34.31% 90.68% 7.63% 34.31% 6

100% 6.03% 7.52% 90.68% 7.63% 34.31% 90.68% 7.63% 34.31% 7

57.76% 3.64% 6.75% 60.24% 5.17% 32.06% 60.24% 5.17% 32.06% 8

57.76% 3.64% 6.75% 60.24% 5.17% 32.06% 60.24% 5.17% 32.06% 9

91% 5% 6% 85% 6% 33% 85% 6% 33% Average

Table 5. Results of applying different clustering methods on the classification in the first phase in the BRTSRDM based on

accuracy, precision, and recall on totinfo.

HC K-means (canopy) K-means (random)
Fault#

Re Pr Acc Re Pr Acc Re Pr Acc

100% 25.06% 43.44% 100% 25.06% 43.44% 100% 78.96% 94.96% 1

100% 37.40% 52.75% 100% 37.40% 52.75% 83.50% 84.03% 90.87% 2

89.01% 38.79% 50.10% 89.01% 38.79% 50.10% 74.56% 87.45% 88.11% 3

89.05% 43.49% 51.61% 69.40% 95.54% 87.07% 85.82% 94.26% 92.58% 4

89.15% 43.82% 51.71% 69.21% 95.57% 86.88% 85.71% 94.56% 92.58% 5

88.72% 43.93% 51.71% 68.87% 95.57% 86.69% 85.29% 94.56% 92.39% 6

88.80% 44.29% 51.99% 68.85% 96.25% 86.78% 85.15% 95.10% 92.49% 7

88.86% 44.54% 52.19% 68.77% 96.60% 86.79% 84.99% 95.38% 92.49% 8

84.04% 44.47% 51.05% 84.04% 44.47% 51.05% 80.28% 95.00% 90.30% 9

84.15% 44.84% 51.33% 84.15% 44.84% 51.33% 63.64% 95.45% 83.94% 10

84.15% 44.84% 51.33% 64.57% 39.86% 45.82% 83.22% 91.07% 89.83% 11

84.15% 44.84% 51.33% 84.15% 44.84% 51.33% 63.64% 95.45% 83.94% 12

84.15% 44.84% 51.33% 64.57% 39.86% 45.82% 83.22% 91.07% 89.83% 13

84.15% 44.84% 51.33% 64.57% 39.86% 45.82% 83.22% 91.07% 89.83% 14

82.71% 43.98% 50.10% 65.19% 40.14% 46.29% 74.77% 81.63% 82.89% 15

84.15% 44.84% 51.33% 64.57% 39.86% 45.82% 83.22% 91.07% 89.83% 16

84.15% 44.84% 51.33% 64.57% 39.86% 45.82% 83.22% 91.07% 89.83% 17

84.22% 45.09% 51.52% 64.73% 40.14% 46.01% 62.65% 95.41% 83.46% 18

84.72% 46.09% 51.62% 62.92% 40.29% 44.87% 60.90% 95.76% 82.32% 19

86.92% 50.50% 51.43% 59.04% 42.40% 40.11% 65.19% 38.92% 32.22% 20

85.00% 49.94% 50.48% 65.19% 38.92% 32.22% 65.19% 38.92% 32.22% 21

85.11% 50.40% 50.86% 59.35% 42.96% 40.49% 65.46% 39.38% 32.60% 22

87.06% 43.90% 50.99% 72.08% 52.69% 55.15% 77.40% 84.34% 81.34% Average

−Discussion: As shown in Table 5, the result of

applying K-means (random) based on all three

criteria is impressive and successful. The high

rate of precision and accuracy in the second

phase resulted in small changes in cluster

members and low test case reduction.

Decreasing the values of accuracy and precision

from fault 20 onwards is due to more test cases

in these versions than in others. Accordingly, K-

means (random) places more efficient test cases

BRTSRDM: Bi-Criteria Regression Test Suite Reduction based on Data Mining

173

in a more massive cluster. Inefficient test cases

exist in the more massive cluster too. Therefore,

the precision and accuracy of test case reduction

are increasing. Recall obtained by applying K-

means (canopy) is near to the recall of K-means

(random).

In contrast, accuracy and precision are lower

than K-means (random). A larger number of

inefficient test cases are placed in the efficient

clusters by applying K-means (canopy). The

reason for increasing precision and accuracy

from fault 4-8 is that the K-means (canopy)

technique places more efficient test cases in

smaller clusters. In comparison, a larger number

of inefficient ones are placed in more massive

clusters. Therefore, the values of these criteria

for this clustering technique are increased. The

best recall on totinfo program is relevant to

hierarchy clustering with 87.06% but it has the

least precision and accuracy.

Table 6. Results of applying different clustering methods on the classification in the first phase in the BRTSRDM based on

accuracy, precision, and recall on tcas.

HC K-means (canopy) K-means (random)

Fault#

Re Pr Acc Re Pr Acc Re Pr Acc

100% 14.89% 53.10% 100% 12.70% 43.59% 100% 12.70% 43.59% 1

100% 28.78% 60.75% 100% 24.54% 51.24% 100% 24.54% 51.24% 2

100% 27.17% 45.33% 56.70% 46.85% 78.04% 56.70% 46.85% 78.04% 3

100% 30.57% 47.88% 50.40% 46.73% 75.43% 50.40% 46.73% 75.43% 4

100% 31.64% 48.69% 64.92% 37.23% 65.67% 64.92% 37.23% 65.67% 5

100% 31.28% 40.17% 60.27% 48.89% 72.01% 60.27% 48.89% 72.01% 6

100% 32.36% 41.11% 61.59% 65.80% 80.16% 61.59% 50.00% 71.83% 7

100% 32.36% 41.11% 61.59% 65.80% 80.16% 61.59% 50.00% 71.83% 8

100% 30.86% 39.80% 60.42% 64.29% 80.35% 60.42% 46.11% 70.40% 9

100% 31.07% 39.99% 59.77% 64.20% 80.10% 59.77% 46.02% 70.15% 10

100% 31.00% 39.93% 59.91% 64.04% 80.10% 60.60% 46.47% 70.52% 11

100% 31.07% 39.99% 60.69% 60.69% 60.69% 70.80% 31.69% 50.81% 12

100% 30.86% 39.24% 60.55% 46.15% 70.15% 70.64% 31.36% 50.12% 13

100% 31.04% 40.73% 60.37% 46.25% 70.71% 70.63% 31.66% 51.49% 14

100% 31.69% 41.29% 62.56% 46.21% 69.96% 72.60% 30.67% 47.82% 15

100% 31.77% 41.36% 63.33% 46.88% 70.40% 73.35% 31.05% 48.26% 16

100% 31.91% 41.48% 63.95% 47.55% 70.77% 74.15% 31.53% 48.76% 17

100% 32.85% 42.29% 64.98% 48.76% 70.83% 75.77% 32.42% 48.57% 18

100% 32.78% 42.23% 65.12% 48.76% 70.90% 75.94% 32.42% 48.63% 19

100% 32.78% 42.23% 65.12% 48.76% 70.90% 75.94% 32.42% 48.63% 20

100% 32.56% 42.04% 64.89% 48.26% 70.71% 75.78% 32.14% 48.45% 21

76.33% 28.21% 36.44% 65.88% 48.74% 69.84% 76.33% 32.14% 46.08% 22

59.19% 19.54% 25.87% 52.50% 22.58% 40.73% 59.19% 22.26% 35.51% 23

59.19% 19.54% 25.87% 52.50% 22.58% 40.73% 59.19% 22.26% 35.51% 24

96% 30% 42% 64% 47% 68% 69% 35% 56% Average

Keyvanpour et al./ Journal of AI and Data Mining, Vol. 11, No. 2, 2023

174

−Discussion: As shown in Table 6, by applying

K-means (random) on the tcas program,

accuracy is 56%, precision is 35%, and recall is

69%. Therefore, this method has placed a larger

number of inefficient test cases in an efficient

cluster. Because the tcas program test suite is

smaller than the previous programs, efficient

test case reduction based on this technique in the

second phase is lower than that in the others.

Recall in faults 1 and 2 is 100% but in faults 3-

12, efficient test cases in the program are

increased compared to previous versions but K-

means (random) cannot place them in the

efficient cluster, so recall is reduced. In contrast,

this technique can place many efficient test

cases in a small cluster, increasing accuracy and

precision.

From fault 13 onwards, the performance of the

method is the opposite. The average accuracy

and precision are higher when K-means

(canopy) is used compared to K-means

(random). This implies that a lower number of

inefficient test cases are placed in an efficient

cluster. The reason for swings of criteria values

in faults 3-12 in K-means (canopy) is similar to

what was expressed about K-means (random).

The recall of hierarchical clustering is excellent

in the first until the 21st version. But after that,

recall is decreased. In general, the recall of this

method is better than that of other methods.

4.3.2. Test 2: Effect of different coverage

criteria in first phase in the BRTSRDM

method based on accuracy, precision, and

recall

In this test, the effect of different coverage criteria

in the first phase in the BRTSRDM is

investigated. The used coverage criteria are block

and branch coverage criteria. The results of the

investigation are reported in the format of

accuracy, precision, and Recall. To cluster test

cases with these coverage criteria, the program

version with maximum faults is used in this test.

For an easier comparison, the obtained results are

categorized and reported based on the clustering

algorithms in Tables 7-9.

Table 7. Results of applying different coverage criteria for K-means (random) in the first phase of the BRTSRDM based on

accuracy, precision, and recall.

Block coverage Branch coverage

Program

Re Pr Acc Re Pr Acc

75.34% 18.84% 20.14% 75.76% 20.83% 28.57% Printtokens 1

60.24% 5.90% 30.95% 60.24% 5.17% 32.06% Schedule 2

59.19% 22.26% 35.51% 59.19% 22.26% 35.51% tcas

65.46% 39.38% 32.60% 65.46% 39.38% 32.60% totinfo

65.06% 21.59% 29.80% 65.16% 21.91% 32.185% Average

Table 8. Results of applying different coverage criteria for K-means (canopy) in the first phase of the BRTSRDM based on

accuracy, precision, and recall.

Block coverage Branch coverage

Program

Re Pr Acc Re Pr Acc

75.66% 18.61% 18.76% 67.61% 21.08% 34.69% Printtokens 1

60.24% 50.90% 30.95% 60.24% 5.17% 32.06% Schedule 2

52.50% 22.58% 40.73% 52.50% 22.58% 40.73% tcas

69.85% 46.98% 45.72% 59.35% 42.96% 40.49% totinfo

64.56% 34.77% 34.04% 59.92% 22.95% 36.99% Average

BRTSRDM: Bi-Criteria Regression Test Suite Reduction based on Data Mining

175

Table 9. Results of applying different coverage criteria for HC in the first phase of the BRTSRDM based on accuracy,

precision, and recall.

Block coverage Branch coverage

Program

Re Pr Acc Re Pr Acc

100% 23.21% 24.33% 100% 23.21% 24.33% printtokens1

57.76% 3.64% 6.75% 57.76% 3.64% 6.75% schedule2

59.19% 19.54% 25.87% 59.19% 19.54% 25.87% tcas

85.11% 50.40% 50.86% 85.11% 50.40% 50.86% totinfo

75.51% 24.20% 26.95% 75.51% 24.20% 26.95% Average

−Discussion: As shown in Tables 7-9, the results

obtained from using branch coverage for K-

means (random) clustering are better compared

to using block coverage based on accuracy,

precision, and recall, approximately most of the

time average. The difference between these two

criteria is generally insignificant. Using branch

coverage criteria in the first phase instead of

block coverage increases test case reduction

performance by investigating the results.

4.3.3. Test 3: Effect of combination of different

clustering methods in first and second phases

in BRTSRDM method based on PTSR

The purpose of this and the next tests is to

investigate the percentage of the test suite

reduction and fault detection capability in the

proposed method. In order to evaluate our method

in Test 3, we studied the effect of combining

different clustering methods in the first and

second phases based on PTSR. We reported the

results for each program and the various numbers

of faults. The algorithm used in the second phase

was the CLOPE algorithm and the combination of

the proposed clustering methods in the first phase,

producing different results. In this test and the

next one, these combinations are considered.

Tabels 10-14 report the results.

Table 10. Results of applying different combination of clustering methods in first and second phases in the BRTSRDM based

on PTSR for Printtokens1.

HC-CLOPE K-means (canopy)-CLOPE K-means (random)-CLOPE

Fault#

PTSR level 2 PTSR level 1 PTSR level 2 PTSR level 1 PTSR level 2 PTSR level 1

92.51% 1.40% 93.34% 33.43% 94.26% 56.65% 1

92.00% 1.40% 94.43% 66.73% 92.63% 56.36% 2

85.03% 1.40% 88.82% 29.20% 74.1% 17.45% 3

88.69% 1.01% 86.92% 26.80% 76.07% 17.62% 4

81.25% 1.40% 81.64% 26.63% 75.20% 16.77% 5

70.19% 1.40% 84.64% 26.63% 76.12% 16.77% 6

70.19% 1.40% 84.64% 26.63% 76.12% 16.77% 7

82.83% 1.34% 87.77% 33.72% 80.64% 28.34% Average

−Discussion: As shown in Table 10, we reported

PTSR level 1 and 2 for each clustering

algorithm combination. PTSR level 1 indicates

the PTSR obtained from using just first phase

clustering, while PTSR level 2 is the final PTSR

after using the target clustering algorithms in the

first and second phases. As this table shows, the

PTSR level 2 is much more than the PTSR level

1 for printtokens1. In the first phase, some

inefficient test cases are placed in an efficient

cluster. Therefore, adding the second phase to

the method causes a remarkable reduction in test

suite size and increases PTSRlevel 2. When we

used K-means (canopy) in the first phase and

CLOPE in the second phase, PTSR in the two

levels improved compared to using K-means

(random) in the first phase and CLOPE in the

second phase.

Keyvanpour et al./ Journal of AI and Data Mining, Vol. 11, No. 2, 2023

176

With increasing the number of faults to more

than 6, PTSR became constant. Although using

hierarchy clustering (HC) in the first phase

obtained weaker results than others, PTSR level

2 in all algorithms has a higher value than PTSR

level 1, showing that using BRTSRDM has been

able to reduce test suite size successfully.

Table 11. Results of applying different combination of clustering methods in first and second phases in the BRTSRDM based

on the PTSR for Schedule 2.

HC-CLOPE K-means (canopy)-CLOPE K-means (random)-CLOPE

Fault#

PTSR level 2 PTSR level 1 PTSR level 2 PTSR level 1 PTSR level 2 PTSR level 1

89.74% 1.58% 92.84% 28.59% 91.84% 28.04% 1

90.92% 1.58% 92.80% 28.48% 91.91% 26.38% 2

91.91% 1.58% 92.02% 28.48% 91.77% 27.82% 3

82.28% 1.58% 88.42% 29.44% 88.42% 29.44% 4

84.64% 1.58% 64.42% 29.44% 64.42% 29.44% 5

86.12% 1.58% 42.73% 29.48% 42.73% 29.48% 6

86.12% 1.58% 42.73% 29.48% 42.73% 29.48% 7

84.68% 1.06% 75.46% 30.84% 75.46% 30.84% 8

84.68% 1.06% 75.46% 30.84% 75.46% 30.84% 9

86.79% 1.46% 74.10% 29.45% 73.86% 29.08% Average

−Discussion: Table 11 reports the results of test 3

on Schedule 2. Similar to Table 10, the final

PTSR after applying the second phase is higher

than that of PTSR level 1, which is significant

for the Schedule 2 program, unless there is a

decrease in the number of faults, which results

in a decrease in PTSR level 2. This reduction

occurs in a few efficient test cases among all test

cases when applying faults 6 and 7. This result

shows the necessity of the second phase for test

suite reduction. The average PTSR level 2 for

HC-CLOPE is better than that of others but the

proposed method could generally reduce test

suite size impressively for the Schedule 2

program.

−Discussion: Table 12 shows the percentage of

test suite size reduction in the first and second

phases for the totinfo program. The difference

between PTSR level 1 and 2 for K-means

(random)-CLOPE is not remarkable. The reason

for this is the small size of this program, and the

high accuracy, precision, and recall obtained

from the first phase. After applying faults 19

and more, the accuracy of using the first step

decreased, and so did PTSR. Using K-means

(canopy)-CLOPE in faults 1 until 3 caused

PTSR level 2 to improve PTSR level 1 but after

that, because of the high accuracy, precision,

and recall obtained from the first phase,

applying the second phase did not improve

PTSR of the first phase. After applying faults 9

and more, the accuracy of using the first step

decreased, and so did PTSR. By applying HC-

CLOPE, PTSR level 2 obtained better values

than PTSR level 1 until fault 5. But after that,

with increasing the number of faults and placing

inefficient and unique test cases in these faults,

not all clusters were run. Therefore, PTSR was

reduced.

− Discussion: In Table 13, the results of applying

clustering methods and their combination in the

first and second phases of our proposed method

are reported based on PTSR for the tcas

program. As shown in this table, with a

combination of K-means (random) in the first

and CLOPE algorithm in the second phase, the

average of PTSR level 2 was better than that of

PTSR level 1. These values converged, which is

due to high precision and recall obtained from

the first phase executing in some faults.

Therefore, a few inefficient test cases were

placed in an efficient cluster before running the

second phase. As a result of applying the

CLOPE algorithm, the clusters created included

all the efficient test cases. Consequently, the test

suite reduction in the second phase was not

improved remarkably compared to the first

phase reduction.

BRTSRDM: Bi-Criteria Regression Test Suite Reduction based on Data Mining

177

Using the combination of K-means (canopy)

and CLOPE caused an improvement in the

PTSR result compared to the previous method

because using K-means (canopy) led to higher

precision and accuracy than K-means (random).

The reason for the decrease in PTSR in fault 24

is the difference between this version and the

previous version in the block coverage criterion.

The combination of the hierarchical clustering

algorithm and CLOPE considerably improved

the PTSR of test suite reduction, compared to

just using the hierarchical clustering algorithm

in the first phase.

Table 12. Results of applying different combination of clustering methods in first and second phases in the BRTSRDM based

on the PTSR for totinfo.

HC-CLOPE K-means (canopy) -CLOPE K-means (random)-CLOPE

Fault#

PTSR level 2 PTSR level 1 PTSR level 2 PTSR level 1 PTSR level 2 PTSR level 1

76.23% 24.52% 76.23% 24.52% 78.32% 76.04% 1

85.44% 24.52% 85.44% 24.52% 71.95% 71.95% 2

83.26% 24.52% 83.26% 24.52% 71.95% 71.95% 3

83.93% 21.76% 72.24% 72.24% 86.40% 65.20% 4

59.60% 21.48% 72.05% 72.05% 72.05% 65.01% 5

21.67% 21.67% 72.05% 72.05% 65.01% 65.01% 6

21.67% 21.67% 72.05% 72.05% 65.01% 65.01% 7

21.67% 21.67% 72.05% 72.05% 65.01% 65.01% 8

23.47% 23.47% 23.47% 23.47% 65.77% 67.77% 9

23.47% 23.47% 23.47% 23.47% 72.81% 72.81% 10

23.47% 23.47% 23.47% 23.47% 72.81% 72.81% 11

23.47% 23.47% 23.47% 23.47% 72.81% 72.81% 12

23.47% 23.47% 33.93% 33.93% 62.73% 62.73% 13

23.47% 23.47% 33.93% 33.93% 62.73% 62.73% 14

23.47% 23.47% 33.93% 33.93% 73.09% 73.09% 15

23.47% 23.47% 33.93% 33.93% 73.09% 73.09% 16

23.47% 23.47% 33.93% 33.93% 73.09% 73.09% 17

23.47% 23.47% 33.93% 33.93% 73.09% 73.09% 18

22.24% 22.24% 33.93% 33.93% 73.09% 73.09% 19

14.92% 14.92% 31.17% 31.17% 31.17% 31.17% 20

15.87% 15.87% 31.17% 31.17% 31.17% 31.17% 21

15.87% 15.87% 31.17% 31.17% 31.17% 31.17% 22

34.41% 22.06% 46.83% 39.04% 65.65% 64.35% Average

Keyvanpour et al./ Journal of AI and Data Mining, Vol. 11, No. 2, 2023

178

Table 13. Results of applying different combination of clustering methods in first and second phases in the BRTSRDM based

on the PTSR for tcas.

HC-CLOPE K-means (canopy)-CLOPE K-means (random)-CLOPE

Fault#

PTSR level 2 PTSR level 1 PTSR level 2 PTSR level 1 PTSR level 2 PTSR level 1

95.10% 44.91% 95.10% 35.39% 95.10% 35.39% 1

86.01% 44.91% 86.01% 35.39% 86.01% 35.39% 2

78.54% 24.93% 75.32% 75.32% 75.32% 75.32% 3

78.66% 24.87% 75.24% 75.24% 75.24% 75.24% 4

77.73% 24.93% 72.45% 70.58% 72.45% 70.58% 5

63.80% 12.93% 74.56% 66.41% 74.56% 66.41% 6

66.72% 12.93% 73.63% 73.63% 73.63% 65.29% 7

66.72% 12.93% 73.63% 73.63% 73.63% 65.29% 8

18.09% 12.93% 74.81% 74.81% 74.37% 68.86% 9

22.32% 12.93% 74.75% 74.75% 74.31% 64.80% 10

24.44% 12.93% 74.81% 74.75% 71.26% 64.80% 11

35.57% 12.93% 71.08% 64.67% 53.04% 39.55% 12

35.01% 12.12% 70.95% 64.42% 52.67% 38.93% 13

36.31% 14.05% 71.64% 65.17% 47.94% 40.48% 14

26.18% 14.05% 72.26% 63.12% 44.34% 35.50% 15

26.18% 14.05% 72.26% 63.12% 44.34% 35.50% 16

26.18% 14.05% 72.26% 63.12% 44.34% 35.50% 17

26.18% 14.05% 69.02% 62.37% 47.32% 34.01% 18

26.18% 14.05% 69.02% 62.37% 45.39% 34.01% 19

26.18% 14.05% 69.02% 62.37% 45.39% 34.01% 20

14.05% 14.05% 72.82% 62.37% 31.96% 34.01% 21

39.11% 21.08% 71.76% 60.57% 48.75% 30.72% 22

32.02% 21.08% 65.42% 39.42% 32.02% 30.72% 23

32.02% 30.72% 49.06% 39.42% 32.02% 30.72% 24

44.13% 18.85% 72.79% 62.60% 58.98% 47.54% Average

BRTSRDM: Bi-Criteria Regression Test Suite Reduction based on Data Mining

179

Table 14. Results of applying different combination of clustering methods in the first and second phases in the BRTSRDM

based on PTSR.

HC-CLOPE K-means (canopy)-CLOPE K-means (random)-CLOPE

Program

PTSR level 2 PTSR level 1 PTSR level 2 PTSR level 1 PTSR level 2 PTSR level 1

82.83% 1.34% 87.77% 33.72% 80.64% 28.34% printtokens1

86.79% 1.46% 74.10% 29.45% 73.86% 29.08% schedule2

34.41% 22.06% 46.83% 39.04% 65.65% 64.35% totinfo

44.13% 18.85% 72.79% 62.60% 58.98% 47.54% tcas

62.04% 10.93% 70.37% 41.19% 69.78% 42.24% Average

−Discussion: For comparison between three

combinations: K-means (random)-CLOPE, K-

means (canopy)-CLOPE, and HC-CLOPE,

Table 14 presents the results, regardless of the

program on which it runs.

As inferred from this table, the PTSR level 2 of

K-means (canopy)-CLOPE is the best result,

showing the combination of K-means (canopy)

and CLOPE could reduce the test suite more

than others. Generally, considering that the

purpose was to present a data mining-based

algorithm, this technique is more suitable for a

big dataset; therefore, the obtained results show

BRTSRDM has a better performance on the

programs with a greater test suite size.

4.3.4. Test 4: Effect of different clustering

methods in second phase in the BRTSRDM

method based on PFDC
The purpose of this test is to investigate the effect

of combination of different clustering methods in

the first and second phases on fault detection

capability and its percentage. This test was run on

each program with different faults and reported in

Tables 15-19.

Table 15. Results of applying different combination of clustering methods in the first and second phases in the BRTSRDM

based on PTSR.

HC-CLOPE K-means (canopy)-CLOPE K-means (random)-CLOPE Main test

suite FDC

Fault#

FDC level 2 FDC level 1 FDC level 2 FDC level 1 FDC level 2 FDC level 1

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6

7 7 7 7 7 7 7 7

100% 100% 100% 100% 100% 100% PFDC Average

−Discussion: As shown in Table 15, applying the

proposed method with the combination of K-

means (random), K-means (canopy), and HC in

the first phase with CLOPE algorithm in the

second phase for Printtokens1 program makes

the detection of all faults possible in the first

phase (FDC level 1) and the second phase (FDC

level 2) by the reduced test suite. Therefore,

PFDC is 100%.

−Discussion: To report the results of applying

different combinations of clustering methods in

the first and second phases in the BRTSRDM on

the FDC and PFDC for schedule 2, Table 16 is

provided. As shown in this table, all three

combinations in all two phases could detect all

faults that existed in the main test suite until the

fourth fault. After that, the HC-CLOPE

algorithm had better performance, and its

average of PFDC was 99% compared to other

algorithms, which obtained 90% as an average

of PFDC.

Keyvanpour et al./ Journal of AI and Data Mining, Vol. 11, No. 2, 2023

180

Table 16. Results of applying different combination of clustering methods in first and second phases in the BRTSRDM based

on the FDC and PFDC for schedule 2.

HC-CLOPE K-means (canopy)-CLOPE K-means (random)-CLOPE Main test

suite FDC

Fault#

FDC level 2 FDC level 1 FDC level 2 FDC level 1 FDC level 2 FDC level 1

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4

5 5 4 4 4 4 5 5

6 6 5 5 5 5 6 6

7 7 6 6 6 6 7 7

8 8 7 7 7 7 8 8

8 8 7 7 7 7 9 9

99% 99% 90% 90% 90% 90% PFDC Average

Table 17. Results of applying different combination of clustering methods in first and second phases in the BRTSRDM based

on the FDC and PFDC for totinfo.

HC-CLOPE K-means (canopy)-CLOPE K-means (random)-CLOPE Main test

suite FDC

Fault#

FDC level 2 FDC level 1 FDC level 2 FDC level 1 FDC level 2 FDC level 1

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5

5 5 5 5 5 5 6 6

6 6 6 6 6 6 7 7

7 7 7 7 7 7 8 8

7 7 7 7 7 7 9 9

8 8 8 8 8 8 10 10

8 8 8 8 8 8 10 11

8 8 8 8 8 8 10 12

8 8 7 7 8 8 10 13

8 8 8 8 8 8 10 14

8 8 8 8 8 8 10 15

8 8 8 8 8 8 10 16

8 8 8 8 8 8 10 17

9 9 8 8 7 7 11 18

10 10 8 8 8 8 12 19

11 11 11 11 12 12 13 20

11 11 12 12 12 12 13 21

12 12 10 10 13 13 14 22

86% 86% 84% 84% 86% 86% PFDC Average

−Discussion: Table 17 shows the result of

applying this test to the totinfo program. As

inferred from this table, as the number of faults

increases, the fault detection capability

decreases. While this reduction is not significant

in any of the algorithms, the average of PFDC

for K-means (random)-CLOPE and HC-CLOPE

is 86% and for K-means (canopy)-CLOPE, it is

84%.

BRTSRDM: Bi-Criteria Regression Test Suite Reduction based on Data Mining

181

Table 18. Results of applying different combination of clustering methods in first and second phases in the BRTSRDM based

on the FDC and PFDC for tcas.

HC-CLOPE K-means (canopy)-CLOPE K-means (random)-CLOPE Main test

suite FDC

Fault#

FDC level 2 FDC level 1 FDC level 2 FDC level 1 FDC level 2 FDC level 1

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 2 2 2 2 3 3

4 4 2 2 2 2 4 4

5 5 4 4 4 4 5 5

6 6 4 4 4 4 6 6

7 7 5 5 5 5 7 7

7 7 5 5 5 5 7 8

8 8 5 5 5 5 8 9

7 7 5 5 5 5 7 10

8 8 5 5 6 6 8 11

8 8 6 6 6 6 8 12

8 8 6 6 6 6 8 13

8 8 6 6 6 6 8 14

8 8 6 6 6 6 8 15

8 8 6 6 6 6 8 16

9 9 7 7 7 7 9 17

10 10 8 8 8 8 10 18

10 10 8 8 8 8 10 19

10 10 8 8 8 8 10 20

10 10 8 8 8 8 10 21

11 11 9 9 9 9 11 22

11 11 8 8 11 11 13 23

12 12 9 9 12 12 14 24

98.76% 98.76% 74.29% 74.29% 76.67% 76.67% PFDC Average

−Discussion: As Table 18 shows, applying HC-

CLOPE on tcas caused the best average of

PFDC to be obtained with 98.76% than K-

means (random)-CLOPE and K-means

(canopy)-CLOPE. These algorithms achieved

76.67 and 74.29, respectively, as the averages of

PFDC.

−Discussion: Since the purpose of presenting the

proposed method was to improve PTSR and

PFDC, simultaneously, Table 19 is provided for

a better comparison between the proposed

algorithms based on these criteria. The inserted

values in this table are the average of the values

reported in the previous tables. As shown in this

table, with a comparison between different

combinations, it is clear that HC-CLOPE has the

best PFDC, regardless of the program on which

it runs, while PTSR of K-means (canopy)-

CLOPE is the highest. Generally, it seems that

K-means (canopy)-CLOPE is more successful

than others due to the trade-off between PFDC

and PSTR. In sum, the results of Tests 3 and 4

Keyvanpour et al./ Journal of AI and Data Mining, Vol. 11, No. 2, 2023

182

indicate that the presentation of the first phase

of the proposed method increases the ability of

fault detection.

In comparison, the proposed second phase

increases test suite reduction.

Table 19. Results of applying different combination of clustering methods in the first and second phases in the BRTSRDM

based on the PSTR and PFDC.

HC-CLOPE K-means- (canopy)-CLOPE K-means (random)-CLOPE

Program

PFDC PTSR PFDC PTSR PFDC PTSR

100% 82.83% 100% 87.77% 100% 80.64% printtokens1

99% 86.79% 90% 74.10% 90% 73.86% schedule2

86% 34.41% 84% 46.83% 86% 65.65% totinfo

98.76% 44.14% 74.29% 72.79% 76.67% 58.98% tcas

95.94% 62.04% 87.07% 70.37% 88.17% 69.78% Average

4.3.5. Test 5: Test 5: Comparison between

proposed method and others based on PTSR

and PFDL
To evaluate the proposed method, it is necessary

to compare it with other methods. Therefore, in

this section, the proposed method is compared

with five test suite reduction methods based on

PTSR and PFDC. These methods are HGS [81],

BOG [14], CTC [69], DBC [56] and TRSS [82].

HGS and BOG are among the acceptable

methods. It means their default is one hundred

percent coverage. We make this comparison due

to the popularity of these methods. Another reason

is that insufficient methods make a better tradeoff

between test suite size reduction and fault

detection capability [51][83][77][84][79]. The last

three methods belong to insufficient methods.

This comparison reveals the advantage of our

proposed method. The results are reported in

Table 20 and 21.

Table 20. Comparison between BRTSRDM and other test suite reduction methods based on PSTR.

DBC HGS BOG

TRSS CTC BRTSRDM

Program

A
ll-B

r
a

n
c
h

e
s

A
ll-U

ses

H
C

K
-m

e
a

n
s (ra

n
d

o
m

)

H
C

K
-m

e
a

n
s (ra

n
d

o
m

)-

C
L

O
P

E

K
-m

e
a

n
s (ca

n
o

p
y

)-

C
L

O
P

E

90% 75.93% 74.62% 99.80% 99.69% 1.40% 16.77% 70.19% 76.12% 84.64% printtokens1

90% 71.03% 68.47% 99.86% 99.85% 1.06% 30.84% 84.68% 75.46% 75.46% schedule2

89.92% 73.74% 68.66% 99.56% 99.19% 15.87% 31.17% 15.87% 31.17% 31.17% totinfo

89.90% 53.79% 53.18% 99.69% 99.61% 30.72% 30.72% 32.02% 32.02% 49.06% tcas

−Discussion: Table 20 shows the results of the

comparison between BRTSRDM and other test

suite reduction methods based on PSTR. The

result of the comparison between our method

and CRC shows that BRTSRDM has gained

better PSTR in printtokens1, schedule2, and

tcas. These two methods have obtained similar

results in totinfo. The reason for this similarity

is that the totinfo program has many faults. On

the other hand, the main test suite in this

program is lower than in other programs.

𝐸𝑇1 cases obtained from the first phase of the

proposed method are placed in clusters

including efficient test cases by the CLOPE

algorithm in the second phase. To detect many

faults, all clusters and 𝐸𝑇1 are run. As shown in

the table, the results obtained from TRSS and

DBC are better than those of other methods.

With a comparison between the results of

BRTSRDM, BOG, and HGS, it is clear the

proposed method has better results in

printtokens1 and schedule2, while the results of

BOG and HGS in toninfo and tcas programs are

more acceptable. It should be noted that the

difference of PTSR of K-means (canopy)-

CLOPE in the proposed method and BOG and

HGS is negligible.

BRTSRDM: Bi-Criteria Regression Test Suite Reduction based on Data Mining

183

Table 21. Comparison between BRTSRDM and other test suite reduction methods based on PFDL.

DBC HGS BOG

TRSS CTC BRTSRDM

Program

A
ll-B

r
a

n
c
h

e
s

A
ll-U

ses

H
C

K
-m

e
a

n
s (ra

n
d

o
m

)

H
C

K
-m

e
a

n
s (ra

n
d

o
m

)-

C
L

O
P

E

K
-m

e
a

n
s (ca

n
o

p
y

)-

C
L

O
P

E

28.57% 21.59% 16.22% 74.94% 45.63% 0 0 0 0 0 printtokens1

55.55% 34.63% 28.88% 87.20% 85.93% 11.11% 22.22% 11.11% 22.22% 22.22% schedule2

63.63% 24.28% 16.36% 65.15% 81.44% 14.28% 7.14% 14.28% 7.14% 28.57% totinfo

70.83% 42.49% 35.53% 75.06% 65.58% 14.29% 14.29% 14.29% 14.29% 35.71% tcas

−Discussion: Table 21 shows the PFDL of the

proposed method and other five methods. As

inferred from this table, the proposed method

has shown the best fault detection capability

compared to other methods in all the programs

used. Regarding the printtokens1 program, our

method detected all faults that existed in the

main test suite. Therefore, PFDL of BRTSRDM

like CTC was found to be zero. Considering the

higher PTSR of our method than CTC, our

proposed method is superior to this method.

Other methods have the percentage of fault

detection loss. Regarding Table 20 and this

table, the proposed method had better

performance than others. Comparing the values

of PFDL and PTSR of BRTSRDM and others

and the difference between them in schedule2,

totinfo, and tcas, we conclude that our method

has worked better than other methods. Among

the methods proposed in our method, namely K-

means (random)-CLOPE, K-means (canopy)-

CLOPE and HC, K-means (random)-CLOPE,

and HC had better PFDL than K-means

(canopy)-CLOPE in all programs, generally.

5. Conclusion

Software testing is one of the main activities in

the software development cycle [85]. This test is

the confirmation and validation process of a

software application or program to supply

customer requirements, find the problems, and test

to achieve desired results [4]. Test case reduction

helps find the effective sub suite of test cases

during the maintenance step and decreases

software testing costs. Test case reduction

decreases time, running, and translation costs,

while maintaining testing accuracy [9]. Therefore,

to address this challenge, in this paper, a new

method called BRTSRDM was proposed. In

addition to test suite reduction, its fault-detection

capability was preserved. Regression test cases

were reduced using a bi-criteria data mining-based

method in two levels by BRTSRDM. The results

of the proposed method were compared to the

results of five other methods. The results showed

the efficiency of the proposed method in the test

suite reduction by maintaining its capability in

fault detection.

References
[1] C. Coviello, S. Romano, G. Scanniello, A.

Marchetto, G. Antoniol, and A. Corazza, “Clustering

support for inadequate test suite reduction,” in 2018

IEEE 25th International Conference on Software

Analysis, Evolution and Reengineering (SANER), 2018,

pp. 95–105.

[2] E. G. Cartaxo, P. D. L. Machado, and F. G. O.

Neto, “On the use of a similarity function for test case

selection in the context of model-based testing,” Softw.

Testing, Verif. Reliab., vol. 21, no. 2, pp. 75–100,

2011.

[3] D. Shin, S. Yoo, M. Papadakis, and D.-H. Bae,

“Empirical evaluation of mutation-based test case

prioritization techniques,” Softw. Testing, Verif.

Reliab., vol. 29, no. 1–2, p. e1695, 2019.

[4] G. J. Myers, T. Badgett, T. M. Thomas, and C.

Sandler, The art of software testing, vol. 2. Wiley

Online Library, 2004.

[5] P. K. Gupta, “K-Step Crossover Method based on

Genetic Algorithm for Test Suite Prioritization in

Regression Testing,” JUCS-Journal Univers. Comput.

Sci., vol. 27, p. 170, 2021.

[6] A. Singh Verma, A. C. Choudhary, and S. Tiwari,

“Regression Test Suite Minimization Using Modified

Artificial Ecosystem Optimization Algorithm,” J. Inf.

Technol. Manag., vol. 13, no. 1, pp. 22–41, 2021.

[7] H. Hussein, A. Younes, and W. Abdelmoez,

“Quantum algorithm for solving the test suite

minimization problem,” Cogent Eng., vol. 8, no. 1, p.

1882116, 2021.

[8] A. Nadeem, A. Awais, and others, “TestFilter: a

statement-coverage based test case reduction

Keyvanpour et al./ Journal of AI and Data Mining, Vol. 11, No. 2, 2023

184

technique,” in 2006 IEEE International Multitopic

Conference, 2006, pp. 275–280.

[9] V. Chaurasia, Y. Chauhan, and K.

Thirunavukkarasu, “A survey on test case reduction

techniques,” Int. J. Sci. Res., 2014.

[10] R. Wang, B. Qu, and Y. Lu, “Empirical study of

the effects of different profiles on regression test case

reduction,” IET Softw., vol. 9, no. 2, pp. 29–38, 2015.

[11] L. Raamesh and G. V Uma, “Reliable mining of

automatically generated test cases from software

requirements specification (SRS),” arXiv Prepr.

arXiv1002.1199, 2010.

[12] A. A. Saifan and others, “Test Case Reduction

Using Data Mining Classifier Techniques.,” JSW, vol.

11, no. 7, pp. 656–663, 2016.

[13] G. Rothermel, M. J. Harrold, J. Von Ronne, and

C. Hong, “Empirical studies of test-suite reduction,”

Softw. Testing, Verif. Reliab., vol. 12, no. 4, pp. 219–

249, 2002.

[14] M. Alian, D. Suleiman, and A. Shaout, “Test case

reduction techniques-survey,” Int. J. Adv. Comput. Sci.

Appl., vol. 7, no. 5, pp. 264–275, 2016.

[15] L. You and Y. Lu, “A genetic algorithm for the

time-aware regression testing reduction problem,” in

2012 8th International Conference on Natural

Computation, 2012, pp. 596–599.

[16] S. Nachiyappan, A. Vimaladevi, and C. B.

SelvaLakshmi, “An evolutionary algorithm for

regression test suite reduction,” in 2010 International

Conference on Communication and Computational

Intelligence (INCOCCI), 2010, pp. 503–508.

[17] A. Kaur and D. Bhatt, “Hybrid particle swarm

optimization for regression testing,” Int. J. Comput.

Sci. Eng., vol. 3, no. 5, pp. 1815–1824, 2011.

[18] R. Nagar, A. Kumar, S. Kumar, and A. S. Baghel,

“Implementing test case selection and reduction

techniques using meta-heuristics,” in 2014 5th

international conference-confluence the next

generation information technology summit

(Confluence), 2014, pp. 837–842.

[19] C. Coviello, S. Romano, G. Scanniello, and G.

Antoniol, “GASSER: Genetic Algorithm for teSt Suite

Reduction,” in Proceedings of the 14th ACM/IEEE

International Symposium on Empirical Software

Engineering and Measurement (ESEM), 2020, pp. 1–6.

[20] Z. Chen, B. Xu, X. Zhang, and C. Nie, “A novel

approach for test suite reduction based on requirement

relation contraction,” in Proceedings of the 2008 ACM

symposium on Applied computing, 2008, pp. 390–394.

[21] B. Vaysburg, L. H. Tahat, and B. Korel,

“Dependence analysis in reduction of requirement

based test suites,” in Proceedings of the 2002 ACM

SIGSOFT international symposium on Software testing

and analysis, 2002, pp. 107–111.

[22] N. F. M. Nasir, N. Ibrahim, M. M. Deris, and M.

Z. Saringat, “Test case and requirement selection using

rough set theory and conditional entropy,” in

International Conference on Computational

Intelligence in Information System, 2018, pp. 61–71.

[23] M. Santosh and R. Singh, “Test Case

Minimization By Generating Requirement Based

Mathematical Equations,” Int. J. Eng. Res. \&

Technol., vol. 2, no. 6, pp. 1180–1188, 2013.

[24] Z. Anwar and A. Ahsan, “Multi-objective

regression test suite optimization with fuzzy logic,” in

INMIC, 2013, pp. 95–100.

[25] A. A. Haider, A. Nadeem, and S. Rafiq, “Multiple

objective test suite optimization: A fuzzy logic based

approach,” J. Intell. \& Fuzzy Syst., vol. 27, no. 2, pp.

863–875, 2014.

[26] A. A. Haider, S. Rafiq, and A. Nadeem, “Test

suite optimization using fuzzy logic,” in 2012

international conference on emerging technologies,

2012, pp. 1–6.

[27] C. Malz, N. Jazdi, and P. Gohner, “Prioritization

of test cases using software agents and fuzzy logic,” in

2012 IEEE Fifth International Conference on Software

Testing, Verification and Validation, 2012, pp. 483–

486.

[28] P. Harris and N. Raju, “A Greedy Approach for

Coverage-Based Test Suite Reduction.,” Int. Arab J.

Inf. Technol., vol. 12, no. 1, 2015.

[29] P. Konsaard and L. Ramingwong, “Total coverage

based regression test case prioritization using genetic

algorithm,” in 2015 12th International Conference on

Electrical Engineering/Electronics, Computer,

Telecommunications and Information Technology

(ECTI-CON), 2015, pp. 1–6.

[30] J. Offutt, J. Pan, and J. M. Voas, “Procedures for

reducing the size of coverage-based test sets,” in

Proceedings of the 12th International Conference on

Testing Computer Software, 1995, pp. 111–123.

[31] B. Jiang, Y. Mu, and Z. Zhang, “Research of

optimization algorithm for path-based regression

testing suit,” in 2010 Second International Workshop

on Education Technology and Computer Science,

2010, vol. 2, pp. 303–306.

[32] S. McMaster and A. Memon, “Fault detection

probability analysis for coverage-based test suite

reduction,” in 2007 IEEE International Conference on

Software Maintenance, 2007, pp. 335–344.

[33] M. Weiser, “Program slicing. IEEE Transactions

on Software Engineering, SE-10 (4): 352--357.” July,

1984.

[34] S. Arlt, A. Podelski, and M. Wehrle, “Reducing

GUI test suites via program slicing,” in Proceedings of

the 2014 international symposium on software testing

and analysis, 2014, pp. 270–281.

BRTSRDM: Bi-Criteria Regression Test Suite Reduction based on Data Mining

185

[35] Z. Chen, Y. Duan, Z. Zhao, B. Xu, and J. Qian,

“Using program slicing to improve the efficiency and

effectiveness of cluster test selection,” Int. J. Softw.

Eng. Knowl. Eng., vol. 21, no. 06, pp. 759–777, 2011.

[36] S. Tallam and N. Gupta, “A concept analysis

inspired greedy algorithm for test suite minimization,”

ACM SIGSOFT Softw. Eng. Notes, vol. 31, no. 1, pp.

35–42, 2005.

[37] S. Xu, H. Miao, and H. Gao, “Test suite reduction

using weighted set covering techniques,” in 2012 13th

ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing, 2012, pp. 307–312.

[38] S. Parsa and A. Khalilian, “A bi-objective model

inspired greedy algorithm for test suite minimization,”

in International Conference on Future Generation

Information Technology, 2009, pp. 208–215.

[39] C.-T. Lin, K.-W. Tang, J.-S. Wang, and G. M.

Kapfhammer, “Empirically evaluating Greedy-based

test suite reduction methods at different levels of test

suite complexity,” Sci. Comput. Program., vol. 150,

pp. 1–25, 2017.

[40] B. Suri, I. Mangal, and V. Srivastava, “Regression

test suite reduction using an hybrid technique based on

BCO and genetic algorithm,” Spec. Issue Int. J.

Comput. Sci. \& Informatics (IJCSI), ISSN, pp. 2231–

5292, 2011.

[41] S. Sampath, R. Bryce, and A. M. Memon, “A

uniform representation of hybrid criteria for regression

testing,” IEEE Trans. Softw. Eng., vol. 39, no. 10, pp.

1326–1344, 2013.

[42] S. Yoo and M. Harman, “Using hybrid algorithm

for pareto efficient multi-objective test suite

minimisation,” J. Syst. Softw., vol. 83, no. 4, pp. 689–

701, 2010.

[43] K. Z. Zamli, F. Din, B. S. Ahmed, and M. Bures,

“A hybrid Q-learning sine-cosine-based strategy for

addressing the combinatorial test suite minimization

problem,” PLoS One, vol. 13, no. 5, p. e0195675,

2018.

[44] D. Panwar, P. Tomar, and V. Singh,

“Hybridization of Cuckoo-ACO algorithm for test case

prioritization,” J. Stat. Manag. Syst., vol. 21, no. 4, pp.

539–546, 2018.

[45] C. Xia, Y. Zhang, and Z. Hui, “Test Suite

Reduction via Evolutionary Clustering,” IEEE Access,

vol. 9, pp. 28111–28121, 2021.

[46] A. Marchetto, G. Scanniello, and A. Susi,

“Combining code and requirements coverage with

execution cost for test suite reduction,” IEEE Trans.

Softw. Eng., vol. 45, no. 4, pp. 363–390, 2017.

[47] Z. K. Zandian and M. Keyvanpour, “Systematic

identification and analysis of different fraud detection

approaches based on the strategy ahead,” Int. J.

Knowledge-based Intell. Eng. Syst., vol. 21, no. 2, pp.

123–134, 2017.

[48] N. Mottaghi and M. R. Keyvanpour, “Test suite

reduction using data mining techniques: A review

article,” in 2017 International Symposium on Computer

Science and Software Engineering Conference (CSSE),

2017, pp. 61–66.

[49] S. Kansomkeat, P. Thiket, and J. Offutt,

“Generating test cases from UML activity diagrams

using the Condition-Classification Tree Method,” in

2010 2nd International Conference on Software

Technology and Engineering, 2010, vol. 1, pp. V1--62.

[50] S. Parsa, A. Khalilian, and Y. Fazlalizadeh, “A

new algorithm to Test Suite Reduction based on cluster

analysis,” in 2009 2nd IEEE International Conference

on Computer Science and Information Technology,

2009, pp. 189–193.

[51] K. Muthyala and R. Naidu, “A novel approach to

test suite reduction using data mining,” Indian J.

Comput. Sci. Eng., vol. 2, no. 3, pp. 500–505, 2011.

[52] U. J. Kameswari, A. Saikiran, K. V. K. Reddy,

and N. Varun, “Novel techniques for test suite

reduction,” Int. J. Sci. Adv. Technol., vol. 1, no. 8,

2008.

[53] R. Dash, R. Dash, and I. Siksha, “Application of

K-mean algorithm in software maintenance,” Int. J.

Emerg. Technol. Adv. Eng., vol. 2, no. 5, 2012.

[54] B. Subashini and D. JeyaMala, “Reduction of test

cases using clustering technique,” Int. J. Innov. Res.

Eng. Technol, vol. 3, no. 3, pp. 1992–1996, 2014.

[55] C. Chantrapornchai, K. Kinputtan, and A.

Santibowanwing, “Test case reduction case study for

white box testing and black box testing using data

mining,” Int. J. Softw. Eng. Its Appl., vol. 8, no. 6, pp.

319–338, 2014.

[56] S. Prasad, M. Jain, S. Singh, and C. Patvardhan,

“Regression optimizer a multi coverage criteria test

suite minimization technique,” Int. J. Appl. Inf. Syst.,

vol. 1, no. 8, 2012.

[57] R. Chauhan, P. Batra, and S. Chaudhary, “An

efficient approach for test suite reduction using density

based clustering technique,” Int. J. Comput. Appl., vol.

97, no. 11, 2014.

[58] P. Harris and N. Raju, “Towards test suite

reduction using maximal frequent data mining

concept,” Int. J. Comput. Appl. Technol., vol. 52, no. 1,

pp. 48–58, 2015.

[59] C. Coviello, S. Romano, G. Scanniello, A.

Marchetto, A. Corazza, and G. Antoniol, “Adequate vs.

inadequate test suite reduction approaches,” Inf. Softw.

Technol., vol. 119, p. 106224, 2020.

[60] N. Chetouane, F. Wotawa, H. Felbinger, and M.

Nica, “On Using k-means Clustering for Test Suite

Reduction,” in 2020 IEEE International Conference on

Keyvanpour et al./ Journal of AI and Data Mining, Vol. 11, No. 2, 2023

186

Software Testing, Verification and Validation

Workshops (ICSTW), 2020, pp. 380–385.

[61] J. Chandrasekaran, H. Feng, Y. Lei, R. Kacker,

and D. R. Kuhn, “Effectiveness of dataset reduction in

testing machine learning algorithms,” in 2020 IEEE

International Conference On Artificial Intelligence

Testing (AITest), 2020, pp. 133–140.

[62] M. Gordan, S. R. Sabbagh-Yazdi, Z. Ismail, K.

Ghaedi, and H. Hamad Ghayeb, “Data mining-based

structural damage identification of composite bridge

using support vector machine,” J. AI Data Min., vol. 9,

no. 4, pp. 415–423, 2021.

[63] A. Hasan-Zadeh, F. Asadi, and N. Garbazkar,

“Investigating Changes in Household Consumable

Market Using Data Mining Techniques,” J. AI Data

Min., vol. 9, no. 3, pp. 341–349, 2021.

[64] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S.

Namin, “Using mutation analysis for assessing and

comparing testing coverage criteria,” IEEE Trans.

Softw. Eng., vol. 32, no. 8, pp. 608–624, 2006.

[65] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M.

A. Alipour, and D. Marinov, “Guidelines for coverage-

based comparisons of non-adequate test suites,” ACM

Trans. Softw. Eng. Methodol., vol. 24, no. 4, pp. 1–33,

2015.

[66] A. Gupta and P. Jalote, “An approach for

experimentally evaluating effectiveness and efficiency

of coverage criteria for software testing,” Int. J. Softw.

Tools Technol. Transf., vol. 10, no. 2, pp. 145–160,

2008.

[67] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M.

A. Alipour, and D. Marinov, “Comparing non-adequate

test suites using coverage criteria,” in Proceedings of

the 2013 International Symposium on Software Testing

and Analysis, 2013, pp. 302–313.

[68] P. Yildirim and D. Birant, “K-linkage: A new

agglomerative approach for hierarchical clustering,”

Adv. Electr. Comput. Eng., vol. 17, no. 4, pp. 77–88,

2017.

[69] Y. Pang, X. Xue, A. S. Namin, Y.-F. Shi, S. Kang,

and P.-P. Song, “A Clustering-Based Test Case

Classification Technique for Enhancing Regression

Testing.,” JSW, vol. 12, no. 3, pp. 153–164, 2017.

[70] Y. Pang, X. Xue, and A. S. Namin, “Identifying

effective test cases through k-means clustering for

enhancing regression testing,” in 2013 12th

International Conference on Machine Learning and

Applications, 2013, vol. 2, pp. 78–83.

[71] A. K. Jain and R. C. Dubes, Algorithms for

clustering data. Prentice-Hall, Inc., 1988.

[72] L. Kaufman and P. J. Rousseeuw, Finding groups

in data: an introduction to cluster analysis, vol. 344.

John Wiley \& Sons, 2009.

[73] Y. Yang, X. Guan, and J. You, “CLOPE: a fast

and effective clustering algorithm for transactional

data,” in Proceedings of the eighth ACM SIGKDD

international conference on Knowledge discovery and

data mining, 2002, pp. 682–687.

[74] M. Hutchins, H. Foster, T. Goradia, and T.

Ostrand, “Experiments on the effectiveness of

dataflow-and control-flow-based test adequacy

criteria,” in Proceedings of 16th International

conference on Software engineering, 1994, pp. 191–

200.

[75] R. Abou Assi, W. Masri, and C. Trad, “Substate

Profiling for Effective Test Suite Reduction,” in 2018

IEEE 29th International Symposium on Software

Reliability Engineering (ISSRE), 2018, pp. 123–134.

[76] S. Parsa and A. Khalilian, “On the optimization

approach towards test suite minimization,” Int. J.

Softw. Eng. its Appl., vol. 4, no. 1, pp. 15–28, 2010.

[77] A. Khalilian and S. Parsa, “Bi-criteria test suite

reduction by cluster analysis of execution profiles,” in

IFIP Central and East European Conference on

Software Engineering Techniques, 2009, pp. 243–256.

[78] M. Harman, S. A. Mansouri, and Y. Zhang,

“Search-based software engineering: Trends,

techniques and applications,” ACM Comput. Surv., vol.

45, no. 1, pp. 1–61, 2012.

[79] I. Hamzaoglu and J. H. Patel, “Test set

compaction algorithms for combinational circuits,”

IEEE Trans. Comput. Des. Integr. Circuits Syst., vol.

19, no. 8, pp. 957–963, 2000.

[80] S. U. R. Khan, S. P. Lee, N. Javaid, and W. Abdul,

“A systematic review on test suite reduction:

Approaches, experiment’s quality evaluation, and

guidelines,” IEEE Access, vol. 6, pp. 11816–11841,

2018.

[81] M. R. Keyvanpour, H. Homayouni, and H.

Shirazee, “Automatic software test case generation: An

analytical classification framework,” Int. J. Softw. Eng.

Its Appl., vol. 6, no. 4, pp. 1–16, 2012.

[82] M. Marré and A. Bertolino, “Using spanning sets

for coverage testing,” IEEE Trans. Softw. Eng., vol. 29,

no. 11, pp. 974–984, 2003.

[83] M. Kalkov and D. Pamakha, “Code coverage

criteria and their effect on test suite qualities,” 2013.

[84] K. Wang, C. Xu, and B. Liu, “Clustering

transactions using large items,” in Proceedings of the

eighth international conference on Information and

knowledge management, 1999, pp. 483–490.

[85] I. Hooda and R. Chhillar, “A review: Study of test

case generation techniques,” Int. J. Comput. Appl., vol.

107, no. 16, 2014.

 .1402سال ،دوم شماره هم،دوره یازد ،کاویمجله هوش مصنوعی و داده و همکاران پور کیوان

 کاویکاهش مجموعه آزمون رگرسیون دو معیاره مبتنی بر داده

 2نسرین متقی و 2زهرا کریمی زندیان، ،*1پورمحمدرضا کیوان

 .ایران، تهران، دانشگاه الزهرا، فنی و مهندسیوه مهندسی کامپیوتر، دانشکده گر 1

 .ایران، تهران، دانشگاه الزهرا، فنی و مهندسیوه مهندسی کامپیوتر، دانشکده گرکاوی، آزمایشگاه داده 2

 15/01/2023 پذیرش؛ 09/12/2022 بازنگری؛ 21/10/2022 ارسال

 چکیده:

که دقتت و عملکترد یشوند، در حالیحذف م یضرورریمرحله موارد زائد و غ نیدر تست نرم افزار است. در ا یمرحله ضرور کی ونیکاهش آزمون رگرس

 یشتارائته رو نتهیزم نیتدر ا یارائه شده است. چالش اصتل ونیکاهش تست رگرس نهیدر زم یمختلف یقاتیتحق ی. تاکنون کارهاابدیینرم افزار کاهش نم

بتر دیتکاهش مجموعته آزمتون د کیتکن کیمقاله، نیحال مجموعه آزمون را کاهش دهد. در ا نیرا حفظ کند و در ع بیع صیتشخ تیاست که قابل

 یبنتدو طبقه یبندآن هم با استفاده از خوشته بیع صیتشخ تیقابل ،زمونروش علاوه بر کاهش مجموعه آ نیشده است. در ا شنهادیپ یکاواساس داده

. در هتر ستح ، ابتدییدر دو ستح کتاهش مت ارهیتدو مع یکتاوبتر داده یبا استفاده از روش مبتن ونیموارد آزمون رگرس کرد،یرو نی. در اشودیحفظ م

 موعتهمج یخحتا صیتشخ ییاندازه مجموعه آزمون و توانا انیمصالحه بهتر م جادیا یبرا یدیمتفاوت و مف یبندخوشه یهاتمیپوشش و الگور یارهایمع

 ییکتارا هتاشیشتده استت. آزما ستهیمقا PFDLو PSTRبر اساس گریبا اثرات پنج روش د یشنهادیروش پ جی. نتاشودیاستفاده م افتهیآزمون کاهش

 .دهدینشان م بیع صیآن در تشخ تیرا در کاهش مجموعه آزمون با حفظ قابل یشنهادیروش پ

 .بندیبندی، طبقهکاوی، معیار پوشش، خوشهکاهش مجموعه آزمون، نرم افزار، داده :کلمات کلیدی

