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Abstract

This paper presents a designing an optimal adaptive controller for tracking down the control of robot
manipulators based on particle swarm optimization (PSO) algorithm. PSO algorithm has been used to
optimize parameters of the controller and hence to minimize the integral square of errors (ISE) as a
performance criteria. In this paper, an improved PSO using a logic is proposed to increase the convergence
speed. In this case, the performance of PSO algorithms such as an improved PSO (IPSO), an improved PSO
using fuzzy logic (F-PSO), a linearly decreasing inertia weight of PSO (LWD-PSO) and a nonlinearly
decreasing inertia weight of PSO (NDW-PSO) are with parameter accuracy and convergence speed. As a
result, the simulation results show that the F-PSO approach presents a better performance in the tracking
down the control of robot manipulators than other algorithms.

Keywords: Particle Swarm Optimization (PSO), Robot Manipulators, Adaptive Controller, Improved PSO

Using Fuzzy Logic (F-PSO), Integral Square of Errors (ISE).

1. Introduction

Robot manipulators are multi-input/multi-output
(MIMO) nonlinear system with couplings that
have to face many structured and unstructured
uncertainties such as payload parameter, un-
modeled dynamics, external disturbance and
friction. The design robust controller for robot
manipulators and their application is one of the
considerable topics in a control field; so many
control techniques have been proffered to control
robot manipulator such as the PID control method
[1], adaptive control [2,3], combined adaptive
sliding mode controllers [4], optimal control [5,6]
and intelligent approaches [7].

The PSO algorithm comprises a simple structure,
and it is easy to be implemented, independent
from initial guess and does not need any objective
function’s gradient. Due to the good
characteristics of this algorithm, it has been
applied in the diversity of investigation field. For
instance, in [9-11], PSO is presented to setting the
optimal parameter of PID controller. In [12],
proposed to use PSO and its application to train
weights of artificial neural network. In [13], the
author employed the PSO algorithm to optimize

the parameter of tracking a controller. In [14],
PSO is proffered to solve the systems of nonlinear
equations. In [15], the proposed algorithm has
been used to solve nonlinear optimal control. In
[16], the PSO algorithm is used to optimize the
parameters of controller to position/force control
of constrained robot manipulators.

Fuzzy logic is based on fuzzy set theory. A fuzzy
logic controller is composed of its rule base and
membership function. Fuzzy logic system was
used to approximate any nonlinear function
[22,23].

In this paper, the particle swarm optimization
utilized to drive the optimal parameters of
adaptive controller for robot manipulators. The
performance of an improved PSO using fuzzy
logic (F-PSO) is compared with PSO with linearly
decreasing inertia weight (LDW-PSQO), nonlinear
inertia weight PSO (NDW-PSO) and improved
PSO (IPSO). The simulation results confirmed
that the F-PSO has better performance than other
algorithm mentioned above. The rest of paper is
organized as follows: Section 2 presents the
mathematical description of robot manipulator.
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Section 3 illustrates the particle swarm
optimization. Section 4 shows the design of
controller parameters based on PSO. Section 5
illustrates the simulation results on a robot
manipulator and comparisons between algorithms.
Section 6 concludes the paper.

2. Dynamics of robot manipulators

In the absence of friction or other disturbance, the
dynamic equation of a multi-input/multi-output
robot manipulator system can be written as [2,
4]

M (a)g+C (q.djche (@)=

Where ( is a nx1 vector of generalized
coordinate, the position vector of a robot

1)

manipulator. q isa nx1 vector of first derivative
of generalized coordinate, the velocity of a robot

manipulator. qis a nx1 vector of second
derivative of generalized coordinate, the
acceleration of a robot manipulator. M (q)is a

nxn Symmetric positive definite matrix of

manipulator inertia. C (q,qj isa nx1 vector of

centrifugal and coriolis torque. G (q)is a nx1

vector of  gravitational torque. 7is a nxl1
vector of generalized control input torque or force.
The (1) can be stated as follows [2]:

y (q><;+c[q,é}i+e<q)=v [q.ci,é]ﬁ:f @

Where Y (qqu is a NxP matrix called

regressor. SBisa px1 uncertain vector .

A number of useful properties of robot dynamic
is expressed as follows [8]:

Property 1. An appropriate definition of coriolis
and centrifugal matrix makes that the

N (q,d)ﬂ\/l (q)—ZC(q,dj is

symmetric. This property is very important to
stability analysis.

skew

Property 2. The M (q) is a symmetric positive
definite matrix, such that:

O<pyl <M (q)é,uzl

L4, 1, are positive constant and | is the identity
matrix.
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2.1. Adaptive controller design
The control law has been given as follows [2]:

7=M (q)(@y ~A@-ag )+
N ®)
c [q,q}(qd -A@-09y))+G(q)+Ko

Where K is a definite positive matrix, o is an
error of velocity.

d, q q"r , dr are defined as:

:qd —Aq 3

4=0-dg+ 9=9-dg d,
' 4)

A =0g —Ad

Where dindicates the position tracking error,

represents the velocity,q , is called reference
Velocity that is utilized to guarantee the

convergence of the tracking error, g,  is the

reference acceleration, A is a positive definite
matrix and o is obtained as:

o=0,—9=0+Aq ®)
In the presence of uncertainties, a control law is
proposed as:

A

r:M(q)qr+C[q,q}qr+G(q)+Ka
o ©)
=Y [q,q,qr,qr]mKa

Where M (q)is the estimate of the M (q),

A

é(q,qjis the estimate of the c(qu G(q)

presented the estimate of the G (q)and also ,8’

denoted the estimate of the £ .

Attention to replace the recent control law in the
(2), so modeling errors consists of:

M=M-M C=C-CG=G-G (")
In order to analysis the stability of the system and
obtain convergence tracking error, the Lyapunov
function candidate is suggested as follows:

V(t)zg{aTHawLbTFlb} (8)

The adaptation law can be expressed as:
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,é =-TY "o 9)
Using this upper equation, the derivative of V (t)
IS given as:

v(t):—O'TKDJSO (10)
3. Particle swarm optimization
Particle swarm optimization algorithm is a

stochastic evolutionary computation approach. It
is inspired by the social behavior such as a flock
of bird or a school of fish. This algorithm
introduced by Eberhart and Kennedy in 1995 [17].
PSO contains a group of solutions that called
particles.

These particles are moved in and evaluates the
cost function of its position that has been placed
in space. Particle adjusted its movement based on
corresponding  experience of particle and
associated experiences of particle that led to the
particle moves in the direction of better solution
[15]. At each iteration, each particle for updating
its velocity and position utilized equations in the
following order:

k +1 k k k
Vi =WV, +clrand1><(Pbesti - X )

+Cy rand2 x (Gbestk -X ik ) (11)

Xik+1:Xik +Tsvik+l (12)

Where X ik is the current position of i™ particle

h - - - - -
at the k' iteration. T, is the sampling period.

Vik is the Current velocity of i" particle at the

k™ iteration. W is the inertia weight which
acquires an important task in the PSO
convergence behavior since it is used to balance

the global and local search ability. C,,C,are
positive constants, correspond to cognitive and
social parameter respectively, called learning
factors. fand, rand, are random numbers with
uniform distribution in the range of 0 to 1.
Pbest:< is the best position of i" particle at the

k ™ iteration called as personal best. Gbest* is
the global best position among all the particles in

the swarm at the k ™ iteration called global best.
The algorithm is repeated several times until the
pause condition such as number of iteration or
sufficiently good fitness [15].

PSO does exhibit some shortages.
convergence to a local minimum,

It may
therefore

127

researchers try to improve the performance of the
PSO with different settings, e.g.w , C,,C, [15].
In this work, we employed the IPSO, NDW-PSO,
LDW-PSO and F-PSO, they are approaches that
improved the performance of PSO and finally, F-
PSO algorithm is compared with the other
algorithms.

3.1. Linearly decreasing inertia weight PSO
Linearly decreasing inertia weight PSO was
abbreviated to LDW-PSO, the inertia weight

decreases linearly from W .. to W .., the equation
is used for adapting the inertia weight in PSO as
follows [19, 20]:

¢ iter ., —t

W =w W —W
itermax ( max mln)

(13)

min

iter ., Denotes to maximum number of iteration

and t denotes to current of iteration.

3.2. Nonlinear inertia weight PSO

Nonlinear inertia weight PSO was abbreviated to
NDW-PSO. In this mechanism, the inertia weight
decreases as same pervious approach but
nonlinearity [18].

iter. ., —t

iter, ..,

wi=w_ +(

min )n '(Wmax —W min) (14)

3.3. Improved PSO

The values of w ,C,,C, is very important to

ensure convergent behavior and to optimally
trade-off exploration and exploitation. In [21],
Author used an improved PSO as follows:

w' =1/ (1+exp(-aF (gbest'))") (15)
¢, =1/ (1+exp(-aF (gbest'))" ) (16)
a =1/ F(gbest" ) (17)

This adaptation appliance changes in conformity
to the rate of the global best fitness improvement.

3.4. Particle swarm optimization with using
fuzzy

Fuzzy is used for designing and modeling for
system that need to advance mathematics and
probabilities. The important part of fuzzy system
was a knowledge base that is comprised fuzzy IF-
THEN rules. Fuzzy is used to improve the
performance of PSO. A fuzzy system will be

employed to adjust the learning factors C;,C,

with best fitness and iteration. The best fitness
measure the performance of the best solution
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found so far. To design a fuzzy-PSO need to have
ranges of best fitness and iteration. Therefore, the
best fitness and iteration have to normalize into

[0,1]that defined as follows [22, 23]:
CBPE _CBPE,,

NCBPE =

CBPE,,, —CBPE ;, (18)
Where CBPE is the current fitness value,
CBPE;, is the best fitness value and CBPE,,, is
the worst fitness value.

. iteration

Iteration = ——

iteration, ., (19)

In this mechanism, the best fitness and iteration
are inputs and C;,C, are outputs in the fuzzy

system. The C;,C, obtained from fuzzy were
used to PSO and for adjusting w , we employed
the IPSO that mentioned in [15]:

w' =1/(1+exp(-aF (gbest'))") (20)

a=1/ F(gbestt) (21)

We suggest fuzzy rules:

1. If (iteration is low) and (CPBE is low) then (c1
is low)(c2 is high)

2. If (iteration is low) and (CPBE is medium) then
(c1 is medium low)(c2 is medium high)

3. If (iteration is low) and (CPBE is high) then (c1
is medium)(c2 is medium)

4. If (iteration is medium) and (CPBE is low) then
(c1 is medium low)(c2 is high)

5. If (iteration is medium) and (CPBE is medium)
then (c1 is medium)(c2 is high)

6. If (iteration is medium) and (CPBE is high)
then (c1 is medium high)(c2 is low)

7. If (iteration is high) and (CPBE is low) then (c1
is high)(c2 is low)

8. If (iteration is high) and (CPBE is medium)
then (c1 is medium high)(c2 is medium low)

9. If (iteration is high) and (CPBE is high) then
(clis low)(c2 is medium low)

For designing the rules of fuzzy system, it was
decided that in early iterations the PSO algorithm
must explore and finally exploit.

These approaches usually start with large inertia
values, which decrease over time to smaller
values. Large values for w facilitate exploration,
with increased diversity. A small W promotes
local exploitation.
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4. PSO controller tuning
The parameters of adaptive control law such asI’;

NS D DA Alandkl is found using PSO.

All the parameters of controller are adjusted to
minimize the fitness function based on the integral
square of errors that is defined as follows:

f=[ iei ()%t

Where ¢, (t) is the value of tracking error and T
is the control system running time.

(22)

5. Simulation results
The dynamics of a two links manipulator has been
mentioned in section (2), so the element of this

equation such as M (q), C (qu and G(q)

are given as follows [4]:

[Tl]:[wln Mlz}{%l} —cég C[q;+f;2] [ql}
)My My, : . 0, (23)

a2

Caq

G(q)=0

Where:

M, =a, +2a,cosq, +2a,sinq, (24)
M, =M, =a, +a,c0sq, +a,sing, (25)
M, =4, (26)
C =a,sinq, —a, cosq, (27)
a =l +mlZ+1 +m12 +mI? (28)
a,=1_+m]l2 (29)
a, =m,l,l, coso, (30)
a, =m.l1_sing, (31)

In the simulations, the below values have been
used in the following order:

m=1,1,=1,m=2, 5e=% 1,=012

|, =05,1,=025 I

’oce

=0.6

The components of matrix of Y (q,ci q ; ,q"r)can
be written explicitly:

Y11:qr1' Y12 =05 Y21:0’ Y22 =q,,+d,,

Y13:[2q rita rzjcosqz—[qzq r1td19r 2420y [SinQ,
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Y14 = [Zq rl+q rz]sinqz +

I'=diag[3.3 097 1.04 0.6],A=20I,
K =100l

Co v (32) The controller parameters have been set with
420r1+010r2+020 2 |COSUp PSO, such as :
‘_ o F=diag[l, T, T, T,],A=A]l K=K
Y, =q,,€0sq, +d,q,,Sing, The searching ranges are set as follows:
v —d sing q q cosq 0<TI,<0.07, 0<T,<0.05, 0<T,<0.15,
24 —Hru 2 Mi¥n 2
' ' 0<I, <03, 0<A, <20, 0<K, <100
The desired trajectory is chosen as: In all PSO algorithms, ¢, =C,=2 [17], W
T i - =
qdl(t):—(l—cos(Zﬁt )) decreases_ from 0.9 to 0.4, in NWD PS_O n 1.2
6 (33) [18] and in IPSO n=1.5 [21], population size is set
P to 10 and maximum number of iteration is set to
Qg (t)= Z(l_ cos (27t )) 50 and each algorithm runs 25 times.
Table 1. Results of comparison between LDW-PSO, NDW-PSO, IPSO, F-PSO.
Control Real value LDW-PSO NDW-PSO IPSO F-PSO
parameters
r, 0.03 0.0595 0.0591 0.0420 0.0415
r, 0.05 0.0500 0.0499 0.0482 0.0500
Ty 0.1 0.1499 0.1499 0.1499 0.1500
Ty 0.3 0.3000 0.2999 0.2388 0.2996
A 20 19.9996 19.9978 19.9986 19.9991
K
1 100.000 99.9987 99.9981 99.9960 99.9869
Table 2. Results of LDW-PSO, NDW-PSO, IPSO and F-PSO algorithm.
Algorithms Best result Mean result Worst result Std
—6
LDW-PSO 0.0037074 0.0037089 0.0037173 2575710
NDW-PSO 0.0037074 0.0037090 0.0037154 21170078
IPSO 0.0037083 0.0037322 0.0038063 2 2897:10-5
F-PSO 0.0037076 0.0037111 0.0037155 :
214541078
Table 3. Iteration and time required by LDW-PSO, NDW-PSO, IPSO and F-PSO.
Algorithms Best resul:E - Average IrEeI;t;ISte Worst resu'IEtIalose
Iterations time(s) Iterations time(s) Iteration time(s)
LDW-PSO 35 24228 41 24534 48 24591
NDW-PSO 30 22935 34 23216.7857 35 23456
IPSO 33 24571 45 24673 47 24696
F-PSO 28 27531 32 27561 35 27695

Table 1 exhibits the average of results obtained
for adaptive controller parameters and table 2
shows the results ISE for LDW-PSO, NDW-PSO,
IPSO and F-PSO, where each algorithm runs 25
times and table 3 shows iteration and necessary
time to reach the best, mean and worst results.

Figures 1-6 confirm the success of optimization
by F-PSO algorithm compared with the other
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algorithms for parameters of optimal controller
Al,Fl,Fz,F3,F4,K1.

These figures are represented from iteration 1 to
iteration 50. Figure 7 exhibits the convergence of
the optimal ISE. It confirms the superiority of F-
PSO algorithm in terms of convergence speed
without the premature convergence problem.
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6. Conclusion

PSO has been efficient to design the adaptive
controller by finding the optimal control
parameters. The fuzzy system was proposed for
adjusting the parameters for particle swarm
optimization. It can improve the quality of result
of method in the particle swarm optimization. The
simulation results obtained from F-PSO, NDW-
PSO, LDW-PSO and IPSO algorithms were
compared . The simulation results also show the
F-PSO has a better performance for purposes of
parameter accuracy and convergence speed than
the other algorithms.
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