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Abstract 

A sufficient number of linear and noisy measurements for exact and approximate sparsity pattern/support 

recovery in the high-dimensional setting is derived. Although this problem has been addressed in the recent 

literature, the results can still be improved. In this paper, a methodology is proposed, which reduces the gap 

between the existing upper bound on the error probability of support set recovery and the exact limit. This 

leads to a sharper sufficient condition for support recovery. A specific form of a joint typicality decoder is used 

for the support recovery task. Two performance metrics are considered for the recovery validation: one that 

considers the exact support recovery, and the other that seeks the partial support recovery. First, an upper 

bound is obtained on the error probability of the support recovery. Next, using the mentioned upper bound, a 

sufficient number of measurements for a reliable support recovery is derived. It is shown that the sufficient 

condition for a reliable support recovery depends on three key parameters of the problem: the noise variance, 

the minimum non-zero entry of the unknown sparse vector, and the sparsity level. Results are proved and 

examined both theoretically and by experiments. Simulations are performed for different sparsity rates, 

different noise variances. The results show that for all the mentioned cases, the proposed methodology 

increases the convergence rate of the error probability upper bound significantly. 

 

 

Keywords: Sparsity Pattern Recovery, Support Set Recovery, Information-Theoretic Limits, Performance 

Bound, Joint-Typicality Decoder, Compressed Sensing. 

1. Introduction 

In signal processing, one commonly faces with an 

estimation problem in which a vector 𝑥 ∈ 𝑅𝑀 must 

be estimated from a linear noisy observation vector 

denoted as: 

y Ax n                                           (1) 

where 
N MA R   is known and 

Nn R  is the 

additive noise with a known distribution. It is 

known that x  can be estimated from M  

measurements. However, when x  is sparse, it is 

possible to estimate it with a sufficient accuracy 

from a far fewer number of measurements, say 

N M . This possibility is proved and further 

analyzed in compressed sensing [1-5]. y  is such 

output noisy measurement of the k-sparse vector x
, i.e. it has k N M  non-zero entries, and n  is 

the additive noise vector. The support set of x  is 

defined as:  

{ | 0}iS i x                                                           (2) 

In the problem of sparsity pattern or support set 

recovery, the concern is to detect non-zero 

positions of the vector x  [6] when we are given the 

measurement vector y  and the measurement 

matrix A . A reliable support recovery is important 

in many applications including 

magnetoencephalography (MEG), 

electroencephalography (EEG), cognitive radio, 

subset selection in regression, and multi-user 

communication systems [7-11]. The focus of many 

of the recent studies is on designing and analyzing 

the tractable recovery algorithms to solve (1) for x
. Another brand of works studied the information-

theoretic limits of any estimator for an exact or 

approximate recovery of the support of x  [12-24]. 

http://dx.doi.org/10.22044/jadm.2018.6311.1746
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Information-theoretic limits disclose the extent of 

sub-optimality of the current sub-optimal methods. 

In other words, they reveal the gap between the 

solutions of the currently sub-optimal methods that 

obtain the sparsity pattern and the information-

theoretic limits of the problem. Generally, the 

information-theoretic limits can be realized in two 

ways: necessary conditions and sufficient 

conditions, which give the support recovery 

conditions of two extreme cases. A lower bound on 

the number of measurements can be considered as 

the sufficient condition for an exact support 

recovery, i.e. if the number of measurements N  is 

more than 0N , the exact support recovery is 

guaranteed for an optimal decoder. On the other 

hand, an upper bound on the number of 

measurements can be viewed as a necessary 

condition for a support recovery, i.e. if the number 

of measurements N  reduces to 0N , then the exact 

support recovery is not possible using any decoder. 

 

2. Relation to previous works  

The problem of reconstruction or estimation of the 

sparse signal x  has attracted substantial attentions. 

Given the measurement model (1) and the sparsity 

assumption (2), one approach for estimating x  is 

to solve the 1   constrained quadratic program 

below, known as LASSO [31], given by: 

2

2 1

1
min{ }

2M N
x R

y Ax x
N




    

in which 0N   is the regularization parameter. A 

great deal of recent works use 1   constrains for 

estimation of x  in the presence of sparsity 

constraints. In this direction of studies, several 

algorithms with affordable complexities have been 

proposed such as Orthogonal Matching Pursuit 

(OMP) [32], Subspace Pursuit (SP) [33], 

Compressive Sampling Matching Pursuit 

(CoSaMP) [34], and Iterative Hard Thresholding 

(IHT) [35].  

In another brand of studies, only the sparsity 

pattern recovery is taken into account. In fact, in 

some applications, detecting the support set is an 

ultimate goal [7-11]. By determining the support 

set, the signal can be estimated simply by solving a 

least squares problem.  

In this work, we are concerned with fundamental 

limits of the sparsity pattern recovery problem. 

Fundamental limits of a recovery problem can be 

achieved by analyzing the performance of an 

optimal decoder. These limits are highly valuable 

since they reveal the gap between the performance 

of any tractable recovery algorithm and the 

ultimate performance limits. In this work, a 

sufficient condition of support recovery is taken 

into account. In the recent years, in several works, 

the authors have studied the information-theoretic 

limits of any estimator for an exact and 

approximate support recovery and for single and 

multiple measurement vector models. Using an 

optimal decoder, Wainwright [19] has presented 

the necessary and sufficient conditions on 

( , , )k N M  for which an exact support recovery is 

possible in the high-dimensional setting. Akcakaya 

and Tarokh [20] studied the necessary and 

sufficient conditions for an exact support recovery 

in the high-dimensional setting using a certain type 

of joint typicality (JT) decoder for different error 

criteria. Under the assumption of finite constant per 

sample SNR (Signal-to-Noise Ratio) and 

measurement rate, Reeves and Gastpar [21] 

showed that an optimal recovery was possible with 

a constant fraction of error. Fletcher et al. [22] 

obtained the necessary condition for an exact 

support recovery using the maximum likelihood 

decoder in a certain setting. Xu et al. [23] 

developed the probability of a partial support 

recovery and asymptotic mean-square error of the 

recovered sparse signal for a maximum likelihood 

decoder. In [24], Rad derived sufficient conditions 

using the Chernoff technique and some features of 

the eigenvalues of the difference of the projection 

matrices. 

In this work, the sufficient condition is enhanced. 

Most related to our work are the works of 

Akcakaya et al. [20] and Scarlett et al. [16]. 

Akcakaya proved that ( )O k  measurements are 

sufficient for support recovery in the high-

dimensional setting using a JT decoder. He proved 

that when N Ck , where 1C   was a constant, 

a perfect recovery was possible. Scarlett obtained 

sufficient conditions via the analysis of the JT 

decoder, while a prior distribution was assumed on 

the support set. In this work, we make the constant 

𝐶 explicit. This constant is derived in terms of the 

key parameters of the problem. Actually, we derive 

a sharper sufficient condition for the sparsity 

pattern recovery when the same JT decoder is used 

for the support recovery problem. This condition is 

a scaling of the number of measurements N , the 

size of the unknown sparse vector M , the sparsity 

level k , and the associated measurement 

parameters. Under this scaling law the JT decoder 

recovers the support set asymptotically with 

probability tends to one. This scaling law can be 

derived by obtaining the error probability of 
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support recovery. Deriving an analytical 

expression for the exact error probability is not a 

straightforward task. Therefore, instead of 

analytically obtaining the error probability, an 

upper bound is derived. In the past works, chi-

square tail bounds have been used for bounding the 

probability of error events [16], [17]. The issue is 

that the chi-square tail bounds are very loose. A 

large gap is observed between the exact error 

probability (obtained for instance by Monte Carlo 

simulations) and the upper bound derived using the 

chi-square tail bounds. This large gap will result in 

a considerable inefficiency in obtaining the 

required number of measurements for an exact 

support recovery. It is clear that the number of 

measurements that is yielded using these bounds is 

inefficiently more than required. Motivated by this 

observation, in this paper, we propose a new 

methodology for obtaining a sharper sufficient 

condition for an exact support recovery. More 

details about the proposition are given in Section 3. 

We assume the observation model (1), in which 
N MA R   is the sensing matrix. Actually, the 

name (sensing matrix) comprises the fact that the 

signal x  is sensed through the matrix A  to 

produce the observation y . Elements of A  are 

drawn from standard normal distribution, i.e. 

(0,1)ija N  in which ija  is the ( , )i j  element of 

A  and (0,1)N  is the normal distribution. The 

additive noise is 
2(0, )N Nn N   where N N  

stands for the identity matrix. By ix , we denote the 

i -th entry of vector x . The only prior information 

about the unknown sparse vector x  is its sparsity 

level k  that is known at the decoder. We assume 

that x , A , and n  are statistically independent 

from each other. A linear regime is considered, in 

which M  and k  depend linearly. Also we assume 

a linear dependency between k  and N . Two error 

criteria are considered: zero-one loss for an exact 

support recovery and a metric for partial support 

recovery or recovery of most subspace information 

of x . First, an upper bound for the error probability 

of support recovery is computed, and then the 

number of sufficient observations for an exact 

support recovery in the high-dimensional setting 

  , ,k N M   is derived. It is shown that the 

sufficient number of observations depends on the 

noise variance 
2 , the minimum non-zero entry of 

the unknown sparse vector minx , and the sparsity 

level k . To support the results further, simulations 

are provided. Results show that how to choose the 

upper bound of the error probability is important in 

obtaining the sufficient number of observations for 

exact support recovery.   

This paper is organized as what follows; Section 2 

contains definitions and assumptions. Main results 

are stated in Section 3. Proofs are given in Section 

4. In Section 5, simulations are provided, and 

conclusions are drawn in Section 6. 

3. Definitions and assumptions  

The following notations are used throughout this 

paper.  

Consider the observation model (1) and the sparsity 

assumption (2); we refer to the cardinality of S  as 

0
S x k  , in which 

0
x  stands for 0 -norm 

or the number of non-zero entries of x .  

Regime of sparsity: We assume that there exists a 

linear dependency between the number of 

observations and the sparsity level or 

, 2M k   . 

Error metrics: To analyze the performance of the 

decoder, two error metrics are considered [19], 

[20]: 

0 1D  : Zero-one error metric: 

0 1( ) 1 { | 0, }

{ | 0, }

i

i

D x i x i S

i x i S

      

   
                        (3) 

where   is an indicator function and x̂  is the 

estimation of x . This error metric is also known as 

the exact error metric. This metric declares an error 

when the estimated support is complement of the 

true support or when it overlaps with the true support 

in less than k  indices. Let Ŝ  be the estimated 

support set, which is a k-element subset of 

 1,2,...,M . Ŝ  is complement of the true support 

set S  when ˆS S  which means that the 

estimated support set is completely incorrect. The 

other error case happens when ˆS S   but 

ˆS S . It means that Ŝ  overlaps with S  in only q 

indices, where q < k. Again, the estimated support 

set is not correct. In both of these two cases, the zero-

one error metric declares an error.  

MSID : This error metric is the statistical extension of 

the zero-one error metric. It considers recovery of 

most of the sub-space information of x . 
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{ | 0}
( , ) 1 1i

MSI

i x S
D x

S
 

  
     

 
    (4) 

where  0,1 . This error metric is not as 

restricted as the zero-one error metric. It allows a 

small pre-defined amount of distortion. This 

amount is controlled by  . When the ratio of 

incorrectly estimated non-zero positions on k 

exceeds a pre-defined threshold, this error metric 

declares an error.    

Sub-matrix and Projection matrix: A sub-matrix of 

A  containing only columns associated with the 

index set  1,2,...,S M  where S k  is shown 

by SA . For any set S  with cardinality k , we 

assume  Srank A k . The orthogonal projection 

matrix onto the sub-space spanned by the columns 

of SA  is shown by  
1* *

SA S S S SA A A A


  . Also 

the orthogonal projection matrix onto the 

orthogonal complement of this sub-space is shown 

by  
1* *

SA S S S SA A A A
  . 

Assumption on the decoder: The decoder is a 

mapping from pair  ,y A  to a set of indices Ŝ . 

More precisely, it outputs a set of indices 𝑆̂ with 

cardinality k  as the estimated support. It is assumed 

that the error probability is averaged over all 

standard Gaussian measurement matrices with 

entries confirming (0,1)ija N . The error reads as: 

( ( 0))eD AP E P D                                              (5) 

in which (.)P  stands for the probability measure, 

AE  is the expectation over all sensing matrices A

, and D  is either 0 1( )D x  or ( , )MSID x  . 

 

 JT decoder: The JT decoder is assumed to be 

asymptotically optimal. It characterizes events 

based on their typicality. Thus error events are 

expressed based on atypicality. Here, the following 

definition of the joint-typicality property is 

exploited: 

Joint-typicality property: The observation vector 𝑦 

and set  1,2,...,S M  with S k  are  -

jointly typical if  Srank A k  and: 

2
21

SA

N k
y

N N
  

                                 (6) 

The JT decoder outputs an estimate of the support 

denoted by Ŝ  which is a k-element subset of set 

 1,2,...,M . An error is declared when Ŝ : 

1. is complement of the true support 𝑆, and 

2. overlaps with S  in 0 1q   indices. 

 

3. Main result 

The main idea of the paper can be inferred from 

Figure 1.  In this figure, the exact probability of 

error and its upper bounds are depicted. The upper 

bounds 1 and 2 are two different bounds derived 

using different methodologies. Assume that we 

want to derive a sufficient number of 

measurements for which the error probability 

remains under a specific threshold 𝛿. It is hard to 

derive the exact value of the error probability for 

this problem. Thus, in the literature, efforts have 

been made for deriving acceptable upper bounds 

rather than computing the exact value of the error 

probability. In this figure, the exact error 

probability curve (which may be obtained by 

simulating the exhaustive search decoder) indicates 

that for eN  measurements and more the error 

probability remains under 𝛿. In other words, the 

eN  measurements are sufficient for a support 

recovery with an acceptable amount of distortion 𝛿. 

Since we do not have access to the exact error 

probability, we have to rely on an upper bound to 

achieve the sufficient condition. It is clear that the 

best upper bound among all is the one that is closer 

to the exact error probability. This illustrative 

example shows that when a fix distortion level 𝛿 is 

tolerable, eN  samples are sufficient, whereas using 

the upper bounds 1 and 2 for deriving a sufficient 

number of observations imposes the need for 

additional 1( )eN N  and 2( )eN N  samples, 

respectively. Nonetheless, since 

2 1( ) ( )e eN N N N   , the upper bound 2 is 

preferable. In other words, to achieve more 

accuracy and efficiency in the sufficiency proof, 
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we have to exploit an approximation very close to 

the exact value of the error probability.  

In this work, first, an upper bound is derived on the 

error probability of the support recovery. 

Compared with the previous bound derived in [20], 

this upper bound is close to the exact error 

probability in the high-dimensional setting. In [20], 

a sufficient condition of support recovery is 

obtained for the JT decoder in the high-

dimensional setting in which the chi-square tail 

bounds are used to upper bound the probability of 

error events. The Chi-square tail bounds are very 

loose for this case [29], [30]. In this paper, we 

propose a methodology that uses tighter bounds for 

upper bounding the probability of error events.  

 

Based on the derived upper bound, a sufficient 

number of measurements for the exact and 

approximate support recoveries is derived. It is 

clear that using the proposed upper bound 

enhances, the sufficiency proof results. We have 

assumed that elements of the sensing matrix are 

i.i.d, and they have a normal distribution. The 

additive noise is also Gaussian. In the literature, 

some works have been reported considering other 

types of sensing matrices [13], [18], [29]. In [13], 

Wang studied the problem considering various 

types of dense and sparse sensing matrices. 

Considering the fact that Gaussian measurement 

matrices are actually highly dense matrices that 

may lead to prohibitively high computational 

complexity and storage requirements, he suggested 

using sparse matrices and tried to find the trade-off 

between the statistical efficiency and the accuracy. 

He stated in his paper that the standard Gaussian 

measurement matrix achieved an optimal scaling of 

the number of observations required for the support 

recovery.  

In what follows, the main results are presented in 

theorems 1 and 2. In theorem 1, a new upper bound 

is derived on the error probability of the support 

recovery. Using theorem 1, in theorem 2, a 

sufficient condition for exact support recovery in 

the high-dimensional setting is derived. 
 

3.1. Error events 

A specified form of the JT decoder is used and 

analyzed for signal recovery. The JT decoder 

characterizes the events based on their typicality. 

Thus error events are expressed based on 

atypicality. Consider the following two events: 

 
 

 and  are -jointly typical

occurance of complement of 

S

C
S

E y S

E S




 

Let Ŝ S  be the estimated support such that

Ŝ k , Ŝ S q k   , and ˆ( )
S

rank A k . 

Event 
C
SE  implies occurrence of the complement 

of the true support and event 
Ŝ

E  occurs when y and 

Ŝ  are   jointly typical or when S  and Ŝ  

overlaps in q < k indices. For each q , there are 

( )N q  number of subsets Ŝ  with the mentioned 

properties, where: 

( )
k M k

N q
q q

  
  
  

                                       (7) 

If 
C
SE  or 

Ŝ
E  occurs, then the decoder fails. The 

probability of error can be expressed as: 

 

 

{ , }

1
( )

C C
eD S SS

S k S S

k

Sq

P P E E P E

N q P E

 



  
    

  
  



    (8) 

To derive the upper bound on the error probability 

eDP , it suffices to compute probability of events 

C
SE  and 

Ŝ
E . By multiplying both sides of the 

observation model y Ax n   by 
SA

 , we get 

S SA Ay n   . Using the substitution 

*

SA S SU U   , in which asterisk stands for the 

Figure 1.The error probability versus number of 

observations. Using a loose upper bound could not 

be efficient. 
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conjugate transposed of the corresponding matrix, 

SU  is a unitary matrix and   is a diagonal matrix 

with the first N k  diagonal entries equal to 1 and 

the remaining entries equal to zero, we obtain: 

 
2 2*

2 2 2* *

2 2 2

1 2 ...

SA S S

S S S

N k

y U U Ax n

U U n U n n

n n n





   

     

     

 

in which each element of vector 
*
Sn U n   is an 

i.i.d random variable with distribution 
2(0, )N  . 

Thus 
2

2

1
SAG y


   is a chi-square random 

variable with N k  degrees of freedom. 

Again, by multiplying both sides of the observation 

model by 
Ŝ

A
 , we get  

ˆ ˆS S
A Ay Ax n    . By 

substitution 
ˆ

*
ˆ ˆ

S
A S S

U U   , in which 
Ŝ

U  is a 

unitary matrix and the first N k  diagonal entries 

of diagonal matrix   are equal to 1 and the 

remaining entries are equal to zero, we get: 

  

  
ˆ

22
*

ˆ ˆ ˆ\

2
* *
ˆ ˆˆ\

2 2 2

1 2 ...

S
A i iS S i S S

i iS Si S S

N k

y U U x a n

xU a U n

z z z









   

  

  



  

 

where, ia  is the i -th column of matrix A . For all 

ˆ\i S S , vector 
*
ˆi iS

a U a   has i.i.d entries each 

with distribution (0,1)N , and vector 
*

Ŝ
n U n   

has i.i.d entries, each with distribution 
2(0, )N  . 

Consequently, iz  has also i.i.d entries each with 

distribution 
2
1(0, )N   such that 

22 2
ˆ1 \ qq S S
x 


   Again, 

ˆ

2

2
1

1ˆ
S

AG y


   

is a chi-square random variable with N k  

degrees of freedom. For 0  , consider the 

following two error probabilities: 

 
2

21
S

C
S A

N k
P E P y

N N
   

    
 

                (9) 

 
ˆ

2
2

ˆ

1
S

AS

N k
P E P y

N N
   

    
 

           (10) 

We have: 

   

 
ˆ

2
2

2
2

ˆ

1

1

S

S

C
eD S

A

k

A
q h

P P S S P E

N k
P y

N N

N k
N q P y

N N

 

 







  

  
    

 

  
    

 


           (11) 

in which  1,h k . When 1h  , the zero-one 

error metric is considered. As it can be inferred 

from (11), 1h   means that the error is computed 

for all non-zero positions that are estimated 

incorrectly, and in the summation, their appropriate 

error events are taken into account, whereas 

h k  means that the error is computed when the 

number of non-zero positions that are incorrectly 

estimated exceeds a certain amount, k . The first 

term in the right hand side is probability of event 
C
SE , which is occurrence of the complement of the 

true support set. The second term comprises all 
Ŝ

E  

events that occur when y and Ŝ  are   jointly 

typical or when S  and Ŝ  overlap in q < k indices. 

  is the distortion parameter. Here, we have 

assumed that  2 2
minmin ,x  . 

  

3.2. Results 

Theorem 1- From the k-sparse signal 
Mx R  with 

the support (2), a linear noisy observation 

y Ax n   is generated. Elements of 
N MA R   

are drawn from standard Gaussian distribution 

(0,1)ija N , and 
2(0, )N Nn N   is the 

additive Gaussian noise. Assume that 

( )Srank A k  and for any set  1,2,...,T M  

with T k , let ( ( ) ) 0TP rank A k  . For 

0   the probability of support recovery error is 

bounded above according to the following 

equation: 

eDP U                                                             (12) 

where, 1 2 3U A A A   , and 1A , 2A  and 3A  are 

as follow: 
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(15) 

in which: 
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 , 

2 2 2
1,min minqx   , 

and min mini S ix x . h  is 1 for zero-one error 

metric and k  for error metric 2. 

Theorem 2- From the k-sparse signal 
Mx R  with 

support (2), a linear noisy observation y Ax n   

is generated. Elements of 
N MA R   are drawn 

from standard Gaussian distribution (0,1)ija N , 

and 
2(0, )N Nn N   is additive Gaussian noise. 

Assume that ( )Srank A k  and for any 

 1,2,...,T M  with cardinality 𝑘, let 

( ( ) ) 0TP rank A k  . The sufficient condition 

for an exact support recovery in the high-

dimensional setting is as follows: 

22
min

2 2
min

max , .
x

N k
x



  

    
    

      
              (16) 

In fact, theorem 2 gives the condition on the 

number of observations such that 0eDP   as k  

and consequently, M  and N  grow large. 

 

 

 

4.  Proofs 

In what follows, two sub-sections, proofs and 

further discussions, are provided. 

 

4.1.Proof of theorem 1 
As it was mentioned in Section 3, 

2

2

1
SAG y


   is a chi-square random variable 

with N k  degrees of freedom. Using the 

probability distribution function of a chi-square 

random variable, we have: 

 
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 (17)  

in which: 

,
2

N k
z


  

1 2
,

N
c N k




    

2 2
.

N
c N k




       

Since we are assuming that 1 0c  , we have: 

2

2

N

k




 
 


                                            (18) 

We put an upper bound on the right hand side of 

(17) and show that it tends to zero as the problem 

dimensions grow large. We know that the first and 

second integrals in (17) are the lower and upper 

incomplete gamma functions, respectively. 

We use the following lemmas, which applies to any 

gamma, lower incomplete gamma, and upper 

incomplete gamma functions to upper bound the 

integrals [25-27]. 
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Lemma 1. Let 1u   and real; then: 
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Lemma 2. For 1

2

c
z , the following inequality 

holds: 
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Lemma 3. For 1x  , 1B   and ( 1)
1

B
y x

B
 


 the 

following inequality holds: 

     1 1exp , expx xy y x y By y         (18)  

 

The first integral in the right hand side of (17) can 

be bounded using the lower bound of the gamma 

function in (19) and the upper bound of the lower 

incomplete gamma function of (20). The second 

integral can be bounded using the lower bound of 

the gamma function in (19), and the upper bound 

of the upper incomplete gamma function in (21). 

Thus we get: 
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Similarly, we know that 
ˆ

2
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   is a chi-

square random variable with N k  degrees of 

freedom. Thus we have: 
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where 
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and consequently: 
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                              (24) 

where, for the zero-one error metric and error 

metric 2, h is 1 and k , respectively. 

4.2. Proof of theorem 2 

In order to prove that 0eDP   asymptotically, it 

is sufficient to show that the upper bound of (24) 

tends to zero as k  grows large. Since the linear 

regime is assumed, we have ,( 2)M k    and 
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also we assume that ,( 1)N k   . It is 

straightforward to show that 1A  and 2A  tend to 

zero asymptotically. We write:   
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where, M  and N  are written in terms of k . Using 

(18), one can show that the first term in the right 

hand side converges. For the second term to 

converge, it suffices to show: 
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, inequality (26) is true 

using the fact that  log 1 0x x    for all 

1x   . Next, it remains to show that 3A  tends to 

zero asymptotically. Let 1h  . Using the 

following bound: 
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we have: 
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To get rid of summation, we obtain the maximizer 

of (28) in terms of q . We replace q  with a 

continuous counterpart  1,x k . Consider the 

function below, which is part of 3A  that contains 

x : 

exp 2 log
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in which: 
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One can show that ( )g x  is strictly ascending 

when: 

2
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2
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x

x
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
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                                                         (30) 

3A  reaches its maximum value when q k . 

Therefore, it is easy to show that the right hand side 

of (28) tends to zero as k  tends to infinity. For 

error metric 2, the expression must tend to zero for 

k  larger than h . This result is also applied for the 

error metric 2. Considering (18) and (30), the 

sufficient condition is derived. 

In the previous similar work [20], an assumption 

was considered for 
2
minx , where: 

 

2
min

log

kx
as k

k
   

The reason for accepting this condition is that in the 

noisy setting, when elements of x are arbitrarily 

small, a perfect recovery is not possible. 

Furthermore, condition (30) does not conflict with 

this outcome since one can result this condition 

from (30). 

 

5.  Simulation results 

In this section, a simulation is provided, which 

shows the efficiency of the proposed method. 

Settings of the problem parameters is such that 

condition (18) is satisfied. A comparison is made 

between our results and the previous similar work 

[20]. The upper bound of the error probability 

derived in [20] is denoted by V . In Figure 2, U  is 

the proposed upper bound. For the zero-one error 

metric U  is depicted as a function of k  for three 

different values of   and it is compared with V . 

It is shown that the convergence rate of U  is more 

than that of  V . As it is expected, for k  sufficiently 

large, U  is a sharper upper bound for the error 

probability compared with V . To achieve a pre-

defined distortion level, a stricter upper bound 
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results in obtaining fewer number of measurements 

for the support recovery. Obviously, using a sharp 

upper bound does lead to a considerable 

improvement in the sufficient condition. Another 

worth mentioning issue that can be inferred from 

Figure 2 is that U  shows more sensitivity to 

changing   than V . A very small increase in   

decreases U  somehow but has no significant effect 

on V . Sensitivity to   which means sensitivity to 

the number of measurements, is an expected 

property for a good upper bound. Thus U  provides 

a more exact value for   than V  does. In Figure 

3, U  and V  are plotted versus k  while 2  

decreases. Decreasing 
2  makes both U  and V  

to decrease, which is expected. Again, it can be 

seen that sensitivity of U  to changing 
2  is more 

than that of V . This featuree is not an 

improvement itself but it is not very important 

since for a sufficiently large k , U  is negligible 

against V .  

Totally, the simulation results show that using the 

proposed approach enhances the sufficient 

condition for the support recovery. In fact, the 

previous upper bound V  imposes the need for 

some additional measurements. Since this bound is 

derived based on chi-square tail bounds and it is 

very loose, it cannot provide a near to exact 

sufficient condition (required number of 

measurements). It can only give an approximation 

of the sufficient number of measurements for 

sparsity recovery. However, as it is confirmed by 

simulations, since the proposed upper bound U  is 

very close to the exact error probability, it results 

in increasing the accuracy in sufficiency proof.   

Figure 2. Upper bound of the error probability as a 

function of 𝑘 for three different values of 𝛽. It is shown 

that the convergence rate of U and also its sensitivity to 

changing 𝛽 are more than those of V. For a desired 

distortion level, using U as the upper bound of the error 

probability results in a smaller 𝛽 than using V.

Figure 3. Upper bound of the error probability as a 

function of 𝑘 for two different values of 𝜎2. 

6. Conclusion 

In this work, we examined the sufficient condition 

for the sparsity pattern recovery. The analyses were 

based on a joint-typicality decoder. Considering 

the linear regime, when the sensing matrix 

contained i.i.d. normal random entries and the 

noise was Gaussian, we computed an upper bound 

on the probability of error. It was shown 

analytically and also using simulations that the 

derived upper bound was tighter than the previous 

loose upper bounds, which were derived based on 

the chi-square tail bounds. Based on the proposed 

upper bound, a sufficient number of measurements 

for an exact sparsity pattern recovery was obtained. 

It was shown that the sufficient number of 

measurements for an exact support recovery 

depends on the noise variance, the minimum 

nonzero entry of the unknown sparse vector, and 

the sparsity level, and it was shown to improve the 

existing results [20]. This work can further be 

extended to arbitrary sensing matrices. 
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 هوش مصنوعی و داده کاوینشریه 
 

 

 

 بازیابی تنکی  درتر محاسبه شرط کافی دقیق

 

 زادهعلی آقاگل و محمدرضا کرمی، *زهرا شعیری

 بابل. ،بابل نوشیروانی دانشگاه صنعتی، دانشکده مهندسی برق و کامپیوتر

 38/32/8382 پذیرش؛ 82/30/8381 بازنگری؛ 81/30/8381 ارسال

 چکیده:

ه در گرچه این مسألشرود  ارائه م در ابعاد بالا یط  و نویزی ای در این مقاله یک شرر  اای  برای بازیاب  نکی  سرنگکال با در ایانار داشران مدرا   

برای اا ش دادن شیاف منان اران بالای موهود بر  نوانک  بهبود یابک   در این مقاله روشر نحقنقات گذشراه مورد نوهه ررار گریاه اسرو ول  ناایم م 

ود  ههو شنری در بازیاب  نکی  مکجر م این امر به محاسبه شر  اای  درنقشود  پندرکهاد م و مق ار درنق این احامال  ی بازیاب  نکی احامال یطا

ای ههو محاسبه یطا معنار صحو سکج  بازیاب  درنق و بازیاب  پار شود و از دو اسافاد  م  jointly-typicalبازیاب  نکی  از نوع یاصر  از رمزگدای 

 رایبشرود  سس  براسا  اران بالای محاسبه ش   یک شر  اای  احامال یطای بازیاب  نکی  محاسربه م  ایشرود  ابا ا یک اران بالا براسرافاد  م 

 زیاب  نکی  به سه پارامار الن ی مسأله بساگ  دارد؛ واریان  نویز، اوچیارینشود اه شر  اای  برای باشود  ندان داد  م بازیاب  نکی  اسراررا  م 

رائه سازی ننز ههو پدانبان  ناایم ادرایه نامکف  بردار نکک مجهول و سرط  نکی   ناایم به دسرو دم   به رور نروری اابات شر   و در اکار دن شربنه

ه نر بودن شر  اای  محاسب ای مرالف انجام ش   اسو  ناایم ندان د ک   درنقریان  نویز ای مرالف و وا ا برای نرخ نکی سازیشر   اسرو  شبنه

   باشک  ش   در مقایسه با شر  اای  پندنن م 

   ای نروری ارلاعان ، مح ود ، حسگری یدرد ، شر  اای  بازیاب  نکی jointly-typicalبازیاب  نکی ، رمزگدای  :کلمات کلیدی

 


