K. Kiani; R. Hematpour; R. Rastgoo
Abstract
Image colorization is an interesting yet challenging task due to the descriptive nature of getting a natural-looking color image from any grayscale image. To tackle this challenge and also have a fully automatic procedure, we propose a Convolutional Neural Network (CNN)-based model to benefit from the ...
Read More
Image colorization is an interesting yet challenging task due to the descriptive nature of getting a natural-looking color image from any grayscale image. To tackle this challenge and also have a fully automatic procedure, we propose a Convolutional Neural Network (CNN)-based model to benefit from the impressive ability of CNN in the image processing tasks. To this end, we propose a deep-based model for automatic grayscale image colorization. Harnessing from convolutional-based pre-trained models, we fuse three pre-trained models, VGG16, ResNet50, and Inception-v2, to improve the model performance. The average of three model outputs is used to obtain more rich features in the model. The fused features are fed to an encoder-decoder network to obtain a color image from a grayscale input image. We perform a step-by-step analysis of different pre-trained models and fusion methodologies to include a more accurate combination of these models in the proposed model. Results on LFW and ImageNet datasets confirm the effectiveness of our model compared to state-of-the-art alternatives in the field.