H.3.7. Learning
Mohammad Rezaei; Mohsen Rezvani; Morteza Zahedi
Abstract
With the increasing interconnectedness of communications and social networks, graph-based learning techniques offer valuable information extraction from data. Traditional centralized learning methods faced challenges, including data privacy violations and costly maintenance in a centralized environment. ...
Read More
With the increasing interconnectedness of communications and social networks, graph-based learning techniques offer valuable information extraction from data. Traditional centralized learning methods faced challenges, including data privacy violations and costly maintenance in a centralized environment. To address these, decentralized learning approaches like Federated Learning have emerged. This study explores the significant attention Federated Learning has gained in graph classification and investigates how Model Agnostic Meta-Learning (MAML) can improve its performance, especially concerning non-IID (Non-Independent Identically Distributed) data distributions.In real-world scenarios, deploying Federated Learning poses challenges, particularly in tuning client parameters and structures due to data isolation and diversity. To address this issue, this study proposes an innovative approach using Genetic Algorithms (GA) for automatic tuning of structures and parameters. By integrating GA with MAML-based clients in Federated Learning, various aspects, such as graph classification structure, learning rate, and optimization function type, can be automatically adjusted. This novel approach yields improved accuracy in decentralized learning at both the client and server levels.
H.3. Artificial Intelligence
Amirhossein Khabbaz; Mansoor Fateh; Ali Pouyan; Mohsen Rezvani
Abstract
Autism spectrum disorder (ASD) is a collection of inconstant characteristics. Anomalies in reciprocal social communications and disabilities in perceiving communication patterns characterize These features. Also, exclusive repeated interests and actions identify ASD. Computer games have affirmative effects ...
Read More
Autism spectrum disorder (ASD) is a collection of inconstant characteristics. Anomalies in reciprocal social communications and disabilities in perceiving communication patterns characterize These features. Also, exclusive repeated interests and actions identify ASD. Computer games have affirmative effects on autistic children. Serious games have been widely used to elevate the ability to communicate with other individuals in these children. In this paper, we propose an adaptive serious game to rate the social skills of autistic children. The proposed serious game employs a reinforcement learning mechanism to learn such ratings adaptively for the players. It uses fuzzy logic to estimate the communication skills of autistic children. The game adapts itself to the level of the child with autism. For that matter, it uses an intelligent agent to tune the challenges through playtime. To dynamically evaluate the communication skills of these children, the game challenges may grow harder based on the development of a child's skills through playtime. We also employ fuzzy logic to estimate the playing abilities of the player periodically. Fifteen autistic children participated in experiments to evaluate the presented serious game. The experimental results show that the proposed method is effective in the communication skill of autistic children.
G.3.5. Systems
M. Rezvani
Abstract
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional ...
Read More
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud environments. This is because that such IDSs employ only the network information in their detection engine and this, therefore, makes them ineffective for the cloud-specific vulnerabilities. In this paper, we propose a novel assessment methodology for anomaly-based IDSs for cloud computing which takes into account both network and system-level information for generating the evaluation dataset. In addition, our approach deploys the IDS sensors in each virtual machine in order to develop a cooperative anomaly detection engine. The proposed assessment methodology is then deployed in a testbed cloud environment to generate an IDS dataset which includes both network and system-level features. Finally, we evaluate the performance of several machine learning algorithms over the generated dataset. Our experimental results demonstrate that the proposed IDS assessment approach is effective for attack detection in the cloud as most of the algorithms are able to identify the attacks with a high level of accuracy.