R. Serajeh; A. Mousavinia; F. Safaei
Abstract
Classical SFM (Structure From Motion) algorithms are widely used to estimate the three-dimensional structure of a stationary scene with a moving camera. However, when there are moving objects in the scene, if the equation of the moving object is unknown, the approach fails. This paper first demonstrates ...
Read More
Classical SFM (Structure From Motion) algorithms are widely used to estimate the three-dimensional structure of a stationary scene with a moving camera. However, when there are moving objects in the scene, if the equation of the moving object is unknown, the approach fails. This paper first demonstrates that when the frame rate is high enough and the object movement is continuous in time, meaning that acceleration is limited, a simple linear model can be effectively used to estimate the motion. This theory is first mathematically proven in a closed-form expression and then optimized by a nonlinear function applicable for our problem. The algorithm is evaluated both on synthesized and real data from Hopkins dataset.
H. Kamali Ardakani; Seyed A. Mousavinia; F. Safaei
Abstract
Stereo machine vision can be used as a Space Sampling technique and the cameras parameters and configuration can effectively change the number of Samples in each Volume of space called Space Sampling Density (SSD). Using the concept of Voxels, this paper presents a method to optimize the geometric configuration ...
Read More
Stereo machine vision can be used as a Space Sampling technique and the cameras parameters and configuration can effectively change the number of Samples in each Volume of space called Space Sampling Density (SSD). Using the concept of Voxels, this paper presents a method to optimize the geometric configuration of the cameras to maximize the SSD which means minimizing the Voxel volume and reducing the uncertainty in localizing an object in 3D space. Each pixel’s field of view (FOV) is considered as a skew pyramid. The uncertainty region will be created from the intersection of two pyramids associated with any of the cameras. Then, the mathematical equation of the uncertainty region is developed based on the correspondence field as a criterion for the localization error, including depth error as well as X and Y axes error. This field is completely dependent on the internal and external parameters of the cameras. Given the mathematical equation of localization error, the camera’s configuration optimization is addressed in a stereo vision system. Finally, the validity of the proposed method is examined by simulation and empirical results. These results show that the localization error will be significantly decreased in the optimized camera configuration.