H.3.10. Robotics
M. M. Fateh; M. Baluchzadeh
Abstract
This paper proposes a discrete-time repetitive optimal control of electrically driven robotic manipulators using an uncertainty estimator. The proposed control method can be used for performing repetitive motion, which covers many industrial applications of robotic manipulators. This kind of control ...
Read More
This paper proposes a discrete-time repetitive optimal control of electrically driven robotic manipulators using an uncertainty estimator. The proposed control method can be used for performing repetitive motion, which covers many industrial applications of robotic manipulators. This kind of control law is in the class of torque-based control in which the joint torques are generated by permanent magnet dc motors in the current mode. The motor current is regulated using a proportional-integral controller. The novelty of this paper is a modification in using the discrete-time linear quadratic control for the robot manipulator, which is a nonlinear uncertain system. For this purpose, a novel discrete linear time-variant model is introduced for the robotic system. Then, a time-delay uncertainty estimator is added to the discrete-time linear quadratic control to compensate the nonlinearity and uncertainty associated with the model. The proposed control approach is verified by stability analysis. Simulation results show the superiority of the proposed discrete-time repetitive optimal control over the discrete-time linear quadratic control.
H.6.2.2. Fuzzy set
M. M. Fateh; S. Azargoshasb
Abstract
This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances ...
Read More
This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances and discretization error. Parameters of the fuzzy estimator are adapted to minimize the estimation error using a gradient descent algorithm. The proposed discrete control is robust against all uncertainties as verified by stability analysis. The proposed robust control law is simulated on a SCARA robot driven by permanent magnet dc motors. Simulation results show the effectiveness of the control approach.
F. Solaimannouri; M. Haddad zarif; M. M. Fateh
Abstract
This paper presents designing an optimal adaptive controller for tracking control of robot manipulators based on particle swarm optimization (PSO) algorithm. PSO algorithm has been employed to optimize parameters of the controller and hence to minimize the integral square of errors (ISE) as a performance ...
Read More
This paper presents designing an optimal adaptive controller for tracking control of robot manipulators based on particle swarm optimization (PSO) algorithm. PSO algorithm has been employed to optimize parameters of the controller and hence to minimize the integral square of errors (ISE) as a performance criteria. In this paper, an improved PSO using logic is proposed to increase the convergence speed. In this case, the performance of PSO algorithms such as an improved PSO (IPSO), an improved PSO using fuzzy logic (F-PSO), a linearly decreasing inertia weight of PSO (LWD-PSO) and a nonlinearly decreasing inertia weight of PSO (NDW-PSO) are compared in terms of parameter accuracy and convergence speed. As a result, the simulation results show that the F-PSO approach presents a better performance in the tracking control of robot manipulators than other algorithms.
M. M. Fateh; Seyed M. Ahmadi; S. Khorashadizadeh
Abstract
TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs ...
Read More
TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed network includes a hidden layer with one node, two inputs and a single output. In comparison with other model-free estimators such as multilayer neural networks and fuzzy systems, the proposed estimator is simpler, less computational and more effective. The weights of the RBF network are tuned online using an adaptation law derived by stability analysis. Despite the majority of previous control approaches which are the torque-based control, the proposed control design is the voltage-based control. Simulations and comparisons with a robust neural network control approach show the efficiency of the proposed control approach applied on the articulated robot manipulator driven by permanent magnet DC motors.