F.4. Probability and Statistics
Z. Shaeiri; M. R. Karami; A. Aghagolzadeh
Abstract
Sufficient number of linear and noisy measurements for exact and approximate sparsity pattern/support set recovery in the high dimensional setting is derived. Although this problem as been addressed in the recent literature, there is still considerable gaps between those results and the exact limits ...
Read More
Sufficient number of linear and noisy measurements for exact and approximate sparsity pattern/support set recovery in the high dimensional setting is derived. Although this problem as been addressed in the recent literature, there is still considerable gaps between those results and the exact limits of the perfect support set recovery. To reduce this gap, in this paper, the sufficient condition is enhanced. A specific form of a Joint Typicality decoder is used for the support recovery task. Two performance metrics are considered for the recovery validation; one, which considers exact support recovery, and the other which seeks partial support recovery. First, an upper bound is obtained on the error probability of the sparsity pattern recovery. Next, using the mentioned upper bound, sufficient number of measurements for reliable support recovery is derived. It is shown that the sufficient condition for reliable support recovery depends on three key parameters of the problem; the noise variance, the minimum nonzero entry of the unknown sparse vector and the sparsity level. Simulations are performed for different sparsity rate, different noise variances, and different distortion levels. The results show that for all the mentioned cases the proposed methodology increases convergence rate of upper bound of the error probability of support recovery significantly which leads to a lower error probability bound compared with previously proposed bounds.
B.3. Communication/Networking and Information Technology
Z. Shaeiri; J. Kazemitabar; Sh. Bijani; M. Talebi
Abstract
As fraudsters understand the time window and act fast, real-time fraud management systems becomes necessary in Telecommunication Industry. In this work, by analyzing traces collected from a nationwide cellular network over a period of a month, an online behavior-based anomaly detection system is provided. ...
Read More
As fraudsters understand the time window and act fast, real-time fraud management systems becomes necessary in Telecommunication Industry. In this work, by analyzing traces collected from a nationwide cellular network over a period of a month, an online behavior-based anomaly detection system is provided. Over time, users' interactions with the network provides a vast amount of usage data. These usage data are modeled to profiles by which users can be identified. A statistical model is proposed that allocate a risk number to each upcoming record which reveals deviation from the normal behavior stored in profiles. Based on the amount of this deviation a decision is made to flag the record as normal or anomaly. If the activity is normal the associated profile is updated; otherwise the record is flagged as anomaly and it will be considered for further investigation. For handling the big data set and implementing the methodology we have used the Apache Spark engine which is an open source, fast and general-purpose cluster computing system for big data handling and analyzes. Experimental results show that the proposed approach can perfectly detect deviations from the normal behavior and can be exploited for detecting anomaly patterns.