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Abstract

A sufficient number of linear and noisy measurements for exact and approximate sparsity pattern/support
recovery in the high-dimensional setting is derived. Although this problem has been addressed in the recent
literature, the results can still be improved. In this paper, a methodology is proposed, which reduces the gap
between the existing upper bound on the error probability of support set recovery and the exact limit. This
leads to a sharper sufficient condition for support recovery. A specific form of a joint typicality decoder is used
for the support recovery task. Two performance metrics are considered for the recovery validation: one that
considers the exact support recovery, and the other that seeks the partial support recovery. First, an upper
bound is obtained on the error probability of the support recovery. Next, using the mentioned upper bound, a
sufficient number of measurements for a reliable support recovery is derived. It is shown that the sufficient
condition for a reliable support recovery depends on three key parameters of the problem: the noise variance,
the minimum non-zero entry of the unknown sparse vector, and the sparsity level. Results are proved and
examined both theoretically and by experiments. Simulations are performed for different sparsity rates,
different noise variances. The results show that for all the mentioned cases, the proposed methodology
increases the convergence rate of the error probability upper bound significantly.

Keywords: Sparsity Pattern Recovery, Support Set Recovery, Information-Theoretic Limits, Performance
Bound, Joint-Typicality Decoder, Compressed Sensing.

1. Introduction
In signal processing, one commonly faces with an
estimation problem in which a vector x € R™ must
be estimated from a linear noisy observation vector
denoted as:

y =AX+n (1)

S={i[x =0} )

In the problem of sparsity pattern or support set
recovery, the concern is to detect non-zero
positions of the vector X [6] when we are given the
where AeRY™ is known and neRN is the measurement vector Y and the measurement
additive noise with a known distribution. It is matrix A. A reliable support recovery is important
known that X can be estimated from M in many applications including
measurements. However, when X is sparse, it is magnetoencephalography (MEG),

possible to estimate it with a sufficient accuracy
from a far fewer number of measurements, say
N <« M. This possibility is proved and further
analyzed in compressed sensing [1-5]. Y is such
output noisy measurement of the k-sparse vector X
.i.e.ithas K <N «< M non-zero entries, and N is
the additive noise vector. The support set of X is
defined as:

electroencephalography (EEG), cognitive radio,
subset selection in regression, and multi-user
communication systems [7-11]. The focus of many
of the recent studies is on designing and analyzing
the tractable recovery algorithms to solve (1) for X
. Another brand of works studied the information-
theoretic limits of any estimator for an exact or
approximate recovery of the support of X [12-24].
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Information-theoretic limits disclose the extent of
sub-optimality of the current sub-optimal methods.
In other words, they reveal the gap between the
solutions of the currently sub-optimal methods that
obtain the sparsity pattern and the information-
theoretic limits of the problem. Generally, the
information-theoretic limits can be realized in two
ways: necessary conditions and sufficient
conditions, which give the support recovery
conditions of two extreme cases. A lower bound on
the number of measurements can be considered as
the sufficient condition for an exact support
recovery, i.e. if the number of measurements N is
more than N,, the exact support recovery is

guaranteed for an optimal decoder. On the other
hand, an wupper bound on the number of
measurements can be viewed as a necessary
condition for a support recovery, i.e. if the number

of measurements N reduces to No , then the exact
support recovery is not possible using any decoder.

2. Relation to previous works

The problem of reconstruction or estimation of the
sparse signal X has attracted substantial attentions.
Given the measurement model (1) and the sparsity
assumption (2), one approach for estimating X is

to solve the ¢, — constrained quadratic program
below, known as LASSO [31], given by:

.1 2
mint. Ly A+ )

inwhich A >0 is the regularization parameter. A

great deal of recent works use ¢, — constrains for

estimation of X in the presence of sparsity
constraints. In this direction of studies, several
algorithms with affordable complexities have been
proposed such as Orthogonal Matching Pursuit
(OMP) [32], Subspace Pursuit (SP) [33],
Compressive  Sampling  Matching  Pursuit
(CoSaMP) [34], and lIterative Hard Thresholding
(IHT) [35].

In another brand of studies, only the sparsity
pattern recovery is taken into account. In fact, in
some applications, detecting the support set is an
ultimate goal [7-11]. By determining the support
set, the signal can be estimated simply by solving a
least squares problem.

In this work, we are concerned with fundamental
limits of the sparsity pattern recovery problem.
Fundamental limits of a recovery problem can be
achieved by analyzing the performance of an
optimal decoder. These limits are highly valuable
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since they reveal the gap between the performance
of any tractable recovery algorithm and the
ultimate performance limits. In this work, a
sufficient condition of support recovery is taken
into account. In the recent years, in several works,
the authors have studied the information-theoretic
limits of any estimator for an exact and
approximate support recovery and for single and
multiple measurement vector models. Using an
optimal decoder, Wainwright [19] has presented
the necessary and sufficient conditions on
(k, N, M) for which an exact support recovery is

possible in the high-dimensional setting. Akcakaya
and Tarokh [20] studied the necessary and
sufficient conditions for an exact support recovery
in the high-dimensional setting using a certain type
of joint typicality (JT) decoder for different error
criteria. Under the assumption of finite constant per
sample SNR (Signal-to-Noise Ratio) and
measurement rate, Reeves and Gastpar [21]
showed that an optimal recovery was possible with
a constant fraction of error. Fletcher et al. [22]
obtained the necessary condition for an exact
support recovery using the maximum likelihood
decoder in a certain setting. Xu et al. [23]
developed the probability of a partial support
recovery and asymptotic mean-square error of the
recovered sparse signal for a maximum likelihood
decoder. In [24], Rad derived sufficient conditions
using the Chernoff technique and some features of
the eigenvalues of the difference of the projection
matrices.

In this work, the sufficient condition is enhanced.
Most related to our work are the works of
Akcakaya et al. [20] and Scarlett et al. [16].
Akcakaya proved that O(K) measurements are

sufficient for support recovery in the high-
dimensional setting using a JT decoder. He proved
that when N > CK, where C >1 was a constant,
a perfect recovery was possible. Scarlett obtained
sufficient conditions via the analysis of the JT
decoder, while a prior distribution was assumed on
the support set. In this work, we make the constant
C explicit. This constant is derived in terms of the
key parameters of the problem. Actually, we derive
a sharper sufficient condition for the sparsity
pattern recovery when the same JT decoder is used
for the support recovery problem. This condition is
a scaling of the number of measurements N, the
size of the unknown sparse vector M , the sparsity
level K, and the associated measurement
parameters. Under this scaling law the JT decoder
recovers the support set asymptotically with
probability tends to one. This scaling law can be
derived by obtaining the error probability of
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support  recovery. Deriving an analytical
expression for the exact error probability is not a
straightforward task. Therefore, instead of
analytically obtaining the error probability, an
upper bound is derived. In the past works, chi-
square tail bounds have been used for bounding the
probability of error events [16], [17]. The issue is
that the chi-square tail bounds are very loose. A
large gap is observed between the exact error
probability (obtained for instance by Monte Carlo
simulations) and the upper bound derived using the
chi-square tail bounds. This large gap will result in
a considerable inefficiency in obtaining the
required number of measurements for an exact
support recovery. It is clear that the number of
measurements that is yielded using these bounds is
inefficiently more than required. Motivated by this
observation, in this paper, we propose a new
methodology for obtaining a sharper sufficient
condition for an exact support recovery. More
details about the proposition are given in Section 3.
We assume the observation model (1), in which

AeRY™ s the sensing matrix. Actually, the
name (sensing matrix) comprises the fact that the
signal X is sensed through the matrix A to
produce the observation Y. Elements of A are
drawn from standard normal distribution, i.e.
a; ~ N(0,1) in which a; is the (i, j) element of
A and N(0,1) is the normal distribution. The
additive noise is N~ N(0,1 ,0%) where T,

stands for the identity matrix. By X;, we denote the

I -th entry of vector X. The only prior information
about the unknown sparse vector X is its sparsity
level K that is known at the decoder. We assume
that X, A, and N are statistically independent
from each other. A linear regime is considered, in
which M and K depend linearly. Also we assume
a linear dependency between k and N . Two error
criteria are considered: zero-one loss for an exact
support recovery and a metric for partial support
recovery or recovery of most subspace information
of X. First, an upper bound for the error probability
of support recovery is computed, and then the
number of sufficient observations for an exact
support recovery in the high-dimensional setting

((k, N, I\/I)—)oo) is derived. It is shown that the
sufficient number of observations depends on the
noise variance ¢, the minimum non-zero entry of
the unknown sparse vector X .., and the sparsity
level K . To support the results further, simulations

are provided. Results show that how to choose the
upper bound of the error probability is important in
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obtaining the sufficient number of observations for
exact support recovery.
This paper is organized as what follows; Section 2

contains definitions and assumptions. Main results
are stated in Section 3. Proofs are given in Section
4. In Section 5, simulations are provided, and
conclusions are drawn in Section 6.

3. Definitions and assumptions
The following notations are used throughout this

paper.
Consider the observation model (1) and the sparsity

assumption (2); we refer to the cardinality of S as
S| =||X||0 =k , in which ||X||O stands for (,-norm
or the number of non-zero entries of X.

Regime of sparsity: We assume that there exists a

linear dependency between the number of
observations and the sparsity level or
M=oKk,a>2.

Error metrics: To analyze the performance of the
decoder, two error metrics are considered [19],
[20]:

D,_, : Zero-one error metric:

D, () =1-Ki| % #0, Vi e S}x 3)
Ki|x =0,VieS}

where I is an indicator function and X is the

estimation of X. This error metric is also known as

the exact error metric. This metric declares an error

when the estimated support is complement of the

true support or when it overlaps with the true support

in less than K indices. Let § be the estimated
support set, which is a k-element subset of

{1, 2,..., M}. S is complement of the true support

set S when SNS=® which means that the
estimated support set is completely incorrect. The

other error case happens when SNS=®d but

S#S. It means that S overlaps with S in only g
indices, where q < k. Again, the estimated support
set is not correct. In both of these two cases, the zero-
one error metric declares an error.

Dy : This error metric is the statistical extension of

the zero-one error metric. It considers recovery of
most of the sub-space information of X.
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Dy (X, 6) :1—1(% >1- 9] (4)

where 96(0,1). This error metric is not as
restricted as the zero-one error metric. It allows a
small pre-defined amount of distortion. This
amount is controlled by @. When the ratio of
incorrectly estimated non-zero positions on k
exceeds a pre-defined threshold, this error metric
declares an error.

Sub-matrix and Projection matrix: A sub-matrix of
A containing only columns associated with the

index set S e{l 2,...,M} where |S|=K is shown
by A. For any set S with cardinality K, we

assume rank(As ) =K . The orthogonal projection
matrix onto the sub-space spanned by the columns

* 71 *
of A is shown by IT, :AS(AS AS) A . Also
the orthogonal projection matrix onto the
orthogonal complement of this sub-space is shown

by IT;, =1-A(A'A) A"

Assumption on the decoder: The decoder is a

A

mapping from pair (y, A) to a set of indices S.

More precisely, it outputs a set of indices S with
cardinality K as the estimated support. It is assumed
that the error probability is averaged over all
standard Gaussian measurement matrices with
entries confirming @; ~ N(0,1). The error reads as:

Ro =EA(P(D=0)) (5)

in which P(.) stands for the probability measure,
E, is the expectation over all sensing matrices A
,and D iseither D, ;(X) or Dy (X,6).

JT decoder: The JT decoder is assumed to be
asymptotically optimal. It characterizes events
based on their typicality. Thus error events are
expressed based on atypicality. Here, the following
definition of the joint-typicality property is
exploited:

Joint-typicality property: The observation vector y
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and set Se{lZ,...,M} with |S|=K are -
jointly typical if rank(As)zk and:

<o

Nl -5 ®

The JT decoder outputs an estimate of the support
denoted by S which is a k-element subset of set
{1, 2., M} . An error is declared when S :

1. is complement of the true support S, and
2. overlaps with S in 0<q<J1 indices.

3. Main result
The main idea of the paper can be inferred from

Figure 1. In this figure, the exact probability of
error and its upper bounds are depicted. The upper
bounds 1 and 2 are two different bounds derived
using different methodologies. Assume that we
want to derive a sufficient number of
measurements for which the error probability
remains under a specific threshold &. It is hard to
derive the exact value of the error probability for
this problem. Thus, in the literature, efforts have
been made for deriving acceptable upper bounds
rather than computing the exact value of the error
probability. In this figure, the exact error
probability curve (which may be obtained by
simulating the exhaustive search decoder) indicates

that for N, measurements and more the error
probability remains under 6. In other words, the
N, measurements are sufficient for a support
recovery with an acceptable amount of distortion §.
Since we do not have access to the exact error
probability, we have to rely on an upper bound to
achieve the sufficient condition. It is clear that the
best upper bound among all is the one that is closer
to the exact error probability. This illustrative
example shows that when a fix distortion level § is

tolerable, N, samples are sufficient, whereas using
the upper bounds 1 and 2 for deriving a sufficient
number of observations imposes the need for
additional (N, —N,) and (N, —N,) samples,
respectively. Nonetheless, since
(N, —N.)<(N;—N,), the upper bound 2 is
preferable. In other words, to achieve more
accuracy and efficiency in the sufficiency proof,
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we have to exploit an approximation very close to
the exact value of the error probability.

In this work, first, an upper bound is derived on the
error probability of the support recovery.
Compared with the previous bound derived in [20],
this upper bound is close to the exact error
probability in the high-dimensional setting. In [20],
a sufficient condition of support recovery is
obtained for the JT decoder in the high-
dimensional setting in which the chi-square tail
bounds are used to upper bound the probability of
error events. The Chi-square tail bounds are very
loose for this case [29], [30]. In this paper, we
propose a methodology that uses tighter bounds for
upper bounding the probability of error events.

=g Upper bound 1
@ Upper bound 2
Exact

Probability of error

0 Ne N2 N
Number of samples

Figure 1.The error probability versus number of
observations. Using a loose upper bound could not
be efficient.

Based on the derived upper bound, a sufficient
number of measurements for the exact and
approximate support recoveries is derived. It is
clear that using the proposed upper bound
enhances, the sufficiency proof results. We have
assumed that elements of the sensing matrix are
i.i.d, and they have a normal distribution. The
additive noise is also Gaussian. In the literature,
some works have been reported considering other
types of sensing matrices [13], [18], [29]. In [13],
Wang studied the problem considering various
types of dense and sparse sensing matrices.
Considering the fact that Gaussian measurement
matrices are actually highly dense matrices that
may lead to prohibitively high computational
complexity and storage requirements, he suggested
using sparse matrices and tried to find the trade-off
between the statistical efficiency and the accuracy.
He stated in his paper that the standard Gaussian
measurement matrix achieved an optimal scaling of
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the number of observations required for the support
recovery.

In what follows, the main results are presented in
theorems 1 and 2. In theorem 1, a new upper bound
is derived on the error probability of the support
recovery. Using theorem 1, in theorem 2, a
sufficient condition for exact support recovery in
the high-dimensional setting is derived.

3.1. Error events

A specified form of the JT decoder is used and
analyzed for signal recovery. The JT decoder
characterizes the events based on their typicality.
Thus error events are expressed based on
atypicality. Consider the following two events:

E, :{y and S are o-jointly typical}

Es ={occurance of complement of S}

Let éiS be the estimated support such that
S|=k. |SnS|=a<k, and rank(A)=k.
Event ESC implies occurrence of the complement
of the true support and event Eé occurs when y and

S are S—jointly typical or when S and S
overlaps in g < k indices. For each Q, there are

N(Q) number of subsets S with the mentioned
properties, where:

K\ M —k
N@_@X qj "

If Eg or Eé occurs, then the decoder fails. The
probability of error can be expressed as:

P, =P| ES E. ||<P(ES
o P B HLS (Q+w)

> e N@P(E,)

To derive the upper bound on the error probability
Py, it suffices to compute probability of events
ES and E;. By multiplying both sides of the
observation model y=AX+n by Hﬁs, we get
1oy, —T17L
I, y=II.n.
Hjs =USAU;, in which asterisk stands for the

Using the substitution
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conjugate transposed of the corresponding matrix,
Uy is a unitary matrix and A is a diagonal matrix

with the first N —K diagonal entries equal to 1 and
the remaining entries equal to zero, we obtain:

s =AU AX+nH

2 2 2
=[nuf el e+

in which each element of vector n'=Ugn is an

i.i.d random variable with distribution N(0,c?).

Thus G=—

HH yH is a chi-square random

variable with N —k degrees of freedom.

Again, by multiplying both sides of the observation

model by HAé,we get [T, y= I (Ax+n)
substitution 1‘[l U AU , in which Ué is a

unitary matrix and the first N —K diagonal entries
of diagonal matrix A are equal to 1 and the
remaining entries are equal to zero, we get:

[tk v =us AU (3 s s +m)f
A (U8 +Um))[

=z 2| |2y

where, @, is the i -th column of matrix A. For all
i €S\S, vector &' =Uza, has i.id entries each

with distribution N(0,1), and vector n' =U;n
has i.i.d entries, each with distribution N(0,c?).

Consequently, z; has also i.i.d entries each with

N(0,57)
012 Z]S\S‘XQ‘ +0% Again, G——HH yH

is a chi-square random variable with N—k
degrees of freedom. For 0 >0, consider the
following two error probabilities:

N k
p(E5) (R I o -k or

distribution such that

>5j 9)
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P(E)=p{ylmof e <s] @
We have:
=P($=5)<P(ES)
(11)
=(N||HAS ||—Nk >5)
SN () ( gy - Nk <5]

in which he[ZL (9k]. When h=1, the zero-one

error metric is considered. As it can be inferred
from (11), h =1 means that the error is computed
for all non-zero positions that are estimated
incorrectly, and in the summation, their appropriate
error events are taken into account, whereas
h =6k means that the error is computed when the
number of non-zero positions that are incorrectly
estimated exceeds a certain amount, &K . The first
term in the right hand side is probability of event

ES , which is occurrence of the complement of the
true support set. The second term comprises all Eé

events that occur when y and S are & —jointly
typical or when S and S overlap in g <k indices.
O is the distortion parameter. Here, we have
assumed that & < min{xﬁqm,ol} :

3.2. Results

Theorem 1- From the k-sparse signal X € RM with
the support (2), a linear noisy observation

y=AX+n is generated. Elements of AeR"™
are drawn from standard Gaussian distribution

~N(@©,1), and n~N(QI 0% is the
additive  Gaussian  noise.  Assume  that

rank(A;) =k and for any set T ={1,2,..,M}
with [T|=k, let P(rank(A)<k)=0. For

0 >0 the probability of support recovery error is
bounded above according to the following
equation:

Pp<U

el

(12)

where, U=A+A+A,and A, A and A are

as follow:
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) @)
il ) (3]
A B(NT_k +25;\‘2)N2_kl exig—il;‘z) (14)

exp[ (N-K)o?+6N  N—k 1]{(1\1 k)o-2+§NJNZ

AT NO N- kZO:Nn K)o? ;u N 2:2 e
+ 2
[ 7 o, jm[T )
(15)
in which
G= 8(N—k— )3+4(N—_k—1j2+(N_k—1)+i i
2 2 100
2
O—12,min :quin +62

and X, =Min,|X|. h is 1 for zero-one error
metric and @K for error metric 2.

Theorem 2- From the k-sparse signal X € RM with
support (2), a linear noisy observation y = AX+n

is generated. Elements of AeR™M are drawn
from standard Gaussian distribution &; ~ N(0,1),

and N~ N(0,I,0%) is additive Gaussian noise.
Assume that rank(A)=k and for any
T C{IL 2., M} with  cardinality k, let

P(rank(A ) <k)=0. The sufficient condition

for an exact support recovery in the high-
dimensional setting is as follows:

62 Xriin
N >kmax{(02_§j,£xim_5j}. (16)

In fact, theorem 2 gives the condition on the
number of observations such that Py —0 as k

and consequently, M and N grow large.
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4, Proofs
In what follows, two sub-sections, proofs and
further discussions, are provided.

4.1.Proof of theorem 1
As it was mentioned in  Section 3,

HH yH is a chi-square random variable

with N—k degrees of freedom. Using the
probability distribution function of a chi-square
random variable, we have:

o) -t o)
oN
-#{e-(n-k)> 02)
-P[G—(N- k)>%\|j
(17)
+p( “(N- k)<—%)
z-1 i
F()jt exp(~t)dt
z-1 -
F( )jt exp(—t)dt
in which:
N -k
Z:—l
2
“N-k-N
6 =N-k-,
ON
c,=N- k+?
Since we are assuming that ¢, >0, we have:
N o’
?_’B>0'2—5 19

We put an upper bound on the right hand side of
(17) and show that it tends to zero as the problem
dimensions grow large. We know that the first and
second integrals in (17) are the lower and upper
incomplete gamma functions, respectively.

We use the following lemmas, which applies to any
gamma, lower incomplete gamma, and upper
incomplete gamma functions to upper bound the
integrals [25-27].
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Lemma 1. Let U>1 and real; then:
\/;u—u(Su +AU +U+— 1 )6
exp(u) 100 (19)
1
F(u+1)<«/;L(8u3+4u2+u+i)6
exp(u) 30

Lemma 2. For %<z, the following inequality

holds:

c\aY
5 EXp(‘z (2)
[2t*exp(—t)dt < (20)
0 Z—&

N

Lemma 3. For x>1, B>1 and y>Bil(x_1) the

following inequality holds:

yrexp(-y) < |F(x, y)| <By*'exp(-y) (18)

The first integral in the right hand side of (17) can
be bounded using the lower bound of the gamma
function in (19) and the upper bound of the lower
incomplete gamma function of (20). The second
integral can be bounded using the lower bound of
the gamma function in (19), and the upper bound
of the upper incomplete gamma function in (21).
Thus we get:

P(ES)<

“Gigg)a)
exp( 5 +z 1](2) +B(&)Hexp[—&+z—lj
-4 2 2

2 (22)

76z
=A+A

Similarly, we know that é:%“m\éy”z is a chi-
1

square random variable with N —K degrees of
freedom. Thus we have:

Rl -

<5)
S0Z]<F)

5 25N
=P G—(N—k)%<?lJ

(23)

G
2t exp(—t)dt

_%J‘o

M+@ Using lemma 1 and

o o

lemma 2, we get:

I

’ \/EG(Z—l)H(z —C;j

2 2
eXlo(_(l\l—-k)c; +oN_ )((N-k)o +5Nj
<

where C,=

2O—lz,min 2le,min
(N-k)o?+oN
2O—lz,min

\/;G(z—l)”(z—
=A

and consequently:

207 2 207

1,min

1,min

exp[ (N- k)az+5N+N—k_lj((N k)o? +5sz
N
202

1min

(24)

where, for the zero-one error metric and error
metric 2, Nis 1 and 6K, respectively.

4.2. Proof of theorem 2

In order to prove that Py —0 asymptotically, it
is sufficient to show that the upper bound of (24)
tends to zero as K grows large. Since the linear
regime is assumed, we have M = oK, (o> 2) and
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also we assume that N=/gK,(S>1). It is
straightforward to show that A and A, tend to
zero asymptotically. We write:

_G
7

{W }B(c?z)“exp(-;m-l)

w2 (AR P
| A
el

(25)

where, M and N are written in terms of K . Using
(18), one can show that the first term in the right
hand side converges. For the second term to

converge, it suffices to show:
S

o) B

Since we assume p >

5 , inequality (26) is true

using the fact that Iog(1+x)—x<0 for all

X>—1. Next, it remains to show that A, tends to

zero asymptotically. Let h=1. Using the
following bound:

i)

we have:

<ol 527
_(N-k)o? +5N][(N —k)o?+oN J

exp( 2O-lzmln 20—12 min
exp ’

N-k
J;G(e-lNz—k_e-ly (

(N—k)o-2+5N]

2O_lgjmin

(28)
To get rid of summation, we obtain the maximizer
of (28) in terms of (. We replace q with a
continuous counterpart Xe[l, k]. Consider the

function below, which is part of A3 that contains

X:
exp[Zx(Iog(ij—XECD(xbﬂj 29)
()=
g(x (Z_XSC)
in which:
azke\/ﬁ_—l,b:m’cz o’

2Xr2r1in Xr?nin
One can show that g(x) is strictly ascending
when:

Xmm
f>—mon Xmm =5 (30)

A, reaches its maximum value when =K.

Therefore, it is easy to show that the right hand side
of (28) tends to zero as K tends to infinity. For
error metric 2, the expression must tend to zero for
K larger than &h. This result is also applied for the
error metric 2. Considering (18) and (30), the
sufficient condition is derived.

In the previous similar work [20], an assumption

was considered for X2, where:

erznin
log(k)

The reason for accepting this condition is that in the
noisy setting, when elements of x are arbitrarily
small, a perfect recovery is not possible.
Furthermore, condition (30) does not conflict with
this outcome since one can result this condition
from (30).

—o a koo

5. Simulation results

In this section, a simulation is provided, which
shows the efficiency of the proposed method.
Settings of the problem parameters is such that
condition (18) is satisfied. A comparison is made
between our results and the previous similar work
[20]. The upper bound of the error probability
derived in [20] is denoted by V . In Figure 2, U is
the proposed upper bound. For the zero-one error
metric U is depicted as a function of K for three

different values of /3 and it is compared with V .

It is shown that the convergence rate of U is more
than that of V . Asitis expected, for K sufficiently
large, U is a sharper upper bound for the error
probability compared with V . To achieve a pre-
defined distortion level, a stricter upper bound
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results in obtaining fewer number of measurements
for the support recovery. Obviously, using a sharp
upper bound does lead to a considerable
improvement in the sufficient condition. Another
worth mentioning issue that can be inferred from
Figure 2 is that U shows more sensitivity to
changing £ than V . A very small increase in [

decreases U somehow but has no significant effect
on V . Sensitivity to 4 which means sensitivity to
the number of measurements, is an expected
property for a good upper bound. Thus U provides
a more exact value for S than V does. In Figure

3, U and V are plotted versus k while ¢

decreases. Decreasing o makes both U and V
to decrease, which is expected. Again, it can be

seen that sensitivity of U to changing o2 is more
than that of V. This featuree is not an
improvement itself but it is not very important
since for a sufficiently large Kk, U is negligible
against V .

Totally, the simulation results show that using the
proposed approach enhances the sufficient
condition for the support recovery. In fact, the
previous upper bound V imposes the need for
some additional measurements. Since this bound is
derived based on chi-square tail bounds and it is
very loose, it cannot provide a near to exact
sufficient condition (required number of
measurements). It can only give an approximation
of the sufficient number of measurements for
sparsity recovery. However, as it is confirmed by
simulations, since the proposed upper bound U is
very close to the exact error probability, it results
in increasing the accuracy in sufficiency proof.

Upper bound of the error probability

102

Figure 2. Upper bound of the error probability as a
function of k for three different values of . It is shown
that the convergence rate of U and also its sensitivity to

changing B are more than those of V. For a desired
distortion level, using U as the upper bound of the error

probability results in a smaller g than using V.
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Figure 3. Upper bound of the error probability as a
function of k for two different values of o2.

6. Conclusion

In this work, we examined the sufficient condition
for the sparsity pattern recovery. The analyses were
based on a joint-typicality decoder. Considering
the linear regime, when the sensing matrix
contained i.i.d. normal random entries and the
noise was Gaussian, we computed an upper bound
on the probability of error. It was shown
analytically and also using simulations that the
derived upper bound was tighter than the previous
loose upper bounds, which were derived based on
the chi-square tail bounds. Based on the proposed
upper bound, a sufficient number of measurements
for an exact sparsity pattern recovery was obtained.
It was shown that the sufficient number of
measurements for an exact support recovery
depends on the noise variance, the minimum
nonzero entry of the unknown sparse vector, and
the sparsity level, and it was shown to improve the
existing results [20]. This work can further be
extended to arbitrary sensing matrices.
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