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 Regression testing reduction is an essential phase in software testing. 

In this step, the redundant and unnecessary cases are eliminated, 

whereas software accuracy and performance are not degraded. So far, 

various research works have been proposed in the regression testing 

reduction field. The main challenge in this area is to provide a method 

that maintains fault-detection capability, while reducing test suites. In 

this paper, a new test suite reduction technique is proposed based on 

data mining. In this method, in addition to test suite reduction, its fault-

detection capability is preserved using both clustering and 

classification. In this approach, regression test cases are reduced using 

a bi-criteria data mining-based method in two levels. In each level, the 

different and useful coverage criteria and clustering algorithms are 

used to establish a better compromise between test suite size and the 

ability of reduced test suite fault detection. The results of the proposed 

method are compared with the effects of five other methods based on 

PSTR and PFDL. The experiments show the efficiency of the proposed 

method in the test suite reduction in maintaining its capability in fault 

detection. 
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1. Introduction 

As the software and applications are progressing, 

the demands for developing more reliable ones 

with fewer faults are increasing. On the other 

hand, with software development, its performance 

may be decreased or some parts of software 

changed undesirably. To evolve, maintain the 

software, and evaluate its quality, software 

testing, and especially regression testing are the 

essential activities [1][2][3]. They run the 

program to find errors or faults [4]. Software 

testing includes some levels, which are shown in 

Figure 1. One of the levels is regression including 

three manners: test case selection, prioritization, 

and reduction [5]. One of the main challenges in 

regression testing is that as the test suite evolves, 

so does its size [6]. Not only is executing all of 

these test cases unnecessary or redundant [7], but 

it also takes much time and huge costs. Therefore, 

test suite reduction is an essential solution [8], 

which is carried out immediately after test suite 

creation or after first regression test. 

 

Figure 1. Different levels in software testing. 

The declining test cases lead a sufficient subset to 

be identified. This powerful subset is used in the 

software maintenance phase and decreasing the 
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cost of software tests. In contrast, test suite 

reduction should not lessen the software accuracy 

and performance [9][10]. Indeed, this subject is 

the main challenge in test suite reduction. So far, 

different techniques have been proposed to reduce 

test suite. Their main idea is to remove repeated or 

unnecessary test cases based on a particular 

criterion. One of the test suite techniques is based 

on data mining. The significant feature of the 

methods based on data mining is to extract hidden 

patterns of test cases, and find the similarity 

between them, automatically and intelligently 

[11][12]. On the other hand, test coverage has 

attracted the attention of the researchers as a 

means of ensuring that the testing process is 

adequate. Test coverage is to measure the amount 

of program execution by tests. 

Test coverage level is an indicator of test accuracy 

that helps testers decide when to stop testing. 

Thus several coverage criteria have been 

developed in the recent years. The effort of the 

test community is more focused on producing the 

coverage criteria. Therefore, in this paper, a new 

test suite reduction method is proposed based on 

data mining on two levels with two coverage 

criteria to use the advantages of both approaches. 

Using the data mining technique can help to 

reduce test suits more accurately, and coverage 

based approach can lead to reduce more quickly. 

In this method, test cases are divided into efficient 

and non-efficient ones for fault detection. Only 

efficient test cases are used in regression testing. 

According to the proposed method, after test case-

classification, to remove repeated and unnecessary 

test cases and test suite reduction; useful cases are 

only chosen from the efficient group. Other test 

cases are maintained, and test suites are prioritized 

and used in necessary times to avoid lessening 

accuracy of fault detection. In this work, hierarchy 

clustering, K-means, and CLOPE algorithms as 

data mining techniques are utilized. The results 

show the efficiency of the proposed method in 

reducing test suites with maintaining its capability 

in fault detection. The rest of the paper is 

organized as what follows. In Section 2, the 

related works are discussed. In Section 3, the 

proposed method is introduced. Experiments and 

evaluation results are presented in Section 4, 

followed by the concluding remarks in Section 5. 

 

2. Related Works 

Before explaining the related works, the test suite 

reduction (TSR) problem needs to be defined. As 

mentioned in [13], suppose that 𝑇 is a test suite; 

𝑟1, 𝑟2, … , 𝑟𝑛 are test requirements, which must be 

considered to provide the software testing, and 

subsets of  𝑇, 𝑇1, 𝑇2, … , 𝑇𝑛, one associated with 

each of the 𝑟𝑖𝑠 such that any one of the test cases 

𝑡𝑗 belonging to 𝑇𝑖 can be used to test 𝑟𝑖. The 

problem is to find a minimum set of test cases 

from 𝑇 that satisfies all 𝑟𝑖𝑠. 

To date, different methods have been proposed for 

regression testing reduction, which can basically 

be divided into two categories: pre-processing 

reduction techniques and post-processing 

reduction techniques. In pre-processing reduction, 

test suites are reduced after test suite creation 

immediately. In contrast, in post-processing 

reduction, the test suits are first made, and the first 

regression testing is run, and then unnecessary test 

cases are removed. From another viewpoint, based 

on the study in [14], regression testing reduction 

methods can be divided into eight categories 

based on the main idea proposed in them. Figure 2 

shows this classification. 

 
Figure 2. Regression testing reduction classification.

−Genetic algorithm-based methods: Some 

researchers have used evolutionary algorithms, 

mostly genetic algorithms, to test suite creation 

and reduction automatically. The genetic 
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algorithm-based methods usually need to study 

fault detection capabilities. The researchers in 

[15] proposed a new time-aware regression 

reduction method based on a genetic algorithm. 

Based on the proposed method in this work, 

redundant test cases are removed in the 

regression testing suite, and the total running 

time of the remaining test cases is minimized. 

According to [16], the researchers have 

proposed a genetic-based method for regression 

testing reduction. In this method, the history of 

tests is used for population initialization. 

Finally, only the fit tests created from this 

algorithm are allowed to the reduced suite. 

Kaur et al. [17] have proposed a new 

evolutionary-based method called HPSO for 

regression testing reduction. In this paper, a 

combination of Particle Swarm Optimization 

(PSO) and Genetic Algorithm (GA) are used to 

widen the solution’s search space. 

Nagar et al. [18] have proposed a novel method 

based on PSO and GA as meta-heuristic 

approaches. In this method, PSO and GA are 

utilized to choose a minimum set of test cases 

covering all the faults and bugs in minimum 

time. 

Coviello et al. [19] have proposed a new 

algorithm called GASSER based on genetic 

algorithm. This is a multi-objective evolutionary 

algorithm, which is used to reduce test suite and 

minimize its size. The genetic-based algorithms 

generally reduce the test cases quickly. In 

addition, they are often used and appropriate to 

investigate fault detection ability and big data. 

−Requirement-based methods: The purpose of 

regression testing reduction is to consider all 

initial requirements, while reducing unnecessary 

test cases. Some researchers propose methods 

based on the test requirements for regression 

reduction. Indeed, in these methods, the 

researchers usually propose a method to 

optimize the test requirements. In [20], for test 

requirement optimization, a relation graph has 

been used. According to [21], the researchers 

have proposed a method based on the 

requirement that reduces test cases using EFSM 

dependence analysis. This method uses the parts 

of the model that affect test requirements. 

In [22], Nasir et al. have proposed a technique 

that minimizes the test cases and requirement 

attributes without compromising fault detection 

capability. In this method, a conditional 

entropy-based similarity measure is introduced 

for requirement reduction. The researchers in 

[23] have presented a new method for test suite 

reduction based on requirements. In this 

method, the test case-requirement matrix is 

mapped to form the mathematical equation(s), 

which are obtained from some optimized 

constraints. Generally, some of these algorithms 

acquire more time and memory to reduce test 

cases. 

−Fuzzy logic-based methods: Some methods 

use fuzzy logic for suite case reduction and 

optimization. Anwar et al. [24] have proposed a 

method based on fuzzy logic for multi-objective 

optimization of regression test suites. Haider et 

al. [25] have suggested a fuzzy-based 

optimization approach that safely combines all 

path coverage criteria to reduce a test suite to a 

single solution. The researchers in [26] have 

proposed an intelligent method that finds a 

trade-off among the quality aspects, technique 

used, and testing level based on an objective 

function using fuzzy logic-based classification. 

In [27], the researchers have proposed a method 

of automated prioritization of test cases based 

on fuzzy logic. In this method, the prioritization 

order is chosen, which increases the fault 

detection rate. By investigating these methods, it 

is clear that fuzzy logic-based algorithms are 

safe and decrease regression testing size and 

runtime. However, more investigation is 

required to obtain desirable results. 

−Coverage-based methods: Some methods 

focus on the coverage aspect of suite case 

reduction. These techniques ensure that majority 

of the execution paths of the given program are 

exercised [28]. Harris et al. [28] have proposed 

a new method based on coverage for test suite 

reduction. In this method, after identifying a 

suitable and optimal test set, data flow testing is 

applied to generate the program’s physical 

structure and locate sub-paths. These paths are 

used for test suite reduction. According to [29], 

the researchers have presented an algorithm to 

prioritize test cases based on total coverage 

using a modified genetic algorithm. Total 

coverage in this method refers to choosing test 

cases based on their ability to cover more faults 

and maximize code coverage. The researchers in 

[30] have proposed a coverage based method for 

test case reduction. In this method, after test 

case generation, some proposed heuristics are 

used to reduce test set sizes based on reordering 

the test execution sequences. Jiang et al. [31] 

believed that for test case minimization, the test 

cases must make just choices and reorder them 

to provide the same software coverage as the 

original test suite for the regression testing. In 

[32], various coverage criteria have been 

proposed for test suite reduction. These methods 
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are not suitable for large systems due to the high 

time and cost of reducing test cases. 

−Program slicing-based methods: Program 

slicing is a method for automatically 

decomposing programs by analyzing their data 

flow and control flow [33]. Some researchers 

use this capability for test suite reduction. Arlt 

et al. [34] have proposed a refined static 

analysis approach based on program slicing for 

test suite reduction. In this method, a slicing-

based test suite reduction algorithm is proposed 

that identifies redundant event sequences. In 

[35], program slicing has been used to select 

useful and practical test cases. The program 

slicing filters the execution profile of each test 

case by highlighting the parts of the software 

affected. By choosing valuable slices, they 

could reduce test cases for fault detection. 

Generally, they are often suitable to peruse fault 

detection ability and big data. 

−Greedy algorithm-based methods: According 

to [36], a new greedy heuristic algorithm has 

been presented for selecting a minimal subset of 

a test suite. In this method, a concept analysis 

framework is used. Xu et al. [37] have used 

some weighted greedy-based algorithms for 

removing redundant test cases. In [38], the 

researchers focused on the challenge of 

significantly reduced fault detection efficacy by 

suite size reduction. In order to solve this 

problem, a greedy algorithm has been presented 

in this paper, aimed at selecting a test case that 

satisfies the maximum number of testing 

requirements, while having a minimum overlap 

in requirements coverage with other test cases. 

The researchers in [39] have used some greedy 

based methods to improve suite case reduction 

costs, and compared them. The greedy 

algorithms choose the test cases randomly in the 

same situations. In addition, they must be 

optimized for large test sets. These cases are the 

disadvantages of greedy algorithm-based 

methods. 

−Hybrid algorithms: Some researchers have 

presented new methods for suite case reduction 

based on more than one technique and using the 

advantages of a combination of them. In [40], 

the researchers proposed a method based on 

genetic and bee colony algorithms for test suite 

reduction. Sampath et al. [41] have proposed a 

hybrid method based on the Rank, Merge, and 

Choice techniques. Yoo et al. [42] have 

presented a hybrid, multi-objective genetic 

algorithm that combines the efficient 

approximation of the greedy approach with the 

capability of a population-based genetic 

algorithm to produce higher-quality Pareto 

fronts. Zamli et al. [43] have proposed a new 

hybrid Q-learning sine-cosine-based strategy, 

called the Q-learning sine-cosine algorithm, to 

solve the test suite minimization problem. 

Panwar et al. [44] have suggested the Cuckoo 

Search (CS) algorithm followed by Modified 

Ant Colony Optimization (M-ACO) algorithm 

to conclude the test cases in an optimized order 

in a time-constrained environment. Xia et al. 

[45] have proposed a new method based on K-

means and evolutionary algorithm for test suite 

reduction. They used K-means to find similar 

test cases and utilized evolutionary algorithm to 

remove redundant test cases. Due to 

combination of some techniques, hybrid 

algorithms have high complexity. Marchetto et 

al. [46] have proposed a hybrid method called 

MORE+. This method is based on multi-

objective test suite reduction. MORE+ is a 

three-dimension approach: structural test suite 

reduction, functional test suite reduction, and 

investigating the cost and concerns the time to 

execute test cases. In this method, a genetic 

algorithm-based and application requirement-

based approaches are used to reduce test suites. 

−Data mining-based methods: Data mining is a 

process that uses data analysis tools to uncover 

hidden patterns and relationships among data 

including test cases that may lead to extracting 

new information and similarities between them 

[47]. This capability has led some researchers to 

use this technique for suite case reduction [11]. 

By investigating the methods based on data 

mining in this field in [48], these techniques can 

be divided into classification, clustering, and 

mining frequency itemset. Kansomkeat et al. 

[49] have proposed the condition-classification 

tree method for generating test cases from 

activity diagrams. Parsa et al. [50] have 

presented a new algorithm that clusters test 

cases based on the similarity of their execution 

profiles and samples some representatives to 

form the reduced test suite. Coviello et al. [1] 

have proposed a clustering based approach for 

test suite reduction and several instances of the 

process underlying this approach. The proposed 

approach groups together test cases that are 

similar and redundant into a cluster. Saifan [12] 

has used two data mining classifiers, Na¨ıve 

based, and J48 for test case reduction. In 

[51][52][53][54][55][56], the researchers have 

proposed the K-means algorithm for test case 

reduction. In [57], a density-based clustering 

approach is presented to reduce the test suite. 

The researchers in [10] have proposed cluster 
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analysis of three different structural profiles: 

function execution sequence, function call 

sequence (FCS), and the function call tree. In 

[58], Harris et al. have proposed a test suite 

reduction approach based on maximal frequent 

item-set mining. This algorithm was proposed to 

select a test suite with maximum frequency. 

 

3. BRTSRDM: Proposed Regression Test Suite 

Reduction Method  

Increasing accuracy and speed with low cost is the 

main challenge in regression test suite reduction 

[59][60]. On the other hand, data mining extracts 

hidden patterns of test cases, and reduces test suite 

size [47][61][62][63]. Therefore, this paper 

proposes a new method that uses both 

classification and clustering as two data mining-

based regression test suite reduction methods. 

With these techniques, the proposed method does 

not remove unnecessary or duplicated test cases 

permanently. This reduces test suit size and 

regression test cost, maintaining fault detection 

ability in test suite. As shown in Figure 3, the 

original test suite (TS), program source code 

(PSC), and Test items, which failed in the 

previous program execution are inputs of the 

BRTSRDM method. The output of the technique 

constitutes a reduced test suite (RTS).  

 
Figure 3. General structure of the BRTSRDM method. 

Accordingly, as specified in Figure 3 and 

mentioned before, the proposed method uses two 

coverage criteria for test suite reduction. 

Therefore, BRTSRDM involves two phases: 

regression test suite reduction based on the first 

and second coverage criteria. In the first phase, 

the proposed data mining based method is applied 

based on the early coverage criterion. In the 

second phase, another proposed data mining based 

approach is used based on the second coverage 

criterion for test suite reduction.  

3.1. Regression test suite reduction based on 

branch coverage criterion 

According to Figure 4, PSC, TS, and Test items 

that failed in the previous program execution are 

sent as inputs to this phase. Efficient Test cases 

(𝐸𝑇1) and Non- Efficient Test cases (𝑁𝑇1) are its 

outputs. As shown in Figure 4, this phase includes 

three steps: pre-processing, clustering, and 

classifying. According to the proposed method, 

the first test cases are divided into two clusters in 

this phase. By test items that failed in the previous 

program execution, these clusters are labeled as 

efficient or inefficient. Clustering before 

classification causes accuracy to be increased, and 

decreases the time needed to determine efficient 

test cases. The combination of both methods 

makes use of the advantages of both. Although the 

methods based on clustering reduce test cases, 

they decrease fault detection ability. Against, the 

classification methods impose high cost on test 

case labeling, repeatedly and unnecessarily. 

Consequently, in this paper, a hybrid method 

based on clustering and classification is proposed 

to increase the classification accuracy of test 

cases. 

  

Figure 4. Block diagram of regression test suite reduction 

based on branch coverage criterion in BRTSRDM. 

3.1.1. Pre-processing in first phase  

As illustrated in Figure 5, PSC and TS are the 

inputs for the pre-processing step, and the Matrix 

mapping test cases into branch coverage 

(MMTBr) is the output. The pre-processing stage 

includes choosing the branch coverage criterion, 

source code instrumentation based on branch 

coverage criterion, and test case execution on the 

source code, extraction of executive profiles of 

test cases, and creation of matrix mapping test 

cases into branch coverage. 
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Figure 5. Block diagram of pre-processing in regression 

test suite reduction based on branch coverage criterion. 

−Choosing branch coverage criterion: The 

programs used in this research work are based 

on the C language, have a comprehensive test 

suite, and the faults produced for them are of the 

implanted type. On the other hand, previous 

research works [64] [65][66][67] show that the 

branch coverage criterion is more effective, and 

has lower overhead than others for these 

programs and features. Therefore, according to 

the proposed method, the branch coverage 

criterion is chosen in this step. In addition, in 

the experiment part, we will investigate the 

effect of this coverage criterion in the first phase 

on the test suite reduction. As shown in Figure 

5, inputs of this step are PSC and TS. The 

branch coverage criterion (BrCC) is the output. 

−Source code instrumentation and test case 

execution on source code: One instrumentation 

collects profiles of the test cases to find the 

sensitive points of codes, and analyzes or 

optimizes code coverage. In this step, all 

program source codes are instrumented to obtain 

test case execution profiles based on the chosen 

coverage criterion in the previous step. After 

that, the test cases run on the source codes. The 

output of this step for each source code and each 

test case is a file containing the number of runs 

and branches reached by the test case. This 

information is specified as the coverage 

information file (CIF) in Figure 5. 

−Creation of matrix mapping test cases into 

branch coverage: The purpose of this step is to 

create a matrix where each row is related to one 

test case, and each column is relevant to one 

branch of the program. If one test case 

coverages a branch, the corresponding cell is 

specified by ’covered’. If not, the considered 

cell is indicated by ’uncovered’. The input of 

this step is CIF, and matrix mapping test cases 

into branch coverage (MMTBr) is the output. 

 

3.1.2. Clustering in first phase  

In this step and according to the proposed method, 

test cases are clustered based on two algorithms, 

agglomerative hierarchical clustering algorithm, 

and K-means. As shown in Figure 4, MMTBr is 

the input, and two clusters are the outputs. The 

clustering algorithms identify similarities or 

dissimilarities between each two test cases based 

on branch coverage information. To determine 

similarity criteria, various functions are suitable 

for different fields. For instance, the Jaccard 

distance function is appropriate for categorical 

values. The Levenshtein function is used for string 

values, and the Euclidean distance function is 

suitable for numerical and cosine values [68]. 

Many researchers in the test suite reduction field 

have used the Euclidean distance function, as in 

[12][69][51][70][55]. Considering the vast 

research, it can be concluded that Euclidean 

distance function is powerful in similarity 

identification between test cases, is simple, and 

has a lower complexity than other functions. 

Therefore, this function is used as a similarity 

criterion in this paper. Hierarchical clustering 

provides investigating data at different levels of 

details. One kind of this algorithm is 

agglomerative [71][72]. Agglomerative 

hierarchical clustering algorithm starts with 

singleton clusters, and merges two or more 

suitable clusters, recursively. Hierarchical 

clustering proposes a hierarchical structure of 

clusters that include more information about 

clusters than a non-structured collection of 

clusters offered by non-hierarchical methods. 

Another advantage of hierarchical clustering is 

being appropriate for data with high dimensions 

[68]. These points make the agglomerative 

hierarchical clustering algorithm appropriate to be 

used in the paper as one of the clustering 

algorithms for test case reduction. To merge or 

split the clusters in this algorithm, there are three 

main linkage criteria: single linkage, complete 

linkage, and average linkage. The third one 

completes the other ones. The equations below 

explain these criteria, respectively. 

1 2 1 2
( , ) min ( , ) ,d C C d r s r C s C    (1) 

 

1 2 1 2
( , ) max ( , ) ,d C C d r s r C s C    (2) 

1 2

1 2 1 2

1 11 2

1
( , ) ( , ) ,

n n

r s

d C C d r s r C s C
n n  

    (3) 

where 𝑑 is distance, 𝐶𝑖 is 𝑐𝑙𝑢𝑠𝑡𝑒 𝑟𝑖, and 𝑛𝑖 is the 

number of 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖’s members. Given that we 

need a method to identify efficient and non-

efficient test cases in test case reduction and that 
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the numbers of clusters are straightforward, using 

a simple method like K-means could be useful as 

another clustering algorithm. Therefore, in this 

paper, test cases are clustered based on 

agglomerative hierarchical clustering algorithm 

and K-means. 

 

3.1.3. Classifying in first phase 

The inputs in this step are clusters created in the 

previous step (𝐶) and test items that failed in the 

previous program execution. The outputs are 𝐸𝑇1 

and 𝑁𝑇1. The purpose of the classifying step is to 

label the clusters made in the clustering step. 

Using test cases that have failed in the previous 

program run, the clusters are classified into 𝐸𝑇1 

and 𝑁𝑇1. Test items failed in the previous 

program execution are efficient test cases. 

Therefore, the cluster including the efficient test 

cases is labeled as 𝐸𝑇1, and the cluster covering 

non-efficient ones is labeled as 𝑁𝑇1. 

 

3.2. Regression test suite reduction based on 

block coverage criterion 

As shown in Figure 6, the inputs of the second 

phase of BRTSRDM are PSC, 𝐸𝑇1, and test items 

that failed in the previous program execution. 

Reduced test suites (RTS) are the output. In fact, 

the test suite of 𝐸𝑇1 obtained from the first phase 

and target program source code are two main 

inputs. The purpose of this phase is to propose a 

better trade-off between test suite size and the 

ability of reduced test suite fault detection. As 

noted before, these points are the main challenges 

in this field. 

Given that 𝐸𝑇1 extracted from the first phase may 

consist of inefficient or repeated test cases, they 

are clustered in this phase. In the next step, these 

clusters are prioritized. This prioritizing prevents 

a decrease in the ability of fault detection. As 

depicted in Figure 6, regression test suite 

reduction based on the second coverage criterion 

phase involves four steps: pre-processing, 

clustering, classifying, and clusters prioritizing 

and test cases running. 

 

3.2.1. Pre-processing in second phase 

Figure 7 shows that the inputs of the pre-

processing step are PSC and 𝐸𝑇11. The matrix 

mapping test cases into block coverage (MMTBl) 

is the output. This step includes choosing block 

coverage criterion, source code instrumentation, 

and test cases execution on the source code, and 

creation of matrix mapping test cases into block 

coverage. The pre-processing step in the second 

phase is the same as this step in the first phase but 

it has some differences: 

 
Figure 6. Block diagram of regression test suite reduction 

based on block coverage criterion in BRTSRDM. 

 
Figure 7. Block diagram of pre-processing in regression 

test suite reduction based on block coverage criterion. 

−In the first and second steps, the output of the 

first phase, namely efficient test cases extracted 

from the first phase, is one of the inputs. 

−In the first step, the block coverage criterion is 

chosen, and in the second step, the source code 

is instrumented based on this criterion. 

−The output of the third step is matrix mapping 

test cases into block coverage. 

According to [68], in block and branch coverage 

criteria, the relation between fault detection and 

test suite size is the same, which means these 

criteria identify the same percentage of faults for 

the same test suite size. Therefore, in the second 

phase, in this paper, the block coverage criterion 

is used to fulfill the branch coverage criterion 
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used in the first phase by receiving efficient test 

cases obtained from that phase as the input. 

 

3.2.2. Clustering in second phase 

In this step, by receiving MMTBl from the pre-

processing step, clustering is done to increase the 

accuracy of choosing useful and efficient test 

cases, while reducing the unnecessary ones. 

According to the proposed method, for clustering 

in this phase, the CLOPE algorithm is used. The 

CLOPE clustering does not need to determine the 

numbers of clusters by the users. It is suitable for 

big datasets, is not sensitive to data ordering, and 

does not require domain knowledgement to 

control the number of clusters [73]. These features 

motivated us to use this technique in this work 

and this phase. Using this algorithm in the test 

case reduction field makes clustering fast and the 

final clusters remarkable. Figure 8 shows the 

examples of CLOPE and K-Means clustering. 

 
(a) 

 
(b) 

Figure 8. Examples of CLOPE and K-means clustering. 

−𝑖 is an item in a special cluster. 

− 𝑊(𝐶) is width of cluster, namely the number of 

unique items in the cluster. 

− 𝑂𝑐𝑐(𝑖, 𝐶) is the number of occurrences of a 

unique item in the cluster. 

−𝑃(𝐶) is power of cluster, namely the sum of 

𝑂𝑐𝑐(𝑖, 𝐶) for each unique item. 

− 𝐻(𝐶) is height of cluster, namely 𝑃(𝐶)/𝑊(𝐶). 

To define the criterion function of a clustering in 

CLOPE algorithm, 𝑃𝑟𝑜𝑓𝑖𝑡𝑟(𝐶) is used, where 𝑟 is 

a positive real number called repulsion, used to 

control the level of intra-cluster similarity [73]. 
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(4) 

Figures 9 and 10 show pseudo-codes of CLOPE 

and K-means algorithms. 

 
Figure 9. Pseudo-code of CLOPE algorithm [73]. 

 
Figure 10. Pseudo-code of K-means algorithm [69]. 

3.2.3. Classifying in second phase 

As mentioned in Figure 6, clusters created from 

the clustering step (𝐶) and test items that failed in 

the previous program execution are the classifying 

step inputs. In this phase, the clusters are 

classified and labeled as efficient or inefficient 

clusters. The clusters including efficient test cases 

(test items failed in the previous program 

execution) are labeled as 𝐸𝑇2, and the clusters 

including inefficient test cases are labeled as 𝑁𝑇2. 
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3.2.4. Clusters prioritizing and test case 

running 

In this step, the clusters created and classified 

must be used for program testing. The flowchart 

of this step is shown in Figure 11.  

 
Figure 11. Flowchart of clusters prioritizing and test cases 

running in regression test suite reduction based on block 

coverage criterion. 

𝐸𝑇2 obtained from the previous step is the input of 

this step. According to the proposed method, these 

clusters are prioritized based on the number of 

efficient test cases. In some proposed methods for 

test suite reduction, the test suite is divided into 

some clusters but one test case in each cluster is 

used for running on the program. It is believed 

that all test cases in a cluster cover a similar 

requirement. Despite reducing the high percentage 

of test suite size, the results show that this 

approach decreases the fault detection ability 

[54][53][52][51]. Therefore, in this paper, instead 

of using an algorithm or filter to choose one test 

case from each cluster, the clusters are prioritized 

to obtain a trade-off between test suite size 

reduction and the ability of fault detection. 

According to BRTSRDM, the set of prioritized 

𝐸𝑇 clusters (PCL) includes 𝐸𝑇2 clusters 

prioritized, descending (Equation 5). 

1 2
{ , ,..., }

n
PCL CL CL CL  (5) 

 

The cluster with the highest priority is chosen to 

execute the program. Suppose the faults existing 

in the fault set are detected by the main test suite, 

i.e. detected by test cases existing in this cluster. 

In that case, the number of faults detected in this 

cluster is calculated, and this number is reduced 

from the number of members of the fault set. 

After that, these faults are eliminated from the 

fault set (Equations 6 and 7). 

FaultSet FaultSet DetectedFaultsn n n   (6) 

 

{ }FaultSet FaultSet DetectedFaults   (7) 
 

This process continues until the fault set is empty 

or all prioritized clusters are chosen. If all clusters 

are chosen, but the fault set is not empty, the 

reduced test suite extracted from this method 

cannot identify all program faults. The reduced 

test suite (RTS) is the output of this step. 

According to the proposed method, after test suite 

reduction, RTS is used for the new program 

testing version. It is clear that by reducing test 

suite, fault detection ability decreases in that main 

test suite. However, as mentioned earlier, the main 

purpose of proposing BRTSRDM is to present a 

new test suite reduction method, while 

maintaining that the ability of fault detection is 

maintained. 

 

4. Experiments 

In this section, 3 main parts are presented. In the 

first part, the data set used in this paper for testing 

the proposed system is explained. In the second 

part, the evaluation criteria are introduced. In the 

last part, the results are provided. Different test 

methods are introduced and the results obtained 

are analyzed and compared with each other based 

on the evaluation criteria, in this part. 

 

4.1. Dataset 

Dataset or source codes used in this paper are four 

C language source codes. The features of these 

source codes are presented in Table 1. These 

programs have code lines between 138 and 402. 

Each program includes some faulted versions that 

have one fault. The programs have comprehensive 

test pools. These programs, versions, and pools 

are collected by the Siemens research company 

[74]. The researchers’ purpose in this company 

has been to study the effectiveness of detecting 

coverage criteria faults; therefore, they 

manufactured the programs’ versions and injected 
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the fault into them. These faults are real as much 

as possible. Some researchers in some 

experiments have used these source codes, like 

[8][75][76][50][77][74][78][79]. 

Table 1. Description of the programs used. 

Subject 
Test suite 

size 

Source code 

line number 
Program 

Information 
measurement 

1608 138 tcas 

Height 

separation 
1052 346 totinfo 

Priority 

scheduler 
2710 297 schedule2 

Lexical analysis 4130 402 printtokens1 

 

4.2. Evaluation criteria 

The standard and popular criteria are used to 

evaluate the proposed methods in the test suite 

reduction field. In order to investigate the 

efficiency of the proposed method, examining the 

percentage of test suit reduction (PTSR) with the 

percentage of fault detection capability (PFDC), 

the percentage of fault detection loss (PFDL) or 

percentage of coverage achieved (PCOV) will be 

useful [80]. There are some standard criteria in 

data mining to evaluate clustering and 

classification methods: accuracy, precision, and 

recall. In this paper, to evaluate the efficiency, 

PTSR, PFDC, and performance of the proposed 

classification method, accuracy, precision, and 

recall are used. 

−Percentage of Test Suit Reduction (PTSR): In 

each test suite reduction method, the primary 

purpose is to obtain a reduced test suite (RS) 

from the main test suite (T). This means the 

effectiveness of a test suite reduction method 

could be calculated based on RS measurement 

[80]. 

( )
(1 ) *100

( )

Size RS
PTSR

Size T
   (8) 

−Percentage of Fault Detection Capability 

(PFDC) or Percentage of Fault Detection Loss 

(PFDL): other criteria for the proposed method 

evaluation are PFDC and PFDL. These two 

criteria complement each other. PFDC and 

PFDC are calculated according to Equations 9 

and 10, respectively. 

 

det
( )

det

number of faults ected by RS
PFDC

total number of faults ected by TS

  (9) 

 

det
(1 )

det

number of faults ected by RS
PFDL

total number of faults ected by TS

   (10) 

 

Before explaining accuracy, precision, and recall, 

it is necessary to present the essential 

classification evaluation criteria. Four criteria are 

used for calculating accuracy, precision, and recall 

namely, True Positive (TP), True Negative (TN), 

False Positive (FP), and False Negative (FN). 

Table 2 displays these criteria. 

Table 2. Description of the essential classification 

evaluation criteria. 
Really 

efficient 

 Really 

inefficient 
Test case 

TP 
 

FP 
Predicted as 

efficient 

FN 
 

TN 
Predicted as 

inefficient 
 

−Accuracy: the essential criterion for evaluating 

any classification algorithm is accuracy, 

calculated based on Equation 11. 
TP TN

Accuracy
TP FP FN TN




  
 (11) 

 

where TN is the number of inefficient test cases 

that are labeled ’inefficient’ correctly. TP is the 

number of efficient test cases that are labeled 

’efficient’ correctly. FP is the number of 

inefficient test cases that are labeled ’efficient 

incorrectly. FN is the number of efficient test 

cases that are incorrectly labeled ’inefficient’. 

−Precision: As shown in Equation 12, it is the 

number of test cases correctly labeled as 

belonging to the efficient class (TP) divided by 

the total number of test cases labeled as 

belonging to the efficient class. 

Pr
TP

ecision
TP FP




   (12) 

−Recall: The number of true positives (efficient) 

divided by the total number of test cases that 

actually belong to the positive (efficient) class 

(Equation 13). 

Re
TP

call
TP FN




 (13) 

 

4.3. Experiments results 
In order to evaluate the proposed method, five 

tests were designed and run. In Test 1, the effect 

of different clustering methods on the 

classification in the first phase of the BRTSRDM 

method is investigated based on accuracy, 

precision, and recall. Test 2 investigates the effect 

of different coverage criteria in the first phase of 

the proposed test suite reduction based on 

accuracy, precision, and recall. In Test 3, the 
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effect of different clustering methods in the 

second phase based on the PTSR is determined. 

Test 4 investigates the proposed method based on 

different clustering methods in the second phase 

based on PFDC. In the last test, the proposed 

method has been compared with other methods 

based on PTSR and PFDC. 

 

4.3.1. Test 1: Effect of different clustering 

methods on classification in first phase in the 

BRTSRDM method based on accuracy, 

precision, and recall 

In this part, the classification test results based on 

the proposed clustering methods in the first phase 

are investigated. The purpose of this test is to 

investigate the performance of the combination of 

classification with each of the proposed clustering 

methods: K-means with random initializer, K-

means with canopy initializer, and hierarchy 

clustering (HC). In this test, if all efficient test 

cases do not fit in one cluster, the cluster with the 

most efficient test cases is chosen as 𝐸𝑇1. For 

each of the faults implanted in each of the 

programs introduced as datasets, the performance 

of the combination of classification and clustering 

techniques is examined in this section based on 

Accuracy (Acc), Precision (Pr), and Recall (Re). 

Tables 3-6 report the results obtained on tcas, 

totinfo, schedule 2, and printtokens1.

Table 3. Results of applying different clustering methods on the classification in the first phase in the BRTSRDM based on 

the accuracy, precision, and recall on Printtokens1. 

HC K-means (canopy) K-means (random) 
Fault# 

Re Pr Acc Re Pr Acc Re Pr Acc 

100% 4.57% 5.95% 73.11% 4.94% 35.52% 86% 8.93% 59.90% 1 

100% 7.54% 8.86% 52.76% 11.79% 67.14% 84.69% 14.42% 61.52% 2 

100% 12.70% 13.97% 73.30% 12.96% 35.03% 56.28% 8.53% 19.03% 3 

92.42% 12.85% 12.76% 76.40% 14.35% 34.06% 58.97% 9.84% 20.09% 4 

100% 22.72% 23.84% 67.02% 20.46% 34.26% 75.24% 20.25% 28.08% 5 

100% 23.21% 24.33% 67.61% 21.08% 34.69% 75.76% 20.83% 28.57% 6 

100% 23.21% 24.33% 67.61% 21.08% 34.69% 75.76% 20.83% 28.57% 7 

99% 15% 16% 68% 15% 39% 73% 15% 35% Average 

 

−Discussion: As shown in Table 3, the average of 

recall related to K-means (random) on 

printtokens1 program is more than other criteria 

relevant to our method using the K-means 

(random) algorithm on printtokens 1, and its rate 

is approximately fixed by increasing fault 

numbers in the program (Fault#). This shows 

that many test cases have efficient fault 

detection to have been placed in an efficient 

cluster by the proposed method in this paper. In 

contrast, accuracy and precision calculated by 

K-means (random) algorithm are less suitable 

than recall, showing that many inefficient test 

cases have been wrongly placed in the efficient 

cluster. The accuracy rate has decreased with 

the increase in the number of faults. This result 

shows that it is necessary to apply the second 

phase for screening inefficient test cases from 

efficient ones and reducing regression tests.  

Regarding the results of using K-means 

(canopy), the recall average is more than others 

but is lower than what was observed in K-means 

(random). The average accuracy of this group is 

more than the accuracy of using K-means 

(random). As illustrated in Table 3, using 

hierarchy clustering for clustering increases the 

recall compared to the recall of other 

algorithms. This shows that this technique can 

place all test cases that are able to detect faults 

in an efficient cluster. Generally, by 

investigating this table, it is apparent using the 

second phase is necessary for screening 

inefficient test cases from efficient ones and 

reducing regression tests. 

 

−Discussion: Table 4 shows the results of 

applying different clustering methods on the 

classification in the first phase in the 

BRTSRDM based on accuracy, precision, and 

recall on Schedule 2. As shown in this table, the 

results of applying K-means (random) and 

(canopy) are similar. The average of recall is 

85% and remarkable. Applying hierarchy 

clustering increases the recall to 91%, which is 

more than others. By injecting faults 8 and 9, 

the recall rates of all are reduced due to 

differences between test case coverage 

information in these versions compared to other 

versions of the Schedule 2 program. The 

accuracy and precision of these tests are low, as 
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in the previous tests. This result proves the need for the second phase of our method.

Table 4. Results of applying different clustering methods on the classification in the first phase in the BRTSRDM based on 

accuracy, precision, and recall on Schedule 2. 

HC K-means (canopy) K-means (random) 

Fault# 
Re Pr Acc Re Pr Acc Re Pr Acc 

100% 2.43% 3.98% 100% 3.35% 30.99% 100% 3.33% 30.44% 1 

100% 4.01% 5.53% 91% 5.00% 31.69% 90.65% 4.96% 31.07% 2 

100% 5.28% 6.78% 92.90% 6.75% 32.95% 92.90% 6.69% 32.28% 3 

100% 5.02% 6.53% 91.79% 6.43% 33.75% 91.79% 6.43% 33.75% 4 

100% 5.09% 6.60% 90.44% 6.43% 33.54% 90.44% 6.43% 33.54% 5 

100% 6.03% 7.52% 90.68% 7.63% 34.31% 90.68% 7.63% 34.31% 6 

100% 6.03% 7.52% 90.68% 7.63% 34.31% 90.68% 7.63% 34.31% 7 

57.76% 3.64% 6.75% 60.24% 5.17% 32.06% 60.24% 5.17% 32.06% 8 

57.76% 3.64% 6.75% 60.24% 5.17% 32.06% 60.24% 5.17% 32.06% 9 

91% 5% 6% 85% 6% 33% 85% 6% 33% Average 

Table 5. Results of applying different clustering methods on the classification in the first phase in the BRTSRDM based on 

accuracy, precision, and recall on totinfo. 

HC K-means (canopy) K-means (random) 
Fault# 

Re Pr Acc Re Pr Acc Re Pr Acc 

100% 25.06% 43.44% 100% 25.06% 43.44% 100% 78.96% 94.96% 1 

100% 37.40% 52.75% 100% 37.40% 52.75% 83.50% 84.03% 90.87% 2 

89.01% 38.79% 50.10% 89.01% 38.79% 50.10% 74.56% 87.45% 88.11% 3 

89.05% 43.49% 51.61% 69.40% 95.54% 87.07% 85.82% 94.26% 92.58% 4 

89.15% 43.82% 51.71% 69.21% 95.57% 86.88% 85.71% 94.56% 92.58% 5 

88.72% 43.93% 51.71% 68.87% 95.57% 86.69% 85.29% 94.56% 92.39% 6 

88.80% 44.29% 51.99% 68.85% 96.25% 86.78% 85.15% 95.10% 92.49% 7 

88.86% 44.54% 52.19% 68.77% 96.60% 86.79% 84.99% 95.38% 92.49% 8 

84.04% 44.47% 51.05% 84.04% 44.47% 51.05% 80.28% 95.00% 90.30% 9 

84.15% 44.84% 51.33% 84.15% 44.84% 51.33% 63.64% 95.45% 83.94% 10 

84.15% 44.84% 51.33% 64.57% 39.86% 45.82% 83.22% 91.07% 89.83% 11 

84.15% 44.84% 51.33% 84.15% 44.84% 51.33% 63.64% 95.45% 83.94% 12 

84.15% 44.84% 51.33% 64.57% 39.86% 45.82% 83.22% 91.07% 89.83% 13 

84.15% 44.84% 51.33% 64.57% 39.86% 45.82% 83.22% 91.07% 89.83% 14 

82.71% 43.98% 50.10% 65.19% 40.14% 46.29% 74.77% 81.63% 82.89% 15 

84.15% 44.84% 51.33% 64.57% 39.86% 45.82% 83.22% 91.07% 89.83% 16 

84.15% 44.84% 51.33% 64.57% 39.86% 45.82% 83.22% 91.07% 89.83% 17 

84.22% 45.09% 51.52% 64.73% 40.14% 46.01% 62.65% 95.41% 83.46% 18 

84.72% 46.09% 51.62% 62.92% 40.29% 44.87% 60.90% 95.76% 82.32% 19 

86.92% 50.50% 51.43% 59.04% 42.40% 40.11% 65.19% 38.92% 32.22% 20 

85.00% 49.94% 50.48% 65.19% 38.92% 32.22% 65.19% 38.92% 32.22% 21 

85.11% 50.40% 50.86% 59.35% 42.96% 40.49% 65.46% 39.38% 32.60% 22 

87.06% 43.90% 50.99% 72.08% 52.69% 55.15% 77.40% 84.34% 81.34% Average 

 

−Discussion: As shown in Table 5, the result of 

applying K-means (random) based on all three 

criteria is impressive and successful. The high 

rate of precision and accuracy in the second 

phase resulted in small changes in cluster 

members and low test case reduction. 

Decreasing the values of accuracy and precision 

from fault 20 onwards is due to more test cases 

in these versions than in others. Accordingly, K-

means (random) places more efficient test cases 
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in a more massive cluster. Inefficient test cases 

exist in the more massive cluster too. Therefore, 

the precision and accuracy of test case reduction 

are increasing. Recall obtained by applying K-

means (canopy) is near to the recall of K-means 

(random).  

In contrast, accuracy and precision are lower 

than K-means (random). A larger number of 

inefficient test cases are placed in the efficient 

clusters by applying K-means (canopy). The 

reason for increasing precision and accuracy 

from fault 4-8 is that the K-means (canopy) 

technique places more efficient test cases in 

smaller clusters. In comparison, a larger number 

of inefficient ones are placed in more massive 

clusters. Therefore, the values of these criteria 

for this clustering technique are increased. The 

best recall on totinfo program is relevant to 

hierarchy clustering with 87.06% but it has the 

least precision and accuracy. 

Table 6. Results of applying different clustering methods on the classification in the first phase in the BRTSRDM based on 

accuracy, precision, and recall on tcas. 

HC K-means (canopy) K-means (random) 

Fault# 

Re Pr Acc Re Pr Acc Re Pr Acc 

100% 14.89% 53.10% 100% 12.70% 43.59% 100% 12.70% 43.59% 1 

100% 28.78% 60.75% 100% 24.54% 51.24% 100% 24.54% 51.24% 2 

100% 27.17% 45.33% 56.70% 46.85% 78.04% 56.70% 46.85% 78.04% 3 

100% 30.57% 47.88% 50.40% 46.73% 75.43% 50.40% 46.73% 75.43% 4 

100% 31.64% 48.69% 64.92% 37.23% 65.67% 64.92% 37.23% 65.67% 5 

100% 31.28% 40.17% 60.27% 48.89% 72.01% 60.27% 48.89% 72.01% 6 

100% 32.36% 41.11% 61.59% 65.80% 80.16% 61.59% 50.00% 71.83% 7 

100% 32.36% 41.11% 61.59% 65.80% 80.16% 61.59% 50.00% 71.83% 8 

100% 30.86% 39.80% 60.42% 64.29% 80.35% 60.42% 46.11% 70.40% 9 

100% 31.07% 39.99% 59.77% 64.20% 80.10% 59.77% 46.02% 70.15% 10 

100% 31.00% 39.93% 59.91% 64.04% 80.10% 60.60% 46.47% 70.52% 11 

100% 31.07% 39.99% 60.69% 60.69% 60.69% 70.80% 31.69% 50.81% 12 

100% 30.86% 39.24% 60.55% 46.15% 70.15% 70.64% 31.36% 50.12% 13 

100% 31.04% 40.73% 60.37% 46.25% 70.71% 70.63% 31.66% 51.49% 14 

100% 31.69% 41.29% 62.56% 46.21% 69.96% 72.60% 30.67% 47.82% 15 

100% 31.77% 41.36% 63.33% 46.88% 70.40% 73.35% 31.05% 48.26% 16 

100% 31.91% 41.48% 63.95% 47.55% 70.77% 74.15% 31.53% 48.76% 17 

100% 32.85% 42.29% 64.98% 48.76% 70.83% 75.77% 32.42% 48.57% 18 

100% 32.78% 42.23% 65.12% 48.76% 70.90% 75.94% 32.42% 48.63% 19 

100% 32.78% 42.23% 65.12% 48.76% 70.90% 75.94% 32.42% 48.63% 20 

100% 32.56% 42.04% 64.89% 48.26% 70.71% 75.78% 32.14% 48.45% 21 

76.33% 28.21% 36.44% 65.88% 48.74% 69.84% 76.33% 32.14% 46.08% 22 

59.19% 19.54% 25.87% 52.50% 22.58% 40.73% 59.19% 22.26% 35.51% 23 

59.19% 19.54% 25.87% 52.50% 22.58% 40.73% 59.19% 22.26% 35.51% 24 

96% 30% 42% 64% 47% 68% 69% 35% 56% Average 

 

 

 



Keyvanpour et al./ Journal of AI and Data Mining, Vol. 11, No. 2, 2023 
 

174 
 

 

−Discussion: As shown in Table 6, by applying 

K-means (random) on the tcas program, 

accuracy is 56%, precision is 35%, and recall is 

69%. Therefore, this method has placed a larger 

number of inefficient test cases in an efficient 

cluster. Because the tcas program test suite is 

smaller than the previous programs, efficient 

test case reduction based on this technique in the 

second phase is lower than that in the others. 

Recall in faults 1 and 2 is 100% but in faults 3-

12, efficient test cases in the program are 

increased compared to previous versions but K-

means (random) cannot place them in the 

efficient cluster, so recall is reduced. In contrast, 

this technique can place many efficient test 

cases in a small cluster, increasing accuracy and 

precision.  

From fault 13 onwards, the performance of the 

method is the opposite. The average accuracy 

and precision are higher when K-means 

(canopy) is used compared to K-means 

(random). This implies that a lower number of 

inefficient test cases are placed in an efficient 

cluster. The reason for swings of criteria values 

in faults 3-12 in K-means (canopy) is similar to 

what was expressed about K-means (random). 

The recall of hierarchical clustering is excellent 

in the first until the 21st version. But after that, 

recall is decreased. In general, the recall of this 

method is better than that of other methods. 

 

4.3.2. Test 2: Effect of different coverage 

criteria in first phase in the BRTSRDM 

method based on accuracy, precision, and 

recall 

In this test, the effect of different coverage criteria 

in the first phase in the BRTSRDM is 

investigated. The used coverage criteria are block 

and branch coverage criteria. The results of the 

investigation are reported in the format of 

accuracy, precision, and Recall. To cluster test 

cases with these coverage criteria, the program 

version with maximum faults is used in this test. 

For an easier comparison, the obtained results are 

categorized and reported based on the clustering 

algorithms in Tables 7-9. 

Table 7. Results of applying different coverage criteria for K-means (random) in the first phase of the BRTSRDM based on 

accuracy, precision, and recall. 

Block coverage Branch coverage 

Program 

Re Pr Acc Re Pr Acc 

75.34% 18.84% 20.14% 75.76% 20.83% 28.57% Printtokens 1 

60.24% 5.90% 30.95% 60.24% 5.17% 32.06% Schedule 2 

59.19% 22.26% 35.51% 59.19% 22.26% 35.51% tcas 

65.46% 39.38% 32.60% 65.46% 39.38% 32.60% totinfo 

65.06% 21.59% 29.80% 65.16% 21.91% 32.185% Average 

 

Table 8. Results of applying different coverage criteria for K-means (canopy) in the first phase of the BRTSRDM based on 

accuracy, precision, and recall. 

Block coverage Branch coverage 

Program 

Re Pr Acc Re Pr Acc 

75.66% 18.61% 18.76% 67.61% 21.08% 34.69% Printtokens 1 

60.24% 50.90% 30.95% 60.24% 5.17% 32.06% Schedule 2 

52.50% 22.58% 40.73% 52.50% 22.58% 40.73% tcas 

69.85% 46.98% 45.72% 59.35% 42.96% 40.49% totinfo 

64.56% 34.77% 34.04% 59.92% 22.95% 36.99% Average 
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Table 9. Results of applying different coverage criteria for HC in the first phase of the BRTSRDM based on accuracy, 

precision, and recall. 

Block coverage Branch coverage 

Program 

Re Pr Acc Re Pr Acc 

100% 23.21% 24.33% 100% 23.21% 24.33% printtokens1 

57.76% 3.64% 6.75% 57.76% 3.64% 6.75% schedule2 

59.19% 19.54% 25.87% 59.19% 19.54% 25.87% tcas 

85.11% 50.40% 50.86% 85.11% 50.40% 50.86% totinfo 

75.51% 24.20% 26.95% 75.51% 24.20% 26.95% Average 

 

−Discussion: As shown in Tables 7-9, the results 

obtained from using branch coverage for K-

means (random) clustering are better compared 

to using block coverage based on accuracy, 

precision, and recall, approximately most of the 

time average. The difference between these two 

criteria is generally insignificant. Using branch 

coverage criteria in the first phase instead of 

block coverage increases test case reduction 

performance by investigating the results. 

 

4.3.3. Test 3: Effect of combination of different 

clustering methods in first and second phases 

in BRTSRDM method based on PTSR 

The purpose of this and the next tests is to 

investigate the percentage of the test suite 

reduction and fault detection capability in the 

proposed method. In order to evaluate our method 

in Test 3, we studied the effect of combining 

different clustering methods in the first and 

second phases based on PTSR. We reported the 

results for each program and the various numbers 

of faults. The algorithm used in the second phase 

was the CLOPE algorithm and the combination of 

the proposed clustering methods in the first phase, 

producing different results. In this test and the 

next one, these combinations are considered. 

Tabels 10-14 report the results. 

Table 10. Results of applying different combination of clustering methods in first and second phases in the BRTSRDM based 

on PTSR for Printtokens1. 

HC-CLOPE K-means (canopy)-CLOPE K-means (random)-CLOPE 

Fault# 

PTSR level 2 PTSR level 1 PTSR level 2 PTSR level 1 PTSR level 2 PTSR level 1 

92.51% 1.40% 93.34% 33.43% 94.26% 56.65% 1 

92.00% 1.40% 94.43% 66.73% 92.63% 56.36% 2 

85.03% 1.40% 88.82% 29.20% 74.1% 17.45% 3 

88.69% 1.01% 86.92% 26.80% 76.07% 17.62% 4 

81.25% 1.40% 81.64% 26.63% 75.20% 16.77% 5 

70.19% 1.40% 84.64% 26.63% 76.12% 16.77% 6 

70.19% 1.40% 84.64% 26.63% 76.12% 16.77% 7 

82.83% 1.34% 87.77% 33.72% 80.64% 28.34% Average 

 

−Discussion: As shown in Table 10, we reported 

PTSR level 1 and 2 for each clustering 

algorithm combination. PTSR level 1 indicates 

the PTSR obtained from using just first phase 

clustering, while PTSR level 2 is the final PTSR 

after using the target clustering algorithms in the 

first and second phases. As this table shows, the 

PTSR level 2 is much more than the PTSR level 

1 for printtokens1. In the first phase, some 

inefficient test cases are placed in an efficient 

cluster. Therefore, adding the second phase to 

the method causes a remarkable reduction in test 

suite size and increases PTSRlevel 2. When we 

used K-means (canopy) in the first phase and 

CLOPE in the second phase, PTSR in the two 

levels improved compared to using K-means 

(random) in the first phase and CLOPE in the 

second phase.  
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With increasing the number of faults to more 

than 6, PTSR became constant. Although using 

hierarchy clustering (HC) in the first phase 

obtained weaker results than others, PTSR level 

2 in all algorithms has a higher value than PTSR 

level 1, showing that using BRTSRDM has been 

able to reduce test suite size successfully.

Table 11. Results of applying different combination of clustering methods in first and second phases in the BRTSRDM based 

on the PTSR for Schedule 2. 

HC-CLOPE K-means (canopy)-CLOPE K-means (random)-CLOPE 

Fault# 

PTSR level 2 PTSR level 1 PTSR level 2 PTSR level 1 PTSR level 2 PTSR level 1 

89.74% 1.58% 92.84% 28.59% 91.84% 28.04% 1 

90.92% 1.58% 92.80% 28.48% 91.91% 26.38% 2 

91.91% 1.58% 92.02% 28.48% 91.77% 27.82% 3 

82.28% 1.58% 88.42% 29.44% 88.42% 29.44% 4 

84.64% 1.58% 64.42% 29.44% 64.42% 29.44% 5 

86.12% 1.58% 42.73% 29.48% 42.73% 29.48% 6 

86.12% 1.58% 42.73% 29.48% 42.73% 29.48% 7 

84.68% 1.06% 75.46% 30.84% 75.46% 30.84% 8 

84.68% 1.06% 75.46% 30.84% 75.46% 30.84% 9 

86.79% 1.46% 74.10% 29.45% 73.86% 29.08% Average 

 
−Discussion: Table 11 reports the results of test 3 

on Schedule 2. Similar to Table 10, the final 

PTSR after applying the second phase is higher 

than that of PTSR level 1, which is significant 

for the Schedule 2 program, unless there is a 

decrease in the number of faults, which results 

in a decrease in PTSR level 2. This reduction 

occurs in a few efficient test cases among all test 

cases when applying faults 6 and 7. This result 

shows the necessity of the second phase for test 

suite reduction. The average PTSR level 2 for 

HC-CLOPE is better than that of others but the 

proposed method could generally reduce test 

suite size impressively for the Schedule 2 

program. 

 

−Discussion: Table 12 shows the percentage of 

test suite size reduction in the first and second 

phases for the totinfo program. The difference 

between PTSR level 1 and 2 for K-means 

(random)-CLOPE is not remarkable. The reason 

for this is the small size of this program, and the 

high accuracy, precision, and recall obtained 

from the first phase. After applying faults 19 

and more, the accuracy of using the first step 

decreased, and so did PTSR. Using K-means 

(canopy)-CLOPE in faults 1 until 3 caused 

PTSR level 2 to improve PTSR level 1 but after 

that, because of the high accuracy, precision, 

and recall obtained from the first phase, 

applying the second phase did not improve 

PTSR of the first phase. After applying faults 9 

and more, the accuracy of using the first step 

decreased, and so did PTSR. By applying HC-

CLOPE, PTSR level 2 obtained better values 

than PTSR level 1 until fault 5. But after that, 

with increasing the number of faults and placing 

inefficient and unique test cases in these faults, 

not all clusters were run. Therefore, PTSR was 

reduced. 

 

− Discussion: In Table 13, the results of applying 

clustering methods and their combination in the 

first and second phases of our proposed method 

are reported based on PTSR for the tcas 

program. As shown in this table, with a 

combination of K-means (random) in the first 

and CLOPE algorithm in the second phase, the 

average of PTSR level 2 was better than that of 

PTSR level 1. These values converged, which is 

due to high precision and recall obtained from 

the first phase executing in some faults. 

Therefore, a few inefficient test cases were 

placed in an efficient cluster before running the 

second phase. As a result of applying the 

CLOPE algorithm, the clusters created included 

all the efficient test cases. Consequently, the test 

suite reduction in the second phase was not 

improved remarkably compared to the first 

phase reduction.  
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Using the combination of K-means (canopy) 

and CLOPE caused an improvement in the 

PTSR result compared to the previous method 

because using K-means (canopy) led to higher 

precision and accuracy than K-means (random). 

The reason for the decrease in PTSR in fault 24 

is the difference between this version and the 

previous version in the block coverage criterion. 

The combination of the hierarchical clustering 

algorithm and CLOPE considerably improved 

the PTSR of test suite reduction, compared to 

just using the hierarchical clustering algorithm 

in the first phase. 

Table 12. Results of applying different combination of clustering methods in first and second phases in the BRTSRDM based 

on the PTSR for totinfo. 

HC-CLOPE K-means (canopy) -CLOPE K-means (random)-CLOPE 

Fault# 

PTSR level 2 PTSR level 1 PTSR level 2 PTSR level 1 PTSR level 2 PTSR level 1 

76.23% 24.52% 76.23% 24.52% 78.32% 76.04% 1 

85.44% 24.52% 85.44% 24.52% 71.95% 71.95% 2 

83.26% 24.52% 83.26% 24.52% 71.95% 71.95% 3 

83.93% 21.76% 72.24% 72.24% 86.40% 65.20% 4 

59.60% 21.48% 72.05% 72.05% 72.05% 65.01% 5 

21.67% 21.67% 72.05% 72.05% 65.01% 65.01% 6 

21.67% 21.67% 72.05% 72.05% 65.01% 65.01% 7 

21.67% 21.67% 72.05% 72.05% 65.01% 65.01% 8 

23.47% 23.47% 23.47% 23.47% 65.77% 67.77% 9 

23.47% 23.47% 23.47% 23.47% 72.81% 72.81% 10 

23.47% 23.47% 23.47% 23.47% 72.81% 72.81% 11 

23.47% 23.47% 23.47% 23.47% 72.81% 72.81% 12 

23.47% 23.47% 33.93% 33.93% 62.73% 62.73% 13 

23.47% 23.47% 33.93% 33.93% 62.73% 62.73% 14 

23.47% 23.47% 33.93% 33.93% 73.09% 73.09% 15 

23.47% 23.47% 33.93% 33.93% 73.09% 73.09% 16 

23.47% 23.47% 33.93% 33.93% 73.09% 73.09% 17 

23.47% 23.47% 33.93% 33.93% 73.09% 73.09% 18 

22.24% 22.24% 33.93% 33.93% 73.09% 73.09% 19 

14.92% 14.92% 31.17% 31.17% 31.17% 31.17% 20 

15.87% 15.87% 31.17% 31.17% 31.17% 31.17% 21 

15.87% 15.87% 31.17% 31.17% 31.17% 31.17% 22 

34.41% 22.06% 46.83% 39.04% 65.65% 64.35% Average 
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Table 13. Results of applying different combination of clustering methods in first and second phases in the BRTSRDM based 

on the PTSR for tcas. 

HC-CLOPE K-means (canopy)-CLOPE K-means (random)-CLOPE 

Fault# 

PTSR level 2 PTSR level 1 PTSR level 2 PTSR level 1 PTSR level 2 PTSR level 1 

95.10% 44.91% 95.10% 35.39% 95.10% 35.39% 1 

86.01% 44.91% 86.01% 35.39% 86.01% 35.39% 2 

78.54% 24.93% 75.32% 75.32% 75.32% 75.32% 3 

78.66% 24.87% 75.24% 75.24% 75.24% 75.24% 4 

77.73% 24.93% 72.45% 70.58% 72.45% 70.58% 5 

63.80% 12.93% 74.56% 66.41% 74.56% 66.41% 6 

66.72% 12.93% 73.63% 73.63% 73.63% 65.29% 7 

66.72% 12.93% 73.63% 73.63% 73.63% 65.29% 8 

18.09% 12.93% 74.81% 74.81% 74.37% 68.86% 9 

22.32% 12.93% 74.75% 74.75% 74.31% 64.80% 10 

24.44% 12.93% 74.81% 74.75% 71.26% 64.80% 11 

35.57% 12.93% 71.08% 64.67% 53.04% 39.55% 12 

35.01% 12.12% 70.95% 64.42% 52.67% 38.93% 13 

36.31% 14.05% 71.64% 65.17% 47.94% 40.48% 14 

26.18% 14.05% 72.26% 63.12% 44.34% 35.50% 15 

26.18% 14.05% 72.26% 63.12% 44.34% 35.50% 16 

26.18% 14.05% 72.26% 63.12% 44.34% 35.50% 17 

26.18% 14.05% 69.02% 62.37% 47.32% 34.01% 18 

26.18% 14.05% 69.02% 62.37% 45.39% 34.01% 19 

26.18% 14.05% 69.02% 62.37% 45.39% 34.01% 20 

14.05% 14.05% 72.82% 62.37% 31.96% 34.01% 21 

39.11% 21.08% 71.76% 60.57% 48.75% 30.72% 22 

32.02% 21.08% 65.42% 39.42% 32.02% 30.72% 23 

32.02% 30.72% 49.06% 39.42% 32.02% 30.72% 24 

44.13% 18.85% 72.79% 62.60% 58.98% 47.54% Average 

 

 

 

 

 

 



BRTSRDM: Bi-Criteria Regression Test Suite Reduction based on Data Mining 
 

179 

 

 

Table 14. Results of applying different combination of clustering methods in the first and second phases in the BRTSRDM 

based on PTSR. 

HC-CLOPE K-means (canopy)-CLOPE K-means (random)-CLOPE 

Program 

PTSR level 2 PTSR level 1 PTSR level 2 PTSR level 1 PTSR level 2 PTSR level 1 

82.83% 1.34% 87.77% 33.72% 80.64% 28.34% printtokens1 

86.79% 1.46% 74.10% 29.45% 73.86% 29.08% schedule2 

34.41% 22.06% 46.83% 39.04% 65.65% 64.35% totinfo 

44.13% 18.85% 72.79% 62.60% 58.98% 47.54% tcas 

62.04% 10.93% 70.37% 41.19% 69.78% 42.24% Average 

 

−Discussion: For comparison between three 

combinations: K-means (random)-CLOPE, K-

means (canopy)-CLOPE, and HC-CLOPE, 

Table 14 presents the results, regardless of the 

program on which it runs.  

As inferred from this table, the PTSR level 2 of 

K-means (canopy)-CLOPE is the best result, 

showing the combination of K-means (canopy) 

and CLOPE could reduce the test suite more 

than others. Generally, considering that the 

purpose was to present a data mining-based 

algorithm, this technique is more suitable for a 

big dataset; therefore, the obtained results show 

BRTSRDM has a better performance on the 

programs with a greater test suite size. 

 

4.3.4. Test 4: Effect of different clustering 

methods in second phase in the BRTSRDM 

method based on PFDC 
The purpose of this test is to investigate the effect 

of combination of different clustering methods in 

the first and second phases on fault detection 

capability and its percentage. This test was run on 

each program with different faults and reported in 

Tables 15-19. 

Table 15. Results of applying different combination of clustering methods in the first and second phases in the BRTSRDM 

based on PTSR. 

HC-CLOPE K-means (canopy)-CLOPE K-means (random)-CLOPE Main test 

suite FDC 

Fault# 

FDC level 2 FDC level 1 FDC level 2 FDC level 1 FDC level 2 FDC level 1 

1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 

3 3 3 3 3 3 3 3 

4 4 4 4 4 4 4 4 

5 5 5 5 5 5 5 5 

6 6 6 6 6 6 6 6 

7 7 7 7 7 7 7 7 

100% 100% 100% 100% 100% 100% PFDC Average 

−Discussion: As shown in Table 15, applying the 

proposed method with the combination of K-

means (random), K-means (canopy), and HC in 

the first phase with CLOPE algorithm in the 

second phase for Printtokens1 program makes 

the detection of all faults possible in the first 

phase (FDC level 1) and the second phase (FDC 

level 2) by the reduced test suite. Therefore, 

PFDC is 100%. 

 

−Discussion: To report the results of applying 

different combinations of clustering methods in 

the first and second phases in the BRTSRDM on 

the FDC and PFDC for schedule 2, Table 16 is 

provided. As shown in this table, all three 

combinations in all two phases could detect all 

faults that existed in the main test suite until the 

fourth fault. After that, the HC-CLOPE 

algorithm had better performance, and its 

average of PFDC was 99% compared to other 

algorithms, which obtained 90% as an average 

of PFDC. 
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Table 16. Results of applying different combination of clustering methods in first and second phases in the BRTSRDM based 

on the FDC and PFDC for schedule 2. 

HC-CLOPE K-means (canopy)-CLOPE K-means (random)-CLOPE Main test 

suite FDC 

Fault# 

FDC level 2 FDC level 1 FDC level 2 FDC level 1 FDC level 2 FDC level 1 

1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 

3 3 3 3 3 3 3 3 

4 4 4 4 4 4 4 4 

5 5 4 4 4 4 5 5 

6 6 5 5 5 5 6 6 

7 7 6 6 6 6 7 7 

8 8 7 7 7 7 8 8 

8 8 7 7 7 7 9 9 

99% 99% 90% 90% 90% 90% PFDC Average 

Table 17. Results of applying different combination of clustering methods in first and second phases in the BRTSRDM based 

on the FDC and PFDC for totinfo. 

HC-CLOPE K-means (canopy)-CLOPE K-means (random)-CLOPE Main test 

suite FDC 

Fault# 

FDC level 2 FDC level 1 FDC level 2 FDC level 1 FDC level 2 FDC level 1 

1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 

3 3 3 3 3 3 3 3 

4 4 4 4 4 4 4 4 

5 5 5 5 5 5 5 5 

5 5 5 5 5 5 6 6 

6 6 6 6 6 6 7 7 

7 7 7 7 7 7 8 8 

7 7 7 7 7 7 9 9 

8 8 8 8 8 8 10 10 

8 8 8 8 8 8 10 11 

8 8 8 8 8 8 10 12 

8 8 7 7 8 8 10 13 

8 8 8 8 8 8 10 14 

8 8 8 8 8 8 10 15 

8 8 8 8 8 8 10 16 

8 8 8 8 8 8 10 17 

9 9 8 8 7 7 11 18 

10 10 8 8 8 8 12 19 

11 11 11 11 12 12 13 20 

11 11 12 12 12 12 13 21 

12 12 10 10 13 13 14 22 

86% 86% 84% 84% 86% 86% PFDC Average 

−Discussion: Table 17 shows the result of 

applying this test to the totinfo program. As 

inferred from this table, as the number of faults 

increases, the fault detection capability 

decreases. While this reduction is not significant 

in any of the algorithms, the average of PFDC 

for K-means (random)-CLOPE and HC-CLOPE 

is 86% and for K-means (canopy)-CLOPE, it is 

84%. 
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Table 18. Results of applying different combination of clustering methods in first and second phases in the BRTSRDM based 

on the FDC and PFDC for tcas. 

HC-CLOPE K-means (canopy)-CLOPE K-means (random)-CLOPE Main test 

suite FDC 

Fault# 

FDC level 2 FDC level 1 FDC level 2 FDC level 1 FDC level 2 FDC level 1 

1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 

3 3 2 2 2 2 3 3 

4 4 2 2 2 2 4 4 

5 5 4 4 4 4 5 5 

6 6 4 4 4 4 6 6 

7 7 5 5 5 5 7 7 

7 7 5 5 5 5 7 8 

8 8 5 5 5 5 8 9 

7 7 5 5 5 5 7 10 

8 8 5 5 6 6 8 11 

8 8 6 6 6 6 8 12 

8 8 6 6 6 6 8 13 

8 8 6 6 6 6 8 14 

8 8 6 6 6 6 8 15 

8 8 6 6 6 6 8 16 

9 9 7 7 7 7 9 17 

10 10 8 8 8 8 10 18 

10 10 8 8 8 8 10 19 

10 10 8 8 8 8 10 20 

10 10 8 8 8 8 10 21 

11 11 9 9 9 9 11 22 

11 11 8 8 11 11 13 23 

12 12 9 9 12 12 14 24 

98.76% 98.76% 74.29% 74.29% 76.67% 76.67% PFDC Average 

−Discussion: As Table 18 shows, applying HC-

CLOPE on tcas caused the best average of 

PFDC to be obtained with 98.76% than K-

means (random)-CLOPE and K-means 

(canopy)-CLOPE. These algorithms achieved 

76.67 and 74.29, respectively, as the averages of 

PFDC. 
 

−Discussion: Since the purpose of presenting the 

proposed method was to improve PTSR and 

PFDC, simultaneously, Table 19 is provided for 

a better comparison between the proposed 

algorithms based on these criteria. The inserted 

values in this table are the average of the values 

reported in the previous tables. As shown in this 

table, with a comparison between different 

combinations, it is clear that HC-CLOPE has the 

best PFDC, regardless of the program on which 

it runs, while PTSR of K-means (canopy)-

CLOPE is the highest. Generally, it seems that 

K-means (canopy)-CLOPE is more successful 

than others due to the trade-off between PFDC 

and PSTR. In sum, the results of Tests 3 and 4 
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indicate that the presentation of the first phase 

of the proposed method increases the ability of 

fault detection.  

In comparison, the proposed second phase 

increases test suite reduction.  

Table 19. Results of applying different combination of clustering methods in the first and second phases in the BRTSRDM 

based on the PSTR and PFDC. 

HC-CLOPE K-means- (canopy)-CLOPE K-means (random)-CLOPE 

Program 

PFDC PTSR PFDC PTSR PFDC PTSR 

100% 82.83% 100% 87.77% 100% 80.64% printtokens1 

99% 86.79% 90% 74.10% 90% 73.86% schedule2 

86% 34.41% 84% 46.83% 86% 65.65% totinfo 

98.76% 44.14% 74.29% 72.79% 76.67% 58.98% tcas 

95.94% 62.04% 87.07% 70.37% 88.17% 69.78% Average 

 

4.3.5. Test 5: Test 5: Comparison between 

proposed method and others based on PTSR 

and PFDL 
To evaluate the proposed method, it is necessary 

to compare it with other methods. Therefore, in 

this section, the proposed method is compared 

with five test suite reduction methods based on 

PTSR and PFDC. These methods are HGS [81], 

BOG [14], CTC [69], DBC [56] and TRSS [82]. 

HGS and BOG are among the acceptable 

methods. It means their default is one hundred 

percent coverage. We make this comparison due 

to the popularity of these methods. Another reason 

is that insufficient methods make a better tradeoff 

between test suite size reduction and fault 

detection capability [51][83][77][84][79]. The last 

three methods belong to insufficient methods. 

This comparison reveals the advantage of our 

proposed method. The results are reported in 

Table 20 and 21.

Table 20. Comparison between BRTSRDM and other test suite reduction methods based on PSTR. 

DBC HGS BOG 

TRSS CTC BRTSRDM 

Program 
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90% 75.93% 74.62% 99.80% 99.69% 1.40% 16.77% 70.19% 76.12% 84.64% printtokens1 

90% 71.03% 68.47% 99.86% 99.85% 1.06% 30.84% 84.68% 75.46% 75.46% schedule2 

89.92% 73.74% 68.66% 99.56% 99.19% 15.87% 31.17% 15.87% 31.17% 31.17% totinfo 

89.90% 53.79% 53.18% 99.69% 99.61% 30.72% 30.72% 32.02% 32.02% 49.06% tcas 

−Discussion: Table 20 shows the results of the 

comparison between BRTSRDM and other test 

suite reduction methods based on PSTR. The 

result of the comparison between our method 

and CRC shows that BRTSRDM has gained 

better PSTR in printtokens1, schedule2, and 

tcas. These two methods have obtained similar 

results in totinfo. The reason for this similarity 

is that the totinfo program has many faults. On 

the other hand, the main test suite in this 

program is lower than in other programs. 

𝐸𝑇1 cases obtained from the first phase of the 

proposed method are placed in clusters 

including efficient test cases by the CLOPE 

algorithm in the second phase. To detect many 

faults, all clusters and 𝐸𝑇1 are run. As shown in 

the table, the results obtained from TRSS and 

DBC are better than those of other methods. 

With a comparison between the results of 

BRTSRDM, BOG, and HGS, it is clear the 

proposed method has better results in 

printtokens1 and schedule2, while the results of 

BOG and HGS in toninfo and tcas programs are 

more acceptable. It should be noted that the 

difference of PTSR of K-means (canopy)-

CLOPE in the proposed method and BOG and 

HGS is negligible.
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Table 21. Comparison between BRTSRDM and other test suite reduction methods based on PFDL. 

DBC HGS BOG 

TRSS CTC BRTSRDM 
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28.57% 21.59% 16.22% 74.94% 45.63% 0 0 0 0 0 printtokens1 

55.55% 34.63% 28.88% 87.20% 85.93% 11.11% 22.22% 11.11% 22.22% 22.22% schedule2 

63.63% 24.28% 16.36% 65.15% 81.44% 14.28% 7.14% 14.28% 7.14% 28.57% totinfo 

70.83% 42.49% 35.53% 75.06% 65.58% 14.29% 14.29% 14.29% 14.29% 35.71% tcas 

 

−Discussion: Table 21 shows the PFDL of the 

proposed method and other five methods. As 

inferred from this table, the proposed method 

has shown the best fault detection capability 

compared to other methods in all the programs 

used. Regarding the printtokens1 program, our 

method detected all faults that existed in the 

main test suite. Therefore, PFDL of BRTSRDM 

like CTC was found to be zero. Considering the 

higher PTSR of our method than CTC, our 

proposed method is superior to this method. 

Other methods have the percentage of fault 

detection loss. Regarding Table 20 and this 

table, the proposed method had better 

performance than others. Comparing the values 

of PFDL and PTSR of BRTSRDM and others 

and the difference between them in schedule2, 

totinfo, and tcas, we conclude that our method 

has worked better than other methods. Among 

the methods proposed in our method, namely K-

means (random)-CLOPE, K-means (canopy)-

CLOPE and HC, K-means (random)-CLOPE, 

and HC had better PFDL than K-means 

(canopy)-CLOPE in all programs, generally. 

 

5. Conclusion 

Software testing is one of the main activities in 

the software development cycle [85]. This test is 

the confirmation and validation process of a 

software application or program to supply 

customer requirements, find the problems, and test 

to achieve desired results [4]. Test case reduction 

helps find the effective sub suite of test cases 

during the maintenance step and decreases 

software testing costs. Test case reduction 

decreases time, running, and translation costs, 

while maintaining testing accuracy [9]. Therefore, 

to address this challenge, in this paper, a new 

method called BRTSRDM was proposed. In 

addition to test suite reduction, its fault-detection 

capability was preserved. Regression test cases 

were reduced using a bi-criteria data mining-based 

method in two levels by BRTSRDM. The results 

of the proposed method were compared to the 

results of five other methods. The results showed 

the efficiency of the proposed method in the test 

suite reduction by maintaining its capability in 

fault detection. 
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 چکیده:

که دقتت و عملکترد  یشوند، در حالیحذف م یضرورریمرحله موارد زائد و غ نیدر تست نرم افزار است. در ا یمرحله ضرور کی ونیکاهش آزمون رگرس

 یشتارائته رو نتهیزم نیتدر ا یارائه شده است. چالش اصتل ونیکاهش تست رگرس نهیدر زم یمختلف یقاتیتحق ی. تاکنون کارهاابدیینرم افزار کاهش نم

بتر  دیتکاهش مجموعته آزمتون  د کیتکن کیمقاله،  نیحال مجموعه آزمون را کاهش دهد. در ا نیرا حفظ کند و در ع بیع صیتشخ تیاست که قابل

 یبنتدو طبقه یبندآن هم با استفاده از خوشته بیع صیتشخ تیقابل ،زمونروش علاوه بر کاهش مجموعه آ نیشده است. در ا شنهادیپ یکاواساس داده

. در هتر ستح ، ابتدییدر دو ستح  کتاهش مت ارهیتدو مع یکتاوبتر داده یبا استفاده از روش مبتن ونیموارد آزمون رگرس کرد،یرو نی. در اشودیحفظ م

 موعتهمج یخحتا صیتشخ ییاندازه مجموعه آزمون و توانا انیمصالحه بهتر م جادیا یبرا یدیمتفاوت و مف یبندخوشه یهاتمیپوشش و الگور یارهایمع

 ییکتارا هتاشیشتده استت. آزما ستهیمقا PFDLو  PSTRبر اساس  گریبا اثرات پنج روش د یشنهادیروش پ جی. نتاشودیاستفاده م افتهیآزمون کاهش

 .دهدینشان م بیع صیآن در تشخ تیرا در کاهش مجموعه آزمون با حفظ قابل یشنهادیروش پ

 .بندیبندی، طبقهکاوی، معیار پوشش، خوشهکاهش مجموعه آزمون، نرم افزار، داده :کلمات کلیدی

 


