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Abstract

Metal oxide surge arrester accurate modeling and its parameter identification are very important for
insulation coordination studies, arrester allocation, and system reliability since quality and reliability of
lightning performance studies can be improved with the more efficient representation of the arresters’
dynamic behavior. In this work, the Big Bang - Big Crunch (BB-BC) and Hybrid Big Bang - Big Crunch
(HBB-BC) optimization algorithms were used to select the optimum surge arrester model equivalent circuit
parameter values, minimizing the error between the simulated peak residual voltage value and that given by
the manufacturer. The proposed algorithms were applied to 63 kV and 230 kV metal oxide surge arresters.
The results obtained showed that by using this method, the maximum percentage error was below 1.5%.
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1. Introduction

Internal and external overvoltages on high voltage
transmission lines are very common causes of
interruptions. In order to protect them against
overvoltages, surge arresters are implemented to
divert the overvoltage current to the ground. Metal
oxide surge arresters (MOSAS), due to their good
performances, are extensively used in power
systems [1]. Proper voltage-current
characteristics, low power losses, high-level
reliability in the operation time, high-speed
response to overvoltages and long lifetime are
some advantages of MOSAs [2].

The adequate circuit representation of metal oxide
surge arrester characteristics is very important for
insulation coordination studies and system
reliability. In the case of switching surge studies,
the surge arresters can be represented with their
non-linear V-l characteristic. However, such a
practice would not be suitable for lightning surge
studies with fast front waves [3]. This is due to the
fact that the surge arresters behave differently in
the presence of a fast disturbance. Typically, the
predicted residual voltage for an impulse current

with the time to peak of 1 ps is about 8-12%
higher than that with the time to peak of 8s.

Also with further increase in the time to peak
between 45 and 60 ps, the residual voltage is 2-
4% lower than that for the 8us current impulse [1].
In order to obtain more accurate results and

reliable estimation in insulation coordination

studies, several frequent dependent models of

metal oxide surge arresters such as the IEEE and

Pinceti models have been proposed [4,5].

A comparative study of the various existing
models in the literature showed that the difficulties
with these models reside essentially in the
calculation and the adjustment of their parameters.
The parameter determinations of each model, in a
way that the model simulation results, correspond
to the actual behavior of the arrester. Thus many
researchers have paid attention to using an
appropriate optimization algorithm. This was used
to minimize the error between the computed and
manufacturer’s residual voltage curves [6-10].

In the present work, the transient models of
MOSA are simulated using EMTP. The method is
based on the use of the measured MOSA terminal
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voltage obtained from the following injection of
the 10 kA, 8/20 us impulse current. The main
issue for the suggested models is the determination
of the parameters for each model, in a way that the
simulated curve has a good agreement with the
real recorded waveform. The simulation results are
applied to the Big Bang-Big Crunch (BB-BC) and
Hybrid Big Bang-Big Crunch (HBB-BC)
algorithms to determine the parameters of different
models. The validity and accuracy of the estimated
parameters are assessed by comparing the
predicted residual voltage with the manufacturer’s
experimental ~ results  [11,12,16,18].  Good
agreement of results verifies the ability of the
proposed algorithm for estimating the surge
arrester parameters.

2. Surge arrester models

Many different models have been presented to
describe the transient behavior of surge arresters.
IEEE has proposed a model, that shown in figure
1. In the IEEE model, two non-linear resistance of
Ao and A; have been separated using RiL; filter
[4]. For waves with slow front time, the
equivalent impedance of the filter is insignificant,
and A, and A, are parallel. However, in the case of
the waves with fast front time, the equivalent
impedance is significant, and most of the current
passes through the non-linear resistance of A,.
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Figure 1. IEEE model.

The non-linear V-1 characteristics of Ayand A; are
plotted in percent of guaranteed residual voltage
at 10 kA, 8/20 s current impulse in figure 2 [11].
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Figure 2. Non-linear characteristics of Ay and A,

A

The model presented in figure 3 has been
presented by Pinceti, and is derived from the
IEEE model. In this model, the definition of V-I
characteristic of Ay and A; non-linear resistances
is based on the curves shown in figure 2. The
capacitance effect is negligible. The two
resistances in parallel with the inductances are
replaced by one resistance to avoid numerical
troubles. The values for Ly and L; are presented in
table 1 [5].
Lo L,

2 Y A

Figure 3. Pinceti model.

The parameters of each model are computed using
the electrical characteristic data, obtained from the
manufacturers’ datasheet. The equations for the
parameter computations of the IEEE and Pinceti
models are presented in table 1 [4,5].

Tablel. Model parameter computations.

|IEEE Pinceti
Ro (200d)/n Q 1MQ
R; (65d)/n Q

1 Vr1/12)—Vr(8/20)
—. ———=V, uH
12 Vr(s/20)

Lo (0.2d)/n pH

vy —Vr
L. (15d)/n pH 1 Yra/ra=Vre/20).

c (100n)/d pF

V, HH
4 Vr(8/20) n H
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Vy, is the arrester’s rated voltage, Vg is the
residual voltage for a 10 kA, 8/20 us lightning
current, Vo) is the residual voltage for a 1/T, 10
kA lightning current, n is a scale factor and d is
the length of arrester column in meters. Table 2
and 3 present the electrical and physical
characteristic data for the examined surge arrester.

3. Objective function

The surge arrester models were simulated using
the EMTP software. The initial parameters for
each surge arrester models were calculated. The
impulse current of 10 kA, 8/20 ps was applied to
the simulated models. Using the BB-BC and
HBB-BC algorithms, the residual voltages
obtained from the simulation of each model were
compared with the measured voltage. The
parameters of the MOSA models could be
determined by minimizing the following objective
function.
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Table 2. Electrical and insulation data of arrester for 63

kV [11].

MCOV 48 kV
Rated Voltage 60 kV
Maximum Residual Voltage with lightening 137 KV
current 8/20 ps

Height 996 mm
Insulation Material Porcelain
Creepage 3285 mm

Table 3. Electrical and insulation data of arrester for 230

kV [11].

MCOoV 160 kV

Rated Voltage 198 kV

Maximum Residual Voltage with lightening 451 kV

current 8/20 ps

Height 1625 mm
Insulation Material Porcelain
Creepage 6570 mm

The proposed algorithm in this work for the surge
arrester models is based upon the experimental
data [12]. The following equation shows the
objective function [15]:

T

)

F= f V(T, X) — Vm(D)2dt
0

where,

F : sum of the quadratic errors;

T : duration of the impulse current injected;

V (t,x): the residual voltage obtained from
simulation results;

V, (t) : measured residual voltage;

X : state variable vector (model parameters).

If the function and variables are discrete, the

objective function will be presented as follows:
N

F= z[V(jAt, X) — U, GAD]? At

j=1

()

where,
N : Number of discrete points;
At =T /N : computing time step.

The V-1 characteristic of the surge arrester can be
assumed by a non-linear resistance whose
variation is exponential, as follows [13]:

q
| -p|
Vref

where, V and | are the voltage and current of the
surge arrester, respectively, p and ( are constant

3)

values, and V ; is an arbitrary reference voltage.
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4. Big Bang-Big Crunch algorithm

The BB-BC optimization method is one of the
evolutionary algorithms presented as a solution
for solving an optimization problem. This
algorithm is composed of two stages, and is the
same as the other evolutionary algorithms from
the aspect of population production. The creation
of the initial population randomly is called the Big
Bang phase. In this stage, the population spreads
all over the whole search space randomly and
uniformly. The second stage is Big Crunch, which
is actually a convergence operator. This operator
has a many input but just one output, which is
named as the center of mass, since the only output
has been derived by calculating the center of
mass. The center of mass is calculated using the
following formula:

Ay
X.C(k) _ i=\f1 ")

; j=12,..,D

: (4)
IlE

where, X;° (k) is j" variable of mass center in k"
iteration, X; (ki) is j" variable of i" population
solution in k™ iteration, f' is the fitness function
value of i" point, and D and N, are the number of
control variable and the population size in the Big
Bang phase, respectively.

After calculating the mass center in the k™
iteration and Big Bang stage, the new position of
each particle is introduced using a normal
distribution around the mass center. This method
takes the population members as a whole in the
Big-Crunch phase that acts as a squeezing or
contraction operator and the algorithm generates
new candidate solutions in the next iteration of
Big Bang phase using normal distribution around
the previous center of mass as follows:

X(k+\ ,i) _ ch(k) + l‘ia(ijaX - ijm)

j=12,..,D
) k+

(5)
where r; is a random number that is obtained using
a standard normal distribution. This number is
repeated for each member of the population in
each iteration; « is a constant to limit the search
space; x> and x"" are the maximum and

minimum acceptable values for jth variable,

respectively. After the Big Crunch phase, the
algorithm must create new members to be used as
the Big Bang of the next iteration step. “Bang”
and “Crunch” will be continued until we reach
convergence [16].

5. Hybrid Big Bang-Big Crunch algorithm
The BB-BC algorithm has an effective operation
in exploitation, but some problems are observed in
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the exploration stage such as dependency of the
algorithm on the initial population and the
possibility of being trapped in local optima.

If all candidates are gathered in a small part of
search space, the algorithm is more likely to be
trapped in a local optimized point, and may not
find the optimum solution. One of the solutions is
that a great number of random variables are used
to prevent the algorithm from getting stuck in the
local optimized points but it causes an increase in
the function evaluations, calculation time and
finally computational cost. In order to solve these
weaknesses and modification of exploration
capability, this algorithm is combined with the
PSO algorithm which is called “Hybrid Big Bang-
Big Crunch” (HBB-BC) [17].

The PSO algorithm is inspired by birds swarm
pattern, and operates based on the members of
population that are called searching particles for
food. Each particle moves through a multiple
dimension search space with a constant speed.
This speed updates constantly by the best
experience of each particle (Pbest) or the best
experience of all neighbor particles (Gbest).

In HBB-BC algorithm, each parameter updates
using three parameters which belong to the
previous iteration; these parameters are the center
of mass, the best position of each solution, and the
best position of all particles. Equation (6) shows
the procedure of this updating.

(k+\l)ﬁ1 c(k) +( -B )(Bzxjgbesz(k) + (\ _ﬁz)xjpbest(k,i))

»ra xmax xmm 6
L R j=12,..,D,i=12,..,Np (6)
k+\

In this equation, x”**®" is the best experience of
" particle in K" iteration, x2® js the best
experlence of all particles in k™ iteration, and S
and S, are the adjustable control coefficients
related to the penetration of the best collective
experience and the best individual experience for
the new solution positions, respectively.
Mutation is used to prevent the HBB-BC from
trapping into the local optimum as follows:

xj(k+"i) = x]-mi" + rand (). (x]-m“x - xjmi”) @)
if rand( ) > P,

where, Py, is the mutation probability and rand ()

is a random number generated for each particle at

each iteration[18].

6. Simulation results and analysis

The surge arrester different models with the rated
voltage of 63 kV and 230 kV were simulated
using EMTP. The IEEE model has 5 parameters
(R « Ry <Lg <L, <Cy ), and the pinceti model has 3
parameters (R, <Lq <L1).

T
X= [Xll X2y X3, Xay X5] = [R01 Rll LOi Lli C] 8
(IEEE model) (8)

X = [Xq, Xo, X3]T = [Ro, Lo, Ll]T 9)
(Pinceti model)

Application of an optimization algorithms
determines the optimal values for x;. The BB-BC
and HBB-BC optimization methods are applied to
minimize the relative error. The initial parameter
values for each model are computed by the
procedures described in the references [4, 5].

The applied algorithms change the values for the
parameters and calculate the objective function
value according to the new residual voltage
obtained.

The surge arrester parameters are determined
using the BB-BC and HBB-BC algorithms. An
impulse current of 10 kA, 8/20 us are applied to
the models. The residual voltage obtained by the
simulation are compared with the measured one
obtained by the manufacturer [12]. The initial
computed parameters and the optimum parameters
for each model obtained using the BB-BC and
HBB-BC algorithms are listed in tables 6-9.

The optimized peak value for the residual
voltage and the relative errors for each model
are given in tables 4 and 5. The relative error was
calculated using the following equation as
follows;

Error % = —iﬂ;—"m x 100 (10)

In the above equation, X, and X .. are the

peak residual voltage obtained by the simulation
and experimental data reported by the
manufacturers, respectively. As it can be seen,
these algorithms are capable of estimating
different parameters, and can effectively model
the dynamic characteristic of surge arresters.

Table 4. Residual voltages and relative errors for 63 kV.

10 kA
Peak of
Algorithms ~ 8/20 s Residual Ervor Standard
- (%) deviation
Models _ voltage (kV)
|IEEE 138.485 1.084
BB-BC i X
Pinceti 137.028 0.02 0 08
IEEE 137.849 0.62 517
HBB-BC o
Pinceti 137.023 0.0173

Table 5. Residual voltages and relative errors for 230 kV.

10 kA Peak of Standard
Algorithms ~ 8/20 pis Residual Error (%) deviati
eviation
Models voltage (kV)
IEEE 444,579 -1.42
BB-BC Pinceti 451.035 0.0077 0.6813
IEEE 447.862 -0.69 ’
HBB-BC . .
Pinceti 451.02 0.0046
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The relative error of the residual voltage peak
values for the initial and optimized parameter
values compared with the values given by
manufacturer are presented in figure 4 and 5.

5
4
—~ 3 -
S
— 2
o
— 1
<1}
2 0
'(_"_g 1 - M initial values
[}
x -2 M BB-BC values
-3
HBB-BC values

Model & Voltages

0.03

0.025 A
0.02 -
0.015 A
0.01 A
0.005 -
0 ] M initial values

Pinceti 63 kV Pinceti 230 ky ™ BB-BCvalues
Model & Voltages

Relative error (%)

HBB-BC values

Figure 4. Relative error for a 10 kA (8/20 ps) injected
impulse current using the values in tables 4 and 5.

Tables 6-9 show the initial computed parameters
for each model, according to the computation
described in section 2, as well as the optimum
parameter values obtained using the BB-BC and
HBB-BC algorithms described in sections 4 and 5.
In tables 4 and 5 the peak value of the simulated
residual voltage for each one model and relative
errors are given, comparing them with the
manufacturer’s datasheet. As it can be seen, the
pinceti model gives a lower error due to its
simplicity in comparison to the IEEE model.

Figure 5. Relative error for a 10 kA (8/20 ps) injected
impulse current using the values in tables 4 and 5.

Residual voltage peak values with optimized
parameter value using BB-BC was compared to
those obtained using HBB-BC; they are higher,
and more accurate. It is obvious that the use of the
HBB-BC algorithm gives more optimum
parameters values for the equivalent circuit
models.

The results obtained show that the use of the
proposed algorithms cause high accuracy and low
error between the manufacturer’'s and the
simulated residual voltage. The methods are
capable of estimating different parameters, and
can effectively model dynamic characteristic of
MOV surge arresters.

Table 6. Initial and estimated parameters using BB-BC algorithm for 63 kV.

IEEE Model Pinceti Model
Initial parameters Optimized parameters Initial parameters Optimized parameters
Ro 99.6 Q 120.5782 Q 1 MQ 1.1473 MQ
Ry 64.744 Q 66.7165 Q - -
Lo 0.1992 pH 0.2103 pH 0.365 pH 0.3299 pH
L, 14.94 pH 11.1919 pH 1.095 pH 1.0847 pH
C 0.1004 nF 0.0673 nF - -
Table 7. Initial and estimated parameters using BB-BC algorithm for 230 kV.
IEEE Model Pinceti Model
Initial parameters Optimized parameters Initial parameters Optimized parameters
Ro 1625 Q 173.4655 Q 1 MQ 1.1546 MQ
Ry 105.625 Q 116.8947 Q - -
Lo 0.325 pH 0.3524 pH 1.17 uH 1.2427 pH
L1 24.375 pH 28.8533 uH 3.51pH 3.1519 pH
C 0.0615 nF 0.0839 nF - -
Table 8. Initial and estimated parameters using HBB-BC algorithm for 63 kV.
IEEE Model Pinceti Model
Initial parameters Optimized parameters Initial parameters Optimized parameters
Ro 99.6 Q 119.5121 Q 1 MQ 0.7690 MQ
Ry 64.744 Q 68.9275 Q - -
Lo 0.1992 pH 0.1329 pH 0.365 puH 0.3228 pH
L, 14.94 pH 10.7021 pH 1.095 pH 1.0726 pH
C 0.1004 nF 0.3616 nF - -
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Table 9. Initial and estimated parameters using HBB-BC algorithm for 230 kV.

IEEE Model Pinceti Model
Initial parameters Optimized parameters Initial parameters Optimized parameters
Ro 162.5Q 158.3645 Q 1 MQ 0.8364 MQ
R: 105.625 Q 112.4447 Q - -
Lo 0.325 puH 0.3348 pH 1.17 uH 1.0453 pH
L 24,375 uH 31.0672 puH 3.51 pH 3.2849 uH
C 0.0615 nF 0.0374 nF - -
. [4] IEEE Guide for the Application of Metal-Oxide
7. Conclusion :
- Surge Arrester for Alternating Current Systems,
Metal-oxide surge arresters (MOSAs) are (1997). IEEE Standard C62.22.

extensively used in power systems due to good
performance in over-voltage protection. The
correct and adequate modeling of MOSAs
characteristics is very important for insulation
coordination studies and system reliability. In this
work, the mostly used equivalent circuit IEEE and
Pinceti models were simulated in EMTP, and then
their parameters were optimized using the BB-BC
and HBB-BC optimization algorithms. In these
methods, the MOSA parameters were estimated
based on the comparison between the residual
voltage obtained by simulating it with the
manufacturer’s results. One of the most
advantages of the proposed methods is required
only manufacturer data for estimating the initial
parameters of MOSA models.

The two models used in this study, simulate and
reproduce adequately the ferequency-dependent
behavior of MOSAs, giving a very small error
after the application of the optimization
procedures. The simulation results obtained
showed that after an application of the
optimization procedures, the error between the
simulated and manufacturer’s residual voltage for
a given 10 kA, 8/20 s input impulse current was
less than 1.5 percent.

Considering the accuracy of these two
optimization algorithms, the results showed that
the HBB-BC algorithm is more accurate.
Therefore, in order to optimize the parameters of
the MOSA maodels, it is proposed to use the HBB-
BC algorithm.
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