
Journal of Artificial Intelligence and Data Mining (JAIDM), Vol. 10, No. 2, 2022, 245-256. 

Shahrood University of 

Technology 

Journal of Artificial Intelligence and Data Mining (JAIDM) 
Journal homepage: http://jad.shahroodut.ac.ir

Research paper

A new Approach to Estimate Motion and Structure of a Moving Rigid 

Object in a 3D Space with a Single Hand-Held Camera 

Reza Serajeh
1, 

Amir Mousavinia
2*

 and Farzad Safaei
3

1. Faculty of Electrical Engineering, K.N.Toosi University of Technology, Tehran, Iran. 

2. Faculty of Computer Engineering,  K.N.Toosi University of Technology, Tehran, Iran.

3. Faculty of Informatics, University of Wollongong, Wollongong, Australia. 

Article Info Abstract 

Article History: 
Received 05 September 2021 
Revised 02 February 2022  

Accepted 14 March 2022 

DOI:10.22044/jadm.2022.11167.2267 

The classical structure from motion algorithms are widely used in 
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is limited, a simple linear model can be effectively used in order to 
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synthesized and real data from the Hopkins dataset. 
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1. Introduction

There have been many studies around camera 

motion estimation (known also as odometry) and 

3D structure estimation due to their many 

interesting applications in different areas such as 

robot navigation and map generation [1]. This part 

first explains an introduction to it, and then 

represents a problem description for this paper.   

1.1 Related works 

The field of 3D motion and structure estimation 

has been studied in different known classical 

approaches named Structure From Motion (SFM), 

and Simultaneously Localization And Mapping 

(SLAM). SLAM is useful for online cameras that 

use prior sequenced knowledge, while SFM is an 

offline algorithm used for a bunch of stored 

images. However, both of these approaches 

estimate the camera motion and 3D structure of a 

scene from 2D image sequences taken from a 

moving camera. This goal is achieved by 

considering the geometry between different views 

of the static scene and application of triangulation 

[2] on the image corresponding points found by 

the methods such as SIFT [3], SURF [4], ORB [5] 

or LIFT [6]. When these different views are under 

control, the 3D structure can be even optimized to 

reduce localization error and enhance depth 

estimation accuracy by improving the camera 

arrangement [7, 8]. Additionally, in order to 

estimate and optimize the solution in the presence 

of noise, filter-based approaches such as Kalman 

filter [9] and particle filter [10] or bundle 

adjustment (BA) [11] have been introduced. 

However, the classical methods represent the 

geometry and mathematics for only the static 

scene, while, in practice, the environment is 

typically dynamic including the moving objects 

that do not follow the geometry.  

In order to tackle this issue, the algorithms such as 

RANSAC [12], PROSAC [13], and MLESAC 

[14] are represented to just find and remove the 

outliers caused by the moving objects or noises 

and then rely on only the feature points located on 

the other static part. More practically, J. Engel et 

al. have proposed a large-scale algorithm LSD-

SLAM as a robust solution useful for this situation 

[15]. A semantic visual SLAM named DS-SLAM 

has been proposed by C. Yu et al. [16] towards 
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dynamic environments. DM-SLAM combines an 

instance segmentation network with the optical 

flow to tackle the issue [17], and a deep learning 

approach has been used by M. S. Bahraini et al. 

[18].  

However, this does not solve the issue of the 

moving objects themselves, and only concentrates 

on the static part by ignoring the moving parts. In 

other words, the mentioned algorithms work well 

on the dynamic scenes by just eliminating the 

moving objects such that they do not estimate 

their 3D structure and motion. 

By usage of a laser scanner, C.-C. Wang and C. 

Thorpe [19], and C.-C. Wang et al. [20] have 

represented Simultaneous Localization, Mapping, 

and Moving Object Tracking (SLAMMOT) in 

order to tackle the issue. However, adding of laser 

scanner itself is a limitation that does not allow 

the method to be applicable for any captured 

video without a laser scanner. 

In the domain of dynamic scene 3D 

reconstruction, instead of 3D structure estimation 

for the moving objects, different approaches only 

segment the moving objects from the static scene 

[21]. Multi-Body Structure from Motion 

(MBSfM), as an extension of SFM, stands for the 

methods in this field that detect and segment 

different rigid moving objects existent in the 

scene, and reconstruct their 3D structures in their 

own coordinate, separately [22, 23]. In other 

words, MBSfM segments different rigid moving 

objects into their different objects’ motion 

clusters, where each object is separately 

represented by a specific motion and 3D structure 

of itself similar to the conventional SFM [24, 25]. 

Non-Rigid Structure from Motion (NRSfM) is 

also another extension of SFM for non-rigid 

moving objects [26-30]. 

However, by detection and segmentation of the 

moving rigid objects, each object can be only 

separately processed by the conventional SFM to 

estimate the object’s 3D structure (up to an 

unknown scale) and its consequent motion for the 

camera. This means that each moving object, 

separately, has its structure and camera motion 

independent from other parts of the scene.  

 

1.2 Problem description 

The 3D estimation of motion and structure of a 

moving rigid object in the coordinate of the main 

scene is a substantial and challenging problem. 

The main difficulty is that the triangulation [31] 

used for estimation of the static 3D structure of 

the scene is not valid for the estimation of moving 

object 3D structure when besides the camera 

motion, the object itself is also freely moving in a 

3D space without known moving parameters. In 

other words, there is a short t  time between 

each consecutive frame when the object can move 

and therefore add noises to the corresponding 

points and their disparities. This noise can be 

incrementally integrated over the next coming 

frames, and therefore, adds a high uncertainty to 

the corresponding points, and consequently, 

makes a big 3D reconstruction error. For example, 

in Figure 1, the typical SFM fails for 

reconstructing the moving car 3D structure. 

 

 

 
Figure 1. Conventional SFM fails to reconstruct 3D 

structure of moving object. 
 

  

Therefore, when both camera and object are freely 

moving in a 3D space, there is a problem with the 

SFM approaches to estimate the 3D motion and 

structure of the moving object in the coordinate of 

other parts of the scene. In this condition, since 

the corresponding points are caused by the 

consequent movement of both the camera and the 

object, there is no unique motion and position of 

the moving 3D object’s point to satisfy the 

geometry for the corresponding points without 

any constraint. 

In other words, by looking at Figure 2, any 3D 

point existent on a projection ray on one frame 

can lie on another frame’s corresponding 

projection ray with different specific motions. 

This means that there are infinitive 3D points and 

motions that can together satisfy the geometry. In 

order to solve this underdetermined problem, 

Avidan and Shashua [32, 33] have introduced a 

trajectory triangulation, assuming that the 3D 

point is traveling on a 3D unknown line in 

different frames. By this constraint, they require at 

least 5 frames to make a linearly solvable system. 

In their other research work [34], they have 

assumed that the object is traveling over a conic 
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section, where this constraint requires 9 frames to 

solve the equations. 

 
Figure 2. By fixing translation T between 3 consecutive 

frames for a 3D moving point P , it can uniquely lie on 

the corresponding optical rays, where red points on the 

frames are the corresponding points. In the case of

0T , the corresponding points of the first frame in 

other frames will be located on the epipolar lines 

(green points). 
 

Following the research work, triangulation has 

been generalized by Kaminski and Teicher [35] to 

transform the non-linear trajectory problem into a 

linear problem by polynomial representation. Park 

et al. [36] have estimated robustly the 3D points 

by least squares. Particle filter has also been used 

by Kundu et al. [37] to estimate and optimize 

iteratively the position and velocity of the moving 

objects using a Bearing Only Tracking (BOT). In 

a more recent work, H. S. Park et al. [38] have 

inspected the possibility of accurate 3D 

reconstruction by using reconstructability criteria 

represented in [36]. For this, they required to 

generate a low amount of basis vectors where the 

object trajectory should be approximated by a 

linear combination of them. This allows them to 

constrain the issue and solve an underdetermined 

system. However, this trajectory approximation is 

dependent on how the trajectory fits the basis 

vectors. 

In our work, considering a physical constraint of 

having a constant speed for a short time, we can 

solve the issue without constraining the whole 

trajectory and then simplify it into a closed-form 

equation. 

Since the 3D position of a physical rigid object 

such as a vehicle is continuous in time (the speed 

is continuous or the acceleration is limited), 

therefore, we can approximate the object speed by 

a constant value for a short time, for example, 3 

consecutive frames. In other words, we assume 

that the speed in each time step is 
1n nt tv v v


    

and when 0t   then 0v  . Therefore, for a 

small number of consecutive frames K , the 

approximation 
n n Kt tv v


  is valid. However, the 

acceptable change of speed is correlated with the 

camera frame per second (fps) such that with 

higher camera fps, we can keep the approximation 

still valid for faster object speed changes.  

This allows us to fix the speed, and consequently, 

the translation between frames for the moving 

object for a short period of 3 frames, as can be 

seen in Figure 2. We show that by this constraint, 

the rigid object’s 3D motion and structure are 

recoverable by the only usage of minimum 3 

consecutive frames. As it is shown in Figure 2, 

when the translationT is constant between frames, 

the 3D point P can be uniquely reconstructed such 

that it satisfies the geometry.  

Our method represents a closed-form solution for 

this issue. This solution initializes a non-linear 

optimization to also handle noise. The theory is 

first mathematically presented and proven, and 

then validated on simulated data and frames 

where the results are also compared with a recent 

deep model. Additionally, the method is tested on 

real image sequences in order to visualize the 

result in practice. To represent our method, the 

rest of this paper is organized as what follows. In 

Section 2, the method is mathematically 

represented. Section 3 concisely explains the 

algorithm. Section 4 represents the experiments 

on both the simulated data and the real data. 

Finally, Section 5 describes the conclusion. 

 

2. 3D motion and structure estimation of 

moving object  

In this section, the theory for estimation of both 

the 3D motion and the structure of a moving rigid 

object is represented in two parts, workflow and 

problem formulation. 

 

2.1. Workflow 

Since the real moving objects such as vehicles 

have a continuous motion, we assume that the 

speed is constant (the acceleration is zero) for a 

short period of time. In this case, the motion of a 

rigid object can be estimated by a 3D translation 

vector, valid for a couple of consecutive frames. 

As shown in Figure 3, in our approach, given the 

camera poses and the moving object’s 

corresponding points, we estimate the 3D 

structure and 3D motion of the moving object in 

the coordinate of the static scene. The static scene 

structure and camera motions can be estimated by 

the conventional SFM. An example of this process 

can be seen in Figure 4. 
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Figure 3. This block diagram shows at first the steps required for conventional approaches to reconstruct camera 3D 

motion and 3D structure of the static scene, and secondly shows where our approach is placed to estimate the 3D motion 

and 3D structure of a moving rigid object. 
 

 
Figure 4. While the conventional SFM can reconstruct the 

3D camera motions (in blue) and 3D structure of the static 

scene (in green), our approach can estimate the 3D motion 

(in black) and 3D structure (in red) of moving objects in the 

coordinate of the static scene. 
 

2.2. Problem formulation  

We first consider 1
T

n n n n
t t t tP X Y Z    as the 

n th 3D point at the frame time t  on a moving 

rigid object, where   1  : ,  n N and N is the number 

of key points on the object. Then by 

approximating the object motion for each pair of 

consecutive frames as a fixed translation vector

0
T

x y z
t t t tT T T T    for a couple of frames, 

the position of n
tP over these frame time steps  is: 

n n
t k t tP P kT  ò  (1) 

 

where ò  is a short time-step between two 

consecutive frames, and  0 :  k K  refers to the 

frame index. In our equations, integer   1K  is 

enough small to make it possible to fix the 

translation T over a couple of consecutive frames 

and also to provide at least 3 required frames for 

our equations.  

At time t k ò , the projected point through its 

image is  Pr ,  ,
T

n n n
t k t k t kP u v  

   ò ò ò  where by 

considering the projection matrix as t k  ò (a 3 4  

matrix), the equations are as follow:  
 

( )

n
t k

n n nn
t k t k t k t k t tt k

n
t k

x

p P P kTy

z
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ò ò ò òò
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 ò
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(4) 

 

Generally, by expanding the equations above for 

all u ,  v ,  , k , and ,P  we have: 

     

     

11 12 13 14

31 32 33 34

x y z

x y z

X kT Y kT Z kT
u

X kT Y kT Z kT

   

   

     


     

 
 

 

(5) 

     

     

21 22 23 24

31 32 33 34

x y z

x y z

X kT Y kT Z kT
v

X kT Y kT Z kT

   

   

     


     

 

 

(6) 

where we can re-write the equations above 

through the linearly represented equations as 

follow: 

 

11 31 12 32

13 33 11 31

12 32 13 33 34 14

( ) ( )

( ) ( )

( ) ( )

x y

z

k u k T k u k T

k u k T u X

u Y u Z u

   

   

     

  

   

     

 
 

 

(7) 
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21 31 22 32

23 33 21 31

22 32 23 33 34 24

( ) ( )

( ) ( )

( ) ( )

x y

z

k v k T k v k T

k v k T v X

v Y v Z v

   

   

     

  

   

     

 

 

(8) 

Therefore, each projected point in each frame 

provides two equations. This means that on each 

time step t , by having K frames and N points, 

there are 2 ( 1)N K   equations available. These 

equations can be written for any t k  ò , n
t ku  ò , 

n
t kv  ò , ,tT  and n

tP . The first three t k  ò , ,n
t ku  ò  

and n
t kv  ò  are known parameters, while the other 

tT  and n
tP   are unknown, and tT  is constant for 

all the n
tP  located on the moving rigid object. 

Consequently, the total number of unknown 

parameters equals  3 1N  . This linear system 

can be written as follows: 

t t tAU b  (9) 
 

where tA and tb are known coefficients and biases 

made by equations 7 and 8, and tU is an unknown 

vector containing all the unknown parameters as 

below: 

1

1

1

x
t

y
t

z
t

t

t
t

t

N
t

N
t

N
t

T

T

T

X

Y
U

Z

X

Y

Z

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
  

 

 

 

 

 

 
 

(10) 

The closed-form for this system that minimizes 

square error
2

AU b is: 

 
1

ˆ T T
t t t t tU A A A b



  
(11) 

When the system does not have any noise, ˆ
tU is 

equal to tU . However, in practice, by having 

more noises included in the system, it is just a 

rough approximation of tU . In order to optimize 

it for a more robust and accurate solution, a non-

linear optimization is used to minimize the 

projection error where the optimization is 

initialized by ˆ
tU : 

 
2

,

arg ( Pr ,   )
T

n n n
t t k t k t k

U k n

U min P u v  
     ò ò ò

 
 

(12) 

This non-linear optimization helps to make the 

system more robust in the presence of noise. 

 

3. Algorithm  

We assume that after applying the conventional 

SFM on the static part of the scene for the 

calibrated camera, all the projection matrices 

t k  ò  are already estimated for all frames. 

Additionally, the moving object is already 

segmented by motion segmentation, and thus the 

corresponding points  n
t ku  ò , n

t kv  ò  on the moving 

object are also available. Then our algorithm will 

do the process as below for all the moving objects 

to reconstruct the 3D structure of the moving rigid 

objects and their 3D motions: 
Algorithm 1. Steps to reconstruct 3D motion and 3D 

structure of moving rigid objects. 
1) Inputs:  

a. Projection matrices  for all frames 

b. Moving rigid objects’ corresponding points  u and v for 

all the frames 

2) For each rigid object: 

3)     For all 1K   consecutive frames at time t and  

    for all N  points on the object, generate: 

 t t tAU b  

4)     Compute  
1

ˆ T T
t t t t tU A A A b


 and optimize the term 

below initialized by ˆ
tU : 

 
2

,

arg ( Pr ,   )
T

n n n
t t k t k t k

U
k n

U min P u v
  

      ò ò ò  

5)      If the time is not ended, then 1t t  and go  

     back to step 3. 

6) Output: 

a. 3D structure of moving rigid objects in different times t  

b. 3D motion of moving rigid objects in different times t  
 

4. Experiments 

Recently, for a single image depth estimation 

taken by a single hand-held camera without the 

usage of any other equipment such as LIDAR, one 

of the very highlighted methods is the usage of 

deep learning to estimate the depth by only 

considering the image RGBs [39-43]. 

Although these approaches are generally handy 

and work in the presence of noise for a dense 

structure estimation, in our specific application 

where both the camera and the object are moving, 

the presented approach in our paper highlights 

different advantages, mentioned below: 

 Deep learned approaches for single images 

just estimate the depth per each frame 

independently, while, we consider the relation 

of consecutive frames such that we can 

calculate the 3D motion of moving objects as 

well as the depth. 
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 These methods are dependent on the training 

data domain but we generalize our solution by 

mathematically modeling the geometry. 

 They estimate the depth by an unknown 

complex model, while we compute the depth 

through a simple explainable model. 

 They require a high-performance hardware for 

training and even maybe for testing, while we 

provide a simple closed-form term as a 

solution that can be run on typical machines. 

In this section, our method is tested on both the 

simulated data and real video data in order to 

validate the theory, and show the effectiveness of 

our approach. For real data, the videos are taken 

from the Hopkins database [44]. Furthermore, we 

made a known virtual scene including a moving 

object using 3D MAX to compare our approach 

with a recent deep learned model AdaBins [43], 

and show its efficiency. 

  

 

4.1. Approach validation on simulated data 

In order to validate the equations, the synthetic 

data is generated based on a pinhole camera 

model. In this model, first, N number of randomly 

located 3D points n
tP are considered. Additionally, 

1K   consecutive frames in different camera 

poses (random translation and rotation) are 

considered, where the focal length is f . Then all

N points are translated by a fixed translationT

from each frame to the next one, and then 

projected through the corresponding frame. This 

allows us to generate all ,  
T

n n
t k t ku v 

 
 ò ò and t k  ò as 

the known parameters, and then compute ˆ
tU  and 

tU  as the linear and non-linear estimations of T

and all ,n
tP  respectively.  

In this experiment, all parameters are randomly 

initialized in a typical range reported in the table 

below: 

 
Table 1. Parameters and their range used for randomly 

generated simulation data. 
Parameter  Range  

Focal length f  (10, 100) mm 

Camera translation in 3D space (0.05, 0.3) m in each direction 

Camera rotation (roll, yaw, pitch) (0, 20) degree for each direction 

Number of consecutive frames (K) (3, 10) 

Number of points on the moving 

object (N) 

(10, 100) 

Object distance from the camera (1, 50) m 

Object translation ( , ,x y zT T T ) (-1, 1) m for each element 

Object size < 2 m in each direction 

In order to compute the error of 3D structure 

reconstruction, one of the well-known criteria is 

the re-projection error when we do not have the 

3D structure ground truth. However, since in this 

experiment we have the ground truth available, we 

directly compute the average l2-norm distance of 

3D structure and motion estimation with their 

ground truth as the error criteria. For this goal, 4 

error criteria are introduced as follow: 

 

Translation estimation errors: 

 

 Linear model error: 
2

ˆ
T̂ t te T T    

 Non-linear model error: 
2T t te T T    

3D structure estimation errors: 

 Linear model error: 

1 1

2

ˆ

ˆ
ˆ

t t

NN
tt

P

P P

PP
e

N

   
   

   
   

  
   

 Nonlinear model error: 

1 1

2

t t

N N
t t

P

P P

P P
e

N

   
   

   
   
   

   

In order to optimize our non-linear function, we 

use the Quasi-Newton method. 

Since the major source of the noise existent in the 

model is the corresponding points noise, to model 

the effect of that, a uniform noise is added to the 

corresponding points, and the effect of that is 

evaluated in the following. The noise is randomly 

added up to a certain percent of disparity mean 

over all images. By increasing the noise percent 

from 0 to 10, we show T̂e , Te , ˆ
Pe , and Pe  

concerning the percent of noise in Figure 5. The 

experiments are repeated for 100 randomly 

initialized run, and the averages are shown in this 

figure. 

As it is shown in this figure, when there is no 

noise added to the system, the equations are valid 

such that both the linear and non-linear solutions 

can exactly find both the 3D structure and the 3D 

motion of moving objects where the errors are 

zero. However, by adding noise to the 

corresponding points, the errors of estimation get 

higher, where in all cases, the non-linear 

optimization estimates the object’s 3D structure 

and 3D translation more accurately. 
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Translation estimation error 
 

         3D structure estimation error 

Figure 5. Average error for estimation of 3D motion and 3D structure of moving rigid objects in the presence of noise. 

The error is shown for both the linear and non-linear solutions. 
 

  
  Translation estimation error        3D structure estimation error 

Figure 6. Average error for estimation of 3D motion and 3D structure of moving rigid objects concerning different 

numbers of consecutive frames K . 
 

  
          Translation estimation error         3D structure estimation error 

Figure 7. Average error for estimation of 3D motion and 3D structure of moving rigid objects concerning different 

numbers of points N  on the object. 

 

In addition to the effect of noise on the system, 

the effect of two other factors, the number of 

consecutive frames K  where the object 

translation is estimated as constant for and the 

number of points on the moving object N  are also 

validated on the accuracy of the system in the 

presence of noise. In order to show the effect of 

these factors, we fix the noise of the 

corresponding points on 5%, and then the errors 

of the model are shown concerning these two 

factors in Figures 6 and 7. 

These figures show that the number of K  does 

not have necessarily an increasing or decreasing 

effect on the accuracy of estimation; instead, to 

decrease the error of the model in the presence of 

the corresponding points noise, having more 

points (larger N ) on the object is considerably 

effective. 

Linear model error 
Nonlinear model error 

Linear model error 
Nonlinear model error 

Linear model error 
Nonlinear model error 

Linear model error 
Nonlinear model error 

Number of consecutive frames (K) Number of consecutive frames (K) 

Linear model error 
Nonlinear model error 

Linear model error 
Nonlinear model error 

Noise on corresponding points (%) Noise on corresponding points (%) 
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Frame 1 Frame 2 Frame 3 Frame 4 

Figure 8. Interior video frames taken from Hopkins database; Green points: corresponding points for the static scene; Red 

points: corresponding points on the moving rigid object. 

 
3D structure and 3D motion 

 

   

Left view Right view Frontal magnified view 

Figure 9. Reconstructed structure for both static scene (in green) and moving rigid object (in red), in addition to the 3D 

motion of moving object (black arrows) are shown for the frames represented in Figure 8. For a better visualization, different 

views are shown. 

 

4.2. Result on real data 

In this section, the method is tested on the real 

video data taken from the Hopkins database [44]. 

In this database, the corresponding points on the 

static and moving object are already segmented 

and given where we can test our algorithm to 

reconstruct the 3D structure and motion of the 

moving object in the static scene coordinate.  

In the video samples tested here (Figures 8-11), 

there are two segments of points: the points on the 

static scene (the green points) and the points on 

the moving rigid object (the red points). In these 

scenes, the object is moving while the camera is 

also freely moving. By having the intrinsic camera 

parameters, the motion of the camera is estimated 

by applying the conventional SFM on the static 

part of the scene, which results in the projection 

matrices for all the frames. It additionally gives us 

the 3D structure of the static scene up to an 

unknown scale.  

3D structure and motion of moving rigid object 

3D structure of scene 

Camera poses 
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Frame 1 Frame 2 Frame 3 Frame 4 

Figure 10. Exterior video frames taken from Hopkins database; Green points: corresponding points for the static scene; Red 

points: corresponding points on the moving rigid object. 

 

 
3D structure and 3D motion 

 

   
Left view Right view Frontal magnified view 

Figure 11. Reconstructed structure for both static scene (in green) and moving rigid object (in red), in addition to the 3D 

motion of moving object (black arrows) are shown for the frames represented in Figure 10. For a better visualization, 

different views are shown. 

 

Then by having the corresponding points on the 

moving object and the projection matrices, our 

method is used to estimate both the 3D structure 

and the 3D motion of the moving object in the 

coordinate of the static scene.  

As it is shown in Figure 8 for an interior scene, 

the camera is moving to the left for 4 frames, 

while the basket itself is rotating down 

simultaneously. The red points shown in Figure 9 

show the 3D structure of the moving object, 

where the motion is also estimated as black 

arrows. In another test, Figures 10 and 11 

represent an example of a real vehicle moving in 

an exterior static scene. 

In these figures, similarly, the 3D structure and 

3D motion of the moving object are estimated for 

4 frames to show the effectiveness of the 

presented method on the real data. 
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Our method result (blue: ground truth; Red: our result) Single image depth estimation by a deep network 

Figure 12. Comparison of our approach with deep learned model AdaBins on simulated frames. First row: the frames 

generated by 3D MAX (sorted from left to right); second row: AdaBins result when the model is trained with KITTI database; 

third row: AdaBins result when the model is trained with NYU database; fourth row left: 3D motion and 3D reconstruction of 

moving object calculated by our approach where the ground truth is in blue and our result is in red; fourth row right: result of 

3D reconstruction from AdaBins trained with NYU where the scale is unknown, and the shape is deformed. 
 

4.3. Result comparison on simulated frames 

In this part, a virtual scene is simulated by 3D 

MAX, where the geometry is known to us, as it is 

shown in Figure 12. We made a moving one-

meter cubic object inside. Then both our approach 

and a new complex deep learned model AdaBins 

[43] that is used for single image depth estimation 

are compared in this figure to show the 

effectiveness of our approach in a specific case 

study, where both the camera and the object are 

freely moving. 

As it is shown, our approach reconstructed the 3D 

structure of the moving rigid object more 

precisely than the deep model. This is because it 
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models the geometry between the consecutive 

frames. In addition, using our approach, the 3D 

motion of the moving object between the frames 

is also calculated, while the deep model does not 

give this information because it works per each 

image separately. 

This figure also shows that the result of the deep 

model can variate when the training data changes 

(from KITTI to NYU) but our mathematical 

modeling generalizes the approach since it is not 

dependent on training data.  

 

5. Conclusion 

The usage of conventional SFM for a moving 

rigid object in the static scene is not possible 

without constraint since both the camera and the 

object itself are moving freely and 

simultaneously. In this work, since the motion of a 

moving rigid object was continuous, the speed of 

that for a short period of time was approximated 

as a fixed vector, and therefore, zero-acceleration. 

Using this constraint, we could find a closed-form 

solution to both reconstruct the 3D structure of the 

object and also estimate the 3D motion of that 

using only 3 consecutive frames. Additionally, in 

order to make the solution robust for noise, a non-

linear optimization was used. The theory was first 

explained mathematically, and then validated on 

the simulated data. Finally, it was tested on the 

real image sequences as well as the simulated 

frames in order to show how effectively our 

method solved the issue. 
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 چکیده:

اندد. بدا ایدن حدال، شده استفاده ،دوربین با استفاده از تخمین حرکت ثابت به طور گسترده به منظور بازسازی سه بعدی صحنه SFMرویکردهای مرسوم 

کده دهدد، زمدانی این مقالده نشدان مدی شوند.ند، این روش ها با مشکل روبرو مینامشخص وجود دار حرکتیزمانی که در صحنه اجسام متحرک با مدل 

 ،توان به صدور  طیدیه عبارتی با شتاب محدود باشد، میویدئو به اندازه کافی زیاد باشد و حرکت شئ در صحنه پیوسته در زمان و یا بتعداد فریم های 

بهینه سازی غیر طیدی  با استفاده از یکیک معادله ریاضی بیان شده است و در نهایت  صور این تئوری در ابتدا به  زد. شئ را تخمینو ساطتار حرکت 

شبیه سازی شده و همچنین فریم های واقعی گرفتده شدده از  های این الگوریتم بر روی داده .تا راه حل مسئله مذکور را ارائه نماید ود داده شده استبهب

   ارزیابی شده است. ،Hopkinsپایگاه داده 

متحرک، تخمین سه بعددی مددل حرکدت یدک  تخمین سه بعدی صحنه با استفاده از مدل حرکت دوربین، بازسازی سه بعدی صحنه :کلمات کلیدی

 شئ صلب.

 


