• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Journal of AI and Data Mining
Articles in Press
Current Issue
Journal Archive
Volume Volume 6 (2018)
Volume Volume 5 (2017)
Volume Volume 4 (2016)
Issue Issue 2
Issue Issue 1
Volume Volume 3 (2015)
Volume Volume 2 (2014)
Volume Volume 1 (2013)
Abravesh, M., Sheikholeslami, A., Abravesh, H., Yazdani asrami, M. (2016). Estimation of parameters of metal-oxide surge arrester models using Big Bang-Big Crunch and Hybrid Big Bang-Big Crunch algorithms. Journal of AI and Data Mining, 4(2), 235-241. doi: 10.5829/idosi.JAIDM.2016.04.02.12
M.M Abravesh; A Sheikholeslami; H. Abravesh; M. Yazdani asrami. "Estimation of parameters of metal-oxide surge arrester models using Big Bang-Big Crunch and Hybrid Big Bang-Big Crunch algorithms". Journal of AI and Data Mining, 4, 2, 2016, 235-241. doi: 10.5829/idosi.JAIDM.2016.04.02.12
Abravesh, M., Sheikholeslami, A., Abravesh, H., Yazdani asrami, M. (2016). 'Estimation of parameters of metal-oxide surge arrester models using Big Bang-Big Crunch and Hybrid Big Bang-Big Crunch algorithms', Journal of AI and Data Mining, 4(2), pp. 235-241. doi: 10.5829/idosi.JAIDM.2016.04.02.12
Abravesh, M., Sheikholeslami, A., Abravesh, H., Yazdani asrami, M. Estimation of parameters of metal-oxide surge arrester models using Big Bang-Big Crunch and Hybrid Big Bang-Big Crunch algorithms. Journal of AI and Data Mining, 2016; 4(2): 235-241. doi: 10.5829/idosi.JAIDM.2016.04.02.12

Estimation of parameters of metal-oxide surge arrester models using Big Bang-Big Crunch and Hybrid Big Bang-Big Crunch algorithms

Article 12, Volume 4, Issue 2, Summer and Autumn 2016, Page 235-241  XML PDF (1304 K)
Document Type: Original Manuscript
DOI: 10.5829/idosi.JAIDM.2016.04.02.12
Authors
M.M Abravesh 1; A Sheikholeslami2; H. Abravesh1; M. Yazdani asrami2
1Department of Electrical Engineering, Hadaf Institute of Higher Education, Sari, Iran
2Department of Electrical Engineering, Noshirvani University of Technology, Babol, Iran
Abstract
Metal oxide surge arrester accurate modeling and its parameter identification are very important for insulation coordination studies, arrester allocation and system reliability. Since quality and reliability of lightning performance studies can be improved with the more efficient representation of the arresters´ dynamic behavior. In this paper, Big Bang – Big Crunch and Hybrid Big Bang – Big Crunch optimization algorithms are used to selects optimum surge arrester model equivalent circuit parameters values, minimizing the error between the simulated peak residual voltage value and this given by the manufacturer.The proposed algorithms are applied to a 63 kV and 230 kV metal oxide surge arrester. The obtained results show that using this method the maximum percentage error is below 1.5 percent.
Keywords
Surge arresters; Residual voltage; Big Bang – Big Crunch algorithm; Hybrid Big Bang – Big Crunch algorithm
Main Subjects
F.2.7. Optimization
Statistics
Article View: 1,860
PDF Download: 2,307
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

free analytics


Creative Commons License
JAD is licensed under a Creative Commons Attribution 4.0 International License.

Journal Management System. Designed by sinaweb.