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Abstract 

Metal oxide surge arrester accurate modeling and its parameter identification are very important for 

insulation coordination studies, arrester allocation, and system reliability since quality and reliability of 

lightning performance studies can be improved with the more efficient representation of the arresters´ 

dynamic behavior. In this work, the Big Bang - Big Crunch (BB-BC) and Hybrid Big Bang - Big Crunch 

(HBB-BC) optimization algorithms were used to select the optimum surge arrester model equivalent circuit 

parameter values, minimizing the error between the simulated peak residual voltage value and that given by 

the manufacturer. The proposed algorithms were applied to 63 kV and 230 kV metal oxide surge arresters. 

The results obtained showed that by using this method, the maximum percentage error was below 1.5%. 

 

Keywords: Surge Arresters, Residual Voltage, Big Bang – Big Crunch (BB-BC) Algorithm, Hybrid Big 

Bang – Big Crunch (HBB-BC) Algorithm, Parameter Estimation, EMTP.  

1. Introduction 

Internal and external overvoltages on high voltage 

transmission lines are very common causes of 

interruptions. In order to protect them against 

overvoltages, surge arresters are implemented to 

divert the overvoltage current to the ground. Metal 

oxide surge arresters (MOSAs), due to their good 

performances, are extensively used in power 

systems [1]. Proper voltage-current 

characteristics, low power losses, high-level 

reliability in the operation time, high-speed 

response to overvoltages and long lifetime are   

some advantages of MOSAs [2]. 

The adequate circuit representation of metal oxide 

surge arrester characteristics is very important for 

insulation coordination studies and system 

reliability. In the case of switching surge studies, 

the surge arresters can be represented with their 

non-linear V–I characteristic. However, such a 

practice would not be suitable for lightning surge 

studies with fast front waves [3]. This is due to the 

fact that the surge arresters behave differently in 

the presence of a fast disturbance. Typically, the 

predicted residual voltage for an impulse current 

with the time to peak of 1 µs is about 8-12% 

higher than that with the time to peak of 8µs. 

Also with further increase in the time to peak 

between 45 and 60 µs, the residual voltage is 2- 

4% lower than that for the 8µs current impulse [1]. 

In order to obtain more accurate results and 

reliable estimation in insulation coordination 

studies, several frequent dependent models of 

metal oxide surge arresters such as the IEEE and 

Pinceti  models have been proposed [4,5]. 

A comparative study of the various existing 

models in the literature showed that the difficulties 

with these models reside essentially in the 

calculation and the adjustment of their parameters. 

The parameter determinations of each model, in a 

way that the model simulation results, correspond 

to the actual behavior of the arrester. Thus many 

researchers have paid attention to using an 

appropriate optimization algorithm. This was used 

to minimize the error between the computed and 

manufacturer’s residual voltage curves [6-10]. 

In the present work, the transient models of 

MOSA are simulated using EMTP. The method is 

based on the use of the measured MOSA terminal  
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voltage obtained from the following injection of 

the 10 kA, 8/20 µs impulse current. The main 

issue for the suggested models is the determination 

of the parameters for each model, in a way that the 

simulated curve has a good agreement with the 

real recorded waveform. The simulation results are 

applied to the Big Bang-Big Crunch (BB-BC) and 

Hybrid Big Bang-Big Crunch (HBB-BC) 

algorithms to determine the parameters of different 

models. The validity and accuracy of the estimated 

parameters are assessed by comparing the 

predicted residual voltage with the manufacturer’s 

experimental results [11,12,16,18]. Good 

agreement of results verifies the ability of the 

proposed algorithm for estimating the surge 

arrester parameters. 

 

2. Surge arrester models 

Many different models have been presented to 

describe the transient behavior of surge arresters. 

IEEE has proposed a model, that shown in figure 

1. In the IEEE model, two non-linear resistance of 

A0 and A1 have been separated using R1L1 filter 

[4]. For waves with slow front time, the 

equivalent impedance of the filter is insignificant, 

and A0 and A1 are parallel. However, in the case of 

the waves with fast front time, the equivalent 

impedance is significant, and most of the current 

passes through the non-linear resistance of A0. 

  

 

 

 

 

 

 
 

 

Figure 1. IEEE model. 

The non-linear V-I characteristics of A0 and A1 are 

plotted in percent of guaranteed residual voltage 

at 10 kA, 8/20 µs current impulse in figure 2 [11]. 

 

 

 

 
 

 

 

Figure 2. Non-linear characteristics of A0 and A1. 

 

The model presented in figure 3 has been 

presented by Pinceti, and is derived from the 

IEEE model. In this model, the definition of V-I 

characteristic of A0 and A1 non-linear resistances 

is based on the curves shown in figure 2. The 

capacitance effect is negligible. The two 

resistances in parallel with the inductances are 

replaced by one resistance to avoid numerical 

troubles. The values for L0 and L1 are presented in 

table 1 [5].  

 

 

 

 

 

 

 
 

Figure 3. Pinceti model. 
 

The parameters of each model are computed using 

the electrical characteristic data, obtained from the 

manufacturersʼ datasheet. The equations for the 

parameter computations of the IEEE and Pinceti 

models are presented in table 1 [4,5].  
 

Table1. Model parameter computations. 

 IEEE Pinceti 

R0 (100d)/n Ω 1 M Ω 

R1 (65d)/n Ω - 

L0 (0.2d)/n µH 
 

  
 
                 

        
     µH 

L1 (15d)/n µH 
 

 
 
                 

        
    µH 

C (100n)/d pF - 
 

Vn is the arrester’s rated voltage, Vr(8/20) is the 

residual voltage for a 10 kA, 8/20 µs lightning 

current, Vr(1/T2) is the residual voltage for a 1/T2 10 

kA lightning current, n is a scale factor and d is 

the length of arrester column in meters. Table 2 

and 3 present the electrical and physical 

characteristic data for the examined surge arrester. 

 
3. Objective function 

The surge arrester models were simulated using 

the EMTP software. The initial parameters for 

each surge arrester models were calculated. The 

impulse current of 10 kA, 8/20 µs was applied to 

the simulated models. Using the BB-BC and 

HBB-BC algorithms, the residual voltages 

obtained from the simulation of each model were 

compared with the measured voltage. The 

parameters of the MOSA models could be 

determined by minimizing the following objective 

function. 
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Table 2. Electrical and insulation data of arrester for 63 

kV [11]. 

MCOV 48 kV 

Rated Voltage 60 kV 

Maximum Residual Voltage with lightening 

current 8/20 µs 
137 kV 

Height 996 mm 

Insulation Material Porcelain 

Creepage 3285 mm 

 

Table 3. Electrical and insulation data of arrester for 230 

kV [11]. 

MCOV 160 kV 

Rated Voltage 198 kV 

Maximum Residual Voltage with lightening 

current 8/20 µs 
451 kV 

Height 1625 mm 

Insulation Material Porcelain 

Creepage 6570 mm 
 

The proposed algorithm in this work for the surge 

arrester models is based upon the experimental 

data [12]. The following equation shows the 

objective function [15]: 

  ∫       ̅           
 

 

 (1) 

 

where, 

F : sum of the quadratic errors; 

T : duration of the impulse current injected; 

( , )V t x : the residual voltage obtained from 

simulation results; 

( )mV t : measured residual voltage; 

x : state variable vector (model parameters). 
 

If the function and variables are discrete, the 

objective function will be presented as follows: 

  ∑                   
 

   

   (2) 

 

where, 

N : Number of discrete points; 

/t T N  : computing time step.  

The V-I characteristic of the surge arrester can be 

assumed by a non-linear resistance whose 

variation is exponential, as follows [13]: 
q

ref

V
I P

V

 
  

   
(3) 

 

where, V and I are the voltage and current of the 

surge arrester, respectively, p and q are constant 

values, and refV is an arbitrary reference voltage. 

 

 

 

4. Big Bang-Big Crunch algorithm  
The BB-BC optimization method is one of the 

evolutionary algorithms presented as a solution 

for solving an optimization problem. This 

algorithm is composed of two stages, and is the 

same as the other evolutionary algorithms from 

the aspect of population production. The creation 

of the initial population randomly is called the Big 

Bang phase. In this stage, the population spreads 

all over the whole search space randomly and 

uniformly. The second stage is Big Crunch, which 

is actually a convergence operator. This operator 

has a many input but just one output, which is 

named as the center of mass, since the only output 

has been derived by calculating the center of 

mass. The center of mass is calculated using the 

following formula: 

  
    

 

∑
1

     
       

  1

∑
1

  
 
  1

                   (4) 

 

where, Xj
c
 (k) is j

th
 variable of mass center in k

th
 

iteration, Xj (k,i) is j
th
 variable of i

th
 population 

solution in k
th
 iteration, f

i
 is the fitness function 

value of i
th
  point, and D and Np are the number of 

control variable and the population size in the Big 

Bang phase, respectively.  

After calculating the mass center in the 
thk  

iteration and Big Bang stage, the new position of 

each particle is introduced using a normal 

distribution around the mass center. This method 

takes the population members as a whole in the 

Big-Crunch phase that acts as a squeezing or 

contraction operator and the algorithm generates 

new candidate solutions in the next iteration of 

Big Bang phase using normal distribution around 

the previous center of mass as follows: 

 
 

(  1   )
   

    
 

   (  
      

   )

  1
                  (5) 

 

where ri is a random number that is obtained using 

a standard normal distribution. This number is 

repeated for each member of the population in 

each iteration;   is a constant to limit the search 

space; xj
max

 and xj
min

  are the maximum and 

minimum acceptable values for 
thj  variable, 

respectively. After the Big Crunch phase, the 

algorithm must create new members to be used as 

the Big Bang of the next iteration step. “Bang” 

and “Crunch” will be continued until we reach 

convergence [16].  

   

5. Hybrid Big Bang-Big Crunch algorithm 
The BB-BC algorithm has an effective operation 

in exploitation, but some problems are observed in 
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the exploration stage such as dependency of the 

algorithm on the initial population and the 

possibility of being trapped in local optima. 

If all candidates are gathered in a small part of 

search space, the algorithm is more likely to be 

trapped in a local optimized point, and may not 

find the optimum solution. One of the solutions is 

that a great number of random variables are used 

to prevent the algorithm from getting stuck in the 

local optimized points but it causes an increase in 

the function evaluations, calculation time and 

finally computational cost. In order to solve these 

weaknesses and modification of exploration 

capability, this algorithm is combined with the 

PSO algorithm which is called “Hybrid Big Bang-

Big Crunch” (HBB-BC) [17].  

The PSO algorithm is inspired by birds swarm 

pattern, and operates based on the members of 

population that are called searching particles for 

food. Each particle moves through a multiple 

dimension search space with a constant speed. 

This speed updates constantly by the best 

experience of each particle (Pbest) or the best 

experience of all neighbor particles (Gbest).          

In HBB-BC algorithm, each parameter updates 

using three parameters which belong to the 

previous iteration; these parameters are the center 

of mass, the best position of each solution, and the 

best position of all particles. Equation (6) shows 

the procedure of this updating.  

 
 

   1   
    

    
 (1    ) (    

        
 (1    )  

          
) 

 
      

      
    

  1
                                    

(6) 

 

In this equation, xj
pbest(k,i) 

 is the best experience of 

i
th
 particle in k

th
 iteration, xj

gbest(k)
 is the best 

experience of all particles in k
th
 iteration, and β1 

and β2 are the adjustable control coefficients 

related to the penetration of the best collective 

experience and the best individual experience for 

the new solution positions, respectively.  

Mutation is used to prevent the HBB-BC from 

trapping into the local optimum as follows: 

  

(  1  )
   

            (  
      

   )     

             

(7) 

where, Pm  is the mutation probability and rand () 

is a random number generated for each particle at 

each iteration[18]. 

 

6. Simulation results and analysis 

The surge arrester different models with the rated 

voltage of 63 kV and 230 kV were simulated 

using EMTP. The IEEE model has 5 parameters 

(    ،    ،   ،   ،   ), and the pinceti model has 3 

parameters (   ،   ،  ).  

x = [x1, x2, x3, x4, x5]
T

 = [R0, R1, L0, L1, C]
T

 

(IEEE model) 
 

(8) 

x = [x1, x2, x3]
T
 = [R0, L0, L1]

T
 

(Pinceti model) 
(9) 

Application of an optimization algorithms 

determines the optimal values for xi. The BB-BC 

and HBB-BC optimization methods are applied to 

minimize the relative error. The initial parameter 

values for each model are computed by the 

procedures described in the references [4, 5].  

The applied algorithms change the values for the 

parameters and calculate the objective function 

value according to the new residual voltage 

obtained. 

The surge arrester parameters are determined 

using the BB-BC and HBB-BC algorithms. An 

impulse current of 10 kA, 8 20 s  are applied to 

the models. The residual voltage obtained by the 

simulation are compared with the measured one 

obtained by the manufacturer [12]. The initial 

computed parameters and the optimum parameters 

for each model obtained using the BB-BC and 

HBB-BC algorithms are listed in tables 6-9. 
The optimized peak value for the residual 

voltage and the relative errors for each model 

are given in tables 4 and 5. The relative error was 

calculated using the following equation as 

follows; 

Error % = 
          

     
 × 100 (10) 

In the above equation, simX  and measX  are the 

peak residual voltage obtained by the simulation 

and experimental data reported by the 

manufacturers, respectively. As it can be seen, 

these algorithms are capable of estimating 

different parameters, and can effectively model 

the dynamic characteristic of surge arresters. 
 

Table 4. Residual voltages and relative errors for 63 kV. 

Algorithms 

10 kA 

8/20 µs 
Peak of 
Residual 

voltage (kV) 

Error 

(%) 

Standard 

deviation 
Models 

BB-BC 
IEEE 138.485 1.084 

0.51708 
Pinceti 137.028 0.02 

HBB-BC 
IEEE 137.849 0.62 

Pinceti 137.023 0.0173 

Table 5. Residual voltages and relative errors for 230 kV. 

Algorithms 

10 kA 

8/20 µs 
Peak of 

Residual 

voltage (kV) 

Error (%) 
Standard 
deviation 

Models 

BB-BC 
IEEE 444.579 -1.42 

0.6813 
Pinceti 451.035 0.0077 

HBB-BC 
IEEE 447.862 -0.69 

Pinceti 451.02 0.0046 
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The relative error of the residual voltage peak 

values for the initial and optimized parameter 

values compared with the values given by 

manufacturer are presented in figure 4 and 5. 

 
Figure 4. Relative error for a 10 kA (8/20 µs) injected 

impulse current using the values in tables 4 and 5. 

Tables 6-9 show the initial computed parameters 

for each model, according to the computation 

described in section 2, as well as the optimum 

parameter values obtained using the BB-BC and 

HBB-BC algorithms described in sections 4 and 5. 

In tables 4 and 5 the peak value of the simulated 

residual voltage for each one model and relative 

errors are given, comparing them with the 

manufacturers datasheet. As it can be seen, the 

pinceti model gives a lower error due to its 

simplicity in comparison to the IEEE model. 
 

 

 

Figure 5. Relative error for a 10 kA (8/20 µs) injected 

impulse current using the values in tables 4 and 5. 

Residual voltage peak values with optimized 

parameter value using BB-BC was compared to 

those obtained using HBB-BC; they are higher, 

and more accurate. It is obvious that the use of the 

HBB-BC algorithm gives more optimum 

parameters values for the equivalent circuit 

models. 

The results obtained show that the use of the 

proposed algorithms cause high accuracy and low 

error between the manufacturers and the 

simulated residual voltage. The methods are 

capable of estimating different parameters, and 

can effectively model dynamic characteristic of 

MOV surge arresters.  

Table 6. Initial and estimated parameters using BB-BC algorithm for 63 kV. 
 IEEE Model Pinceti Model 

Initial parameters Optimized parameters Initial parameters Optimized parameters 

R0 99.6 Ω 120.5782 Ω 1 MΩ 1.1473 MΩ 

R1 64.744 Ω 66.7165 Ω - - 

L0 0.1992 µH 0.2103 µH 0.365 µH 0.3299 µH 

L1 14.94 µH 11.1919 µH 1.095 µH 1.0847 µH 

C 0.1004 nF 0.0673 nF - - 

Table 7. Initial and estimated parameters using BB-BC algorithm for 230 kV.   
 IEEE Model Pinceti Model 

Initial parameters Optimized parameters Initial parameters Optimized parameters 

R0 162.5 Ω 173.4655 Ω 1 MΩ 1.1546 MΩ 

R1 105.625 Ω 116.8947 Ω - - 

L0 0.325 µH 0.3524 µH 1.17 µH 1.2427 µH 

L1 24.375 µH 28.8533 µH 3.51 µH 3.1519 µH 

C 0.0615 nF 0.0839 nF - - 

Table 8. Initial and estimated parameters using HBB-BC algorithm for 63 kV.   
 IEEE Model Pinceti Model 

Initial parameters Optimized parameters Initial parameters Optimized parameters 

R0 99.6 Ω 119.5121 Ω 1 MΩ 0.7690 MΩ 

R1 64.744 Ω 68.9275 Ω - - 

L0 0.1992 µH 0.1329 µH 0.365 µH 0.3228 µH 

L1 14.94 µH 10.7021 µH 1.095 µH 1.0726 µH 

C 0.1004 nF 0.3616 nF - - 
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Table 9. Initial and estimated parameters using HBB-BC algorithm for 230 kV.   
 IEEE Model Pinceti Model 

Initial parameters Optimized parameters Initial parameters Optimized parameters 

R0 162.5 Ω 158.3645 Ω 1 MΩ 0.8364 MΩ 

R1 105.625 Ω 112.4447 Ω - - 

L0 0.325 µH 0.3348 µH 1.17 µH 1.0453 µH 

L1 24.375 µH 31.0672 µH 3.51 µH 3.2849 µH 

C 0.0615 nF 0.0374 nF - - 
 

 

7. Conclusion 

Metal-oxide surge arresters (MOSAs) are 

extensively used in power systems due to good 

performance in over-voltage protection. The 

correct and adequate modeling of MOSAs 

characteristics is very important for insulation 

coordination studies and system reliability. In this 

work, the mostly used equivalent circuit IEEE and 

Pinceti models were simulated in EMTP, and then 

their parameters were optimized using the BB-BC 

and HBB-BC optimization algorithms. In these 

methods, the MOSA parameters were estimated 

based on the comparison between the residual 

voltage obtained by simulating it with the 

manufacturer´s results. One of the most 

advantages of the proposed methods is required 

only manufacturer data for estimating the initial 

parameters of MOSA models. 

The two models used in this study, simulate and 

reproduce adequately the ferequency-dependent 

behavior of MOSAs, giving a very small error 

after the application of the optimization 

procedures. The simulation results obtained 

showed that after an application of the 

optimization procedures, the error between the 

simulated and manufacturer´s residual voltage for 

a given 10 kA, 8/20 µs input impulse current was 

less than 1.5 percent.  

Considering the accuracy of these two 

optimization algorithms, the results showed that 

the HBB-BC algorithm is more accurate. 

Therefore, in order to optimize the parameters of  

the MOSA models, it is proposed to use the HBB-

BC algorithm.  
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 کاوینشریه هوش مصنوعی و داده 

 

 

بیگ  -سازی بیگ بنگبهینه هایبا استفاده از الگوریتم اکسید فلزی برقگیر هایتخمین پارامترهای مدل

 بیگ کرانچ -و هیبرید بیگ بنگ کرانچ

 

  2و محمد یزدانی اسرمی 1، حسن آبروش 2عبدالرضا شیخ الاسلامی، ،*1محمد مهدی آبروش

  .موسسه آموزش عالی هدف، ساری، ایران 1

 .دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی نوشیروانی، بابل، ایران 2

 21/12/1122 ؛ پذیرش12/21/1122 ارسال

 چکیده:

ر از اهمیتت مدل دقیق برقگیر اکسید فلزی و تعیین دقیق پارامترهای آن برای مطالعات هماهنگی عایقی، مطالعات قابلیت اطمینان و جایابی بهینه برقگی

یابتد. در ایتن مقالته عملکرد صاعقه با شناخت موثر رفتار دینامیکی برقگیرها بهبود می کیفیت و مطالعات قابلیت اطمینان در برابربالایی برخوردار است. 

در  بیگ کرانچ استتفاد  شتد  استت. -بیگ کرانچ و هیبرید بیگ بنگ -های بیگ بنگاز الگوریتمهای مختلف برقگیر برای تخمین بهینه پارامترهای مدل

شتود و بتا اتداق  انه تخمتین زد  متیگیری شد  کارخها با ولتاژ انداز سازی شد  مدلبراساس مقایسه ولتاژ پسماند شبیهاین روش، پارامترهای برقگیر 

کیلوولتت اناتا   111و  21ایتن روش بترای دو ستطل ولتتاژ  گتردد.شد  مدار معادل برقگیر تعیین می رساندن خطا بین این دو مقدار پارامترهای بهینه

مقادیر اعتم  شتد  توستا ستازند  سازی با ز شبیهنتایج اعمال پارامترهای بهینه برقگیر بیانگر کاهش خطا بین پیک ولتاژ باقیماند  ااص  اگرفته است. 

 باشد.درصد می 2/2اداکثر خطا کمتر از  کهباشد به طوریمی

 .EMTPکرانچ، تخمین پارامتر، بیگ -کرانچ، الگوریتم هیبرید بیگ بنگ بیگ-برقگیر، ولتاژ باقیماند ، الگوریتم بیگ بنگ :کلمات کلیدی

 


