Journal of Al and Data Mining
Published online:

Data Extraction using Content-Based Handles

A. Pouramini’, S. Khaje Hassani and Sh. Nasiri

Department of Computer Engineering, University of Sirjan Technology, Sirjan, Iran.

Received 17 January 2016; Revised 09 November 2016; Accepted 21 February 2017
*Corresponding author: pouramini@sirjantehc.ac.ir (A. Pouramini).

Abstract

In this paper, we present an approach and a visual tool called Handle-based Wrapper (HWrap) for creating
web wrappers to extract data records from web pages. In our approach, we rely mainly on the visible page
content to identify the data regions on a web page. In our extraction algorithm, we were inspired by the way
a human user scans the page content for a specific data. In particular, we use text features such as textual
delimiters, keywords, constants or text patterns, which we call handles, to construct patterns for the target
data regions and data records. We offer a polynomial algorithm, in which these patterns are checked against
the page elements in a mixed bottom-up and top-down traverse of the DOM-tree. The extracted data is
directly mapped onto a hierarchical XML structure, which forms the output of the wrapper. The wrappers
that are generated by this method are robust and independent of the HTML structure. Therefore, they can be

adapted to similar websites to gather and integrate information.

Keywords: Web Data Record Extraction, Web Wrapper Generation, Web Information Extraction.

1. Introduction

Extracting structured data from web pages has
many applications in different areas including
business and competitive intelligence, comparison
shopping, customizable = Web information
gathering, and so on. [1]. Many research works
have proposed methods to analyze web documents
and extract their information in structured formats
automatically; these proposals are commonly
referred to as information extractors or wrappers
[2-4]. These methods range from hard-coded
wrappers to unsupervised wrapper induction
methods. They vary mainly in the degree of
automation they provide by reducing the human
efforts. However, providing a higher automation
can lead to a lower accuracy and a lesser flexibility
[1].

Different approaches to wrapper generation model
a web page in different ways. The most common
approach is to work on the DOM-tree as the
HTML structure of a document [2-4]. However,
some other works claim that HTML is mainly used
for the presentation layer. Therefore, it is not
accurate enough to discriminate different semantic
portions of a web document [8 ,10-12]. Moreover,
as the complexity of typical web documents

increases, information extractors have to analyze
more and more irrelevant regions that have an
impact on both efficiency and effectiveness [7,
10]. This has motivated a number of researchers to
work on region extractors as a means to relieve
information extractors from the burden of
analyzing many regions of a web document that do
not contain any relevant information [6-17].

From this viewpoint, a region is defined as an
HTML fragment that shows information about an
item or several related items when it is rendered on
a web browser. Such items can be data records,
e.g. information about products, goods, services or
pieces of news, headers with navigation menus,
footers with contact information or sidebars with
advertisements, etc. The difference between region
extractors and information extractors or wrappers
is that the wrappers focus on extracting and
structuring data records and their attributes,
whereas region extractors focus on identifying the
HTML fragments that contain this information.

In this paper, we present a supervised method to
define patterns for the data regions on a webpage.
Then we present an algorithm to apply the
resulting patterns to a webpage.

Pouramini et al./ Journal of Al and Data Mining, Published online

arﬂf}on All = | camera

Departments -

in
Account & Lists ~ Orders Try Prime ~

1-24 of 1,328,032 results for Electroni

aaaaaaaaa

Sort by | Relevance v =

Gofo HEROE Elask

SPONSORED BY GOPRO
C:C!I:’ra Find the right GoPro for you.
» Shop now
Showing results in Electronics. Show instead results in All Departments.
o, = Fujifilm Instax Mini & Instant Camera (Pink)
mLl e by Fuji

ital Memary

w i Fujifilm INSTAX Mini 8 Insiant Camera (Blue)
ml H by Fujifilm

Eligible for Free Shipping

DATA REGION

Nikon COOLPIX L840 16MP 28x O,
SANRIS cenn nn

Figure 1. A sample results page of a website for “camera”.

In our approach, we mainly rely on the page’s
visible content to locate the data regions and data
records. As a result, the resulting wrappers are
robust and easier to maintain. Moreover, they can
be adapted to multiple websites with similar
content structure to gather and integrate
information from various sources. In the following
sections, after reviewing the existing approaches,
we present our data extraction method and an
algorithm to implement it.

2. Related works

As mentioned before, a region extractor can be
considered as a part of an information extractor or
as a stand-alone application. Since in our method
we focus on identifying data regions on a web
page, we first review some proposals for extracting
data regions from web documents.

Embley et al. [12] have proposed a method to
extract the data records from the largest data
region in a web document. It is an unsupervised
method, which makes the following assumptions
to identify data regions. There is a unique data
region that is the largest region in the web
document. This region contains multiple data
records. Some tags are more likely to be data
record separators based on their type and their
occurrences. Finally, an ontology can help identify
data records.

Some of the heuristics proposed by Embley et al.
have been used in other region extractors [13]. For
example, OMINI assumes that the main data
region corresponds to the subtree with the largest
number of children.

Mining Data Records [14] (or MDR for short) is
another region extractor that aims to extract data
records. It assumes that a data region contains

repetitive structures in a document. Each repetitive
structure inside a data region is a data record, and
they are usually rendered inside tables and forms.
There are other methods such as TPC and U-REST
that search for repetitive and similar structures in a
document to identify data regions [16, 17, 21].
Some of the assumptions they make include a data
region containing multiple contiguous or non-
contiguous data records. The data records have
similar HTML structures, have small separators
and are rendered similarly, visually aligned.

One of the most-cited region extractors is VIPS
[8]. It is a vision-based approach to build the
content structure of a web page by exploring the
visual characteristic of the page elements and not
only relying on their HTML hierarchical structure.
The algorithm divides a web page into a collection
of contiguous regions based on their visual
properties. For example, if the background color of
a child node is different from the background color
of its parent, that child is counted as a sub-region.
Figure 1 shows the regions returned by VIPS on a
sample web page of Amazon website. Note that
VIPS only identifies and separates regions in a
web document; it is the user’s responsibility to
select the regions of interest (e.g. the green boxes
in Figure 1).

Subsequently, some approaches to information
extraction used the regions returned by VIPS as
the basis for detecting and extracting informative
regions. VSDR, VIDRE, and RIPB are some
examples of such methods [9, 10, 15]. For
example, RIPB [15] is a supervised method that
requires a few examples of data records. Then a
DOM-tree is built for each example using a tree
alignment method.

Pouramini et al./ Journal of Al and Data Mining, Published online

- YU
DOM Tree
$7.85 used (1 offer) ~ S.TR
- TD
Polaroid Snap Instant Digital Camera (White) with 51D
—a ZINK Zero Ink Printing Technology DIV
- by Polaroid =- UL
e T-LI
[Lt Get it by Tuesday, Dec 27 FREE Shipping on eligible 2y L
o orders See Details #-L
More Buying Choices =L
$69.00 new (33 offers) Optical Zoom: 1x - L
5739 1 (10 affacey Display Size: 3.0 inches -
Seen | Create Handle Film Format Type: 2x3 5L
; i - L
View Source 7D
Chesq View Proprties FPV 2.4Ghz 4CH 6-Axis +-TD
Gyro i ter Drone UFO with HD 1D
- Locate in Dom-Tree - TD
wifi Select Parent - DIV
. by Che — R

Figure 2. Identifying handles on a web page in our proposed system, HWrap.

These trees constitute tag patterns or the extraction
rules. To extract data from an input document, the
algorithm uses VIPS to segment the document into
a collection of candidate regions. It then compares
these regions with the tag patterns and returns the
regions with the highest score. The similarity
function is based on the tree-edit distance [18, 19].
In general, the proposed methods search for
repetitive structures to identify data regions. As a
result, they require the web page to contain at least
two data records for the region extractor to work.
Most of them are unsupervised and have
assumptions about the structure of the data regions
in a web document. Besides these assumptions
about the layout of data regions, some may use an
ontology [12, 13, 20]. While these unsupervised
methods are scalable, they lack flexibility. Also,
they may need many examples at the learning
phrase. They often rely on the following
algorithms to search a web document for data
records: tree matching, string matching, and
clustering [1, 18].

The majority of the proposed methods rely directly
or indirectly on the DOM-tree or HTML tags.
Some of them work on the region tree produced by
VIPS [9, 10, 15]. This enables them to utilize
visual information of the rendered page elements
such as the position and the rendering box of each
element to increase their accuracy. As a
consequence, this makes it difficult to apply them
to free-text documents whose contents do not rely
heavily on HTML tags.

In the next section, we present our approach to
identify data regions. We explain how our
approach is different from the existing approaches.

3. Our approach
Figure 2 shows an example of a data-rich web
page containing multiple instances of a data

record. In such web pages, the HTML elements
like table cells and divisions are frequently used to
separate data records. Therefore, the DOM-tree is
almost reliable to identify data regions. However,
the main drawback of the approaches that mainly
rely on the HTML structure is the lack of
flexibility. They may use absolute HTML paths to
locate an item. This approach is likely to fail when
minor changes occur in the target HTML structure.
Moreover, In the web of today, it is very common
to use only DIV tags and describe the “semantics”
of a particular division using style-sheet classes
(CSS files). In this respect, the class name is
perhaps the most notable semantic value among
the element’s attributes.

Our method basically relies on the DOM-Tree.
However, we use the DOM-tree to make patterns
based on delimiters and textual keywords in the
content of a data record which is enclosed in one
or more DOM-tree nodes. We assume that data
regions are contiguous portions on a web page,
comprised of one node or a range of nodes in the
DOM-tree. To make the data region patterns
independent of the DOM structure, we create them
on the top of the page visible content. Our method
is supervised, which means that we require the
user to create the required patterns on a sample
web page. However, as a future work, we aim to
extract these patterns using some heuristics and an
unsupervised learning.

In our method, we are inspired by the way people
typically look for data on a web page. A human
reader may scan a web page top-down or bottom-
up, looking for signs to recognize the page
structure. They rely on visual cues on the page
(fonts, colors, text or link density) as well as
semantic cues or text signals (titles, highlighted
words, keywords, constants) to get a mental image

Pouramini et al./ Journal of Al and Data Mining, Published online

of the content structure. We refer to such textual
signals with the term handle throughout this paper.
A handle can be a visible element that marks the
start or end of a data region or it can be a textual
element or a regular expression in the visible text
of a data region so that it distinguishes the data
region from the rest of the page. In data-rich web
pages, which are the main target of this work, such
handles are prevalent. For example, figure 2 shows
a web page containing the search results for a
product, that includes multiple instances of the
product. In such pages, there is usually the phrase
“Search Results” or the pattern “number +
‘results’” somewhere above a list of items. Such a
phrase or text pattern based on it (regular
expression) can establish a handle for identifying
the start of a data region. As another example, in
each product item, fields such as the product name,
the price or the shipping details can establish
handles to distinguish the product region. Such
elements are not tailored to the template of the
website, and thus they are less affected by
modifications and revisions to the layout. In the
next section, we explain how a wrapper can be
built using handles.

HTML I
/ Document

Interactive | :
‘ Extractor

Instance

Base

Pattern Builder

XML
Handle Document
Instance

Base

Figure 3. Architecture of HWrap.

3.1. Interactive wrapper generation

The overall architecture of HWrap wrapper
generation toolkit is shown in figure 3. It consists
of the following modules:

e The Interactive Pattern Builder provides
the user interface that allows a user to
visually specify the desired extraction
patterns. The patterns are created by
specifying one or more handles on a
sample web page. The handles are saved
into Handle Instance Base, and are

indexed using a unique key. The created
patterns are separately saved into another
file called Pattern Instance Base, where
they have some external references to the
handles. These instance bases can be also
stored as separate tables in a relational
database.

e The extractor is the extraction engine that
is provided with one or more web
documents and the instance bases of
handles and patterns. It identifies and
extracts data records from the input
documents and save them into separate
XML documents, one per each input
document. It can be used for extracting
data from the pages of one or more
websites that share common patterns
within their content. In that case, the
output of different documents can be
integrated into a single output XML
document.

In what follows, we describe the steps required for
creating a wrapper in our proposed system.

3.1.1. Creating handles

The user loads a sample page into an embedded
web browser to specify handles (see Figure 2). To
facilitate this task, the page elements get
highlighted as the user hover the mouse pointer
over each element. After selecting an element, a
pop-up allows the user for creating a handle based
on some of the element’s properties. This window
is shown in figure 4 (Left). As seen in this figure,
in addition to the text or a text pattern within the
content, the user can create a handle using the
values of some more constant attributes such as id
and class name (e.g. the “main” value for the
identifier of the main division of the page). These
values can also be specified using a regular
expression.

3.1.2. Creating region patterns

After creating handles, the user must specify how
target data regions are identified by using these
handles. The user creates region patterns based on
one or more handles. Through this paper, we refer
to such region patterns with the term pattern.
Figure 4 (Right) shows different ways to create a
pattern using the given handles.

For a single handle, the possible patterns are:

e Self: The region enclosed by the node that
matches the handle.

Pouramini et al./ Journal of Al and Data Mining, Published online

4 Create Handle @
Handle name: SearchResults Create
Close
Properties of the matching node:
Atribute Value Pattem
Id sesut-court
class
V| Texdt 1-16.of 23.974.575 results for "camera” df1.334d 1.3} of [d J+ resuits for
Pattem: \d{1,3}-\d{1,3} of [\d J+ results for Builder Set

4 Create Patiern @
Anchors: F— Parent Pattem :
Anchor e =) Documert
" y - Product
Resutls Single Anchor: roducts
PageNavigationBar Seff
= Parent
ShiopingI
Following
Preceding
Muttiple Anchars:
@ Common Ancestor
Between
Fattem Name: Product V| Bxtract Data Create Test

Figure 4. Screenshot of dialog boxes for creating handles (left) and patterns

e Parent: The region enclosed by the
handle’s parent node (container node of

the handle).

e Following: The region following the
handle.

e Preceding: The region preceding the
handle.

For multiple handles, a region pattern can be
specified using the following options:

e Common ancestor: The region enclosed by
the container of two or more handles.

e Between: The region that lies between two
handles.

Each pattern can be designated either for data
extraction purpose or for restricting the location of
the other patterns. To illustrate how these patterns
are used in the data extraction process, let us return
to our previous example of a web page containing
the results of a search for a product. Suppose we
want to identify the region that encloses the list of
the product items. We create a handle using an
element containing the text “Search Results” to
mark the beginning of this region. We then create
the target pattern named “Products” using this
handle and the “Following” option. This pattern
matches a region containing the elements that
follow the handle in the document. In order to
restrict the length of this region, we can find
another handle to mark the end of it. For example,
“page navigation bar”, which usually appears
under a search results, is a suitable candidate for
this purpose. Finally, the pattern can be created
using these two handles and the “Between” option.
As another example, suppose we want to create a
pattern for the region enclosing each product. We
first identify two handles within a product item,
such as the price and the shipping details. A

(right).

handle for the price can be created using a text
pattern that matches a price value and currency
(e.g. $NN.NN). Similarly, for the shipping
information, the handle can be created using the
“Ship” or “Get it by” keywords, and a text pattern
for a calendar date (e.g. “Get it by Month Day” or
“Ships within N days”). Alternatively, any
constant keyword repeating in all the product
items, such as “Add to Cart”, can be a candidate
for creating a handle. Having these handles, we
create the pattern “Product” as the common
ancestor or the immediate container of these
handles. To restrict the occurrence of this pattern
to a certain part of the page, we can assign it a
parent pattern from the list of the previously
defined patterns (e.g. “Products”).

3.2. Data extraction algorithm

In this section the data extraction algorithm is
described. The handles and the patterns created in
the previous section are input to this algorithm (see
Algorithm 1). It is mainly a recursive function that
is initially called with the root of the DOM-tree
(body element) and traverses its nodes in depth-
first manner. However, the algorithm may
backtrack and travers a node for several times.
First, the input node is checked against the list of
handles. If no match found, the function is
recursively called with the child nodes. Otherwise,
the pattern associated with the matching handle is
retrieved from the list of patterns. Let’s name this
pattern P. If P has a parent pattern that has not
been matched, it is ignored and the algorithm
continues with the rest of the nodes. Otherwise, the
state of P is updated to “Open” or “Closed”
depending on the handle that has been matched. If
P has been defined as a region over a node (Self,
Parent and Common Ancestor options), the
corresponding node in the DOM-tree is retrieved.
Let’s name this node PNode.

Pouramini et al./ Journal of Al and Data Mining, Published online

Algorithm 1 Data Extraction Algorithm

function Extract(node)
handle «— MatchHandle(node, handles)
if (handle !=null) then
pattern « GetPattern(handle, patterns)
if (pattern = null or pattern.Parent # “Open”) then
return null
end if
UpdatePatternState(pattern, handle)
patternNode <« FindNode(pattern)
if (pattern.ExtractDataFlag) then
ExtractData (pattern, patternNode)
end if
if (patternNode # null and pattern.Node # patternNode) then
» the data region hasn’t been previously evaluated
pattern.Node <« patternNode
if (pattern.hasChild) then
return pattern

end if
end if
else
for (i < 0; i <node.children; i — i + I) do
child < node.children[i]
prevPattern « curPattern
curPattern «— Extract(child)
if (prevPattern # null and prevPattern.State = “Open”) then
prevPattern.State < “Closed”
end if
if (curPattern # null and curPattern.Node # null) then
» then the children of the pattern node musb be reevaluated
if (curPattern.Node = child) then
curPattern.State = “Open”
i < i -1 » decrement the counter to reevaluate the child
else
return curPattern » return the pattern up the stack
end if
end if
end for
end if
return null

end function

PNode encloses a portion of the page which
corresponds to the region specified by P. After
matching P, if it has been designated for data
extraction, its content is added to the output XML
structure as an XML node with the same name as
the P’s name. If P has a parent pattern, this node is
placed under a node that represents its parent.
Finally, if P has one or more child patterns, the
function must reevaluate the PNode’s children
once again to match the child patterns. To do this,
the P instance including a pointer to PNode is
returned to the function calling point in the “for”
loop (line 24 in Algorithm 1). At this point, the
algorithm steps back (in the case of Self) or
traverse up (in the cases of Parent and Common
Ancestor) to find the PNode in order to reevaluate
its child nodes (see Algorithm 1 (continued)).

3.2.1. Time complexity

The time complexity of this algorithm is
polynomial and depends on the size of the DOM-
tree and the number of handles and patterns. In the
best case, if the algorithm does not traverse back to
revisit a node (traversing a node twice), then the

time complexity is O(N), where N is the number of
the DOM-tree nodes. The explanation is as what
follows. The algorithm is called N times, one call
per each node of the DOM-tree. On each call, the
input node is checked against the list of handles
(MatchHandle at line 2), and if a match is found, a
pattern is retrieved from the list of patterns
(GetPattern at line 4). Searching through the list of
handles and patterns depends on the number of
handles, H, and the number of patterns, P.
Therefore, O(logH+logP) is the total time for
these operations. The runtime of other functions in
the algorithm is roughly O(1). The FindNode
function at line 9 returns either the current node (in
the case of the Self option) or an ancestor of the
input node (in the cases of the Parent and Common
ancestor options). It is supposed that the
immediate ancestor of any two handle nodes, from
which one is the current node, is in the first few
levels directly above the current node in the DOM-
tree. Also the ExtractData at line 16 receives a
reference to the pattern node, and therefore,
extracting its content takes O(1). Since, in the best
case, the number of patterns and handles is not

Pouramini et al./ Journal of Al and Data Mining, Published online

considerable, we can ignore the (logH+logP) term,
and the time complexity is roughly O(N).

In the worst case, when most of the patterns are
defined using either ‘“Parent” or “Common
Ancestor” options, the algorithm’s time
complexity is O(NlogN). The explanation is as
what follows. In the worst case, for each node of
the DOM-tree, at most one handle can be defined
to match that node, and one pattern can be defined
to match the region enclosed by this node. The
algorithm, as before, is called N times. On each
call, after matching a pattern, a sub-tree must be
revisited, which in the worst case will be the entire
DOM-tree; therefore, N is multiplied by N in the
formula. O(logH + logP), as before, is the time for
searching through the lists of handles and patterns.
By bounding P and H to N, the time complexity of
these operations is O(logN). The time complexity
of the FindNode function is similarly O(logN) in
the worst case because the algorithm must traverse
the DOM-tree up to the root and it takes O(logN).
Therefore, the total time of the algorithm will be
O(N?logN), which is again polynomial. However,
this is a very loose bound and in practice the time
complexity is near to O(N).

3.3. Data extraction and integration

Figure 5 displays the result of applying the
extraction algorithm to the web page shown in fig.
2. In this structure, each pattern forms an XML
node, which is nested in another node that
corresponds to its parent. If the user desires to
extract any specific data, he must first create an
appropriate pattern for the region that encloses that
data and mark it for data extraction (“Extract
Data” checkbox in the form shown in Figure 4).
As seen in fgure 5, the exact HTML source code of
each product item is added to the “Product” node
in the output XML tree. This code can be further
processed to extract the subfields (e.g. price, bids,
and supplier) or be directly rendered in a web
browser to be displayed to the user for visual
comparison.

If the user defines a pattern more generally by
ignoring details, the resulting wrapper can be
reused for gathering and integrating data from
different websites that have this pattern in
common. In some cases, minor changes are
required to adapt an existing handle or pattern to a
new website. Therefore, the user often needs to
follow the same procedure to create wrappers for
similar websites, and this makes creating them
easier. To facilitate this process, the Pattern
Builder automatically highlights the matching
items on the page when the user loads a previously
created pattern file.

On the other hand, the user can define a pattern in
more details when he wants to extract some fields
of a data record. To do so, he must create a pattern
for each target filed inside the pattern that has been
defined for the data record. For example, to extract
the price field from each product and store it as a
child node of the product’s node in the XML tree,
an appropriate pattern can be defined using the
“price” handle, the “Self” option, and the
“Products” pattern as its parent.

4. Experimental results

We tested the accuracy and expressiveness of our
proposed method on a number of websites
including Amazon, eBay, IMDB, world weather,
and YouTube (see Table 1). We collected 30 pages
from each website. Table 1 shows the number of
handles and patterns required to identify the data
records on each website.

In all cases, the website was wrapable and required
a few number of handles to identify the data
records. Similar to the example reviewed through
this paper, the handles were easily identifiable on a
sample web page. The “Common ancestor” option
was very useful to specify a record by identifying
two or more handles within it. The experiments
show that by providing suitable handles and
patterns, the system can achieve a high
performance of 98.9% in F-Measure.

Table 1. Evaluation of generated wrappers.

Website # Handles # Patterns Precision Recall F-Score

Amazon 5 3 98.5 100 99.2
eBay 5 3 98.7 100 99.3
IMDB Search 5 4 97.6 100 98.7
World Weather 4 2 98.4 99.5 98.9
Youtube 4 3 97.3 98.9 98.1
Average 98.1 99.7 98.9

The precision refers to the average fraction of
regions that are identified by the system and
correspond to the actual data regions. Recall refers
to the average fraction of actual data regions that
are identified by the system. The higher recall
values in table 1 indicate that most of the actual
data regions were identified by our method.
However, the lower performance values indicate
that some of the identified regions are not the
actual data regions. For example, they can be some
records on the advertisement area beside the main
data region (see Figure 1).

The performance of our proposed system is close
to the performances reported by the related works
in this filed. Table 2 shows the performance

Pouramini et al./ Journal of Al and Data Mining, Published online

measures reported by some of the proposals that
were reviewed in the “Related Works” section.

Table 2. Performance of some related works.

Proposal Precision Recall
OMINI 100 94

MDR 100 99.8
RIPB 98.1 95.7
TPC 96. 97.0
VSDR 89 97.6

Note that they are not comparable side-by-side
because they were calculated on different datasets.
However, they can provide a rough reference for
comparison. As is seen, the performance of our
proposed method, especially in terms of recall, is
higher than most of these proposals. One reason is
that most of these methods are unsupervised and
search for repetitive structures within the page.
Therefore, when a data record has a slightly
different structure than the rest, it can be ignored.
Since our method relies on the content of the data
records rather than their internal structures, it can
better cover such structural dissimilarities in data
records.

Table 3 shows the percentage of the handles that
are common among the websites used in the
experiment. Since our method relies on the visible
content and textual identifiers, common handles
can be found in the websites that offer a similar
service. For example, in most shopping websites,
the price and shipping details fields are among a
product’s information, and thus they can be used to
identify a product item by selecting “Common
Ancestors” Option. Note that this option finds the
closest ancestor that encloses all the specified
handles regardless of the specific structure of each
website and the number of nesting elements.

Table 3. Shopping websites with similar handles.

Website Common Handles
eBay 80%
DHGate 80%
AliExpress 80%
Etsy 50%

5. Conclusion and future works

In this paper, we presented an approach to the
problem of extracting data records from web
pages. We based our approach on the textual
handles within the visible content of the web page.
We were inspired by the way a human user scans a
web page for the data of interest. Handles serve as
identifiers for a data region so that a pattern can be

constructed on the basis of one or more handles.
Each pattern may be treated as the sub-pattern of
another pattern. Given these patterns, we proposed
a data extraction algorithm. This algorithm
traverses the DOM-tree nodes in a mixed top-
down and bottom-up manner to match the given
handles and patterns. This algorithm is time-
polynomial and in the worst case, has O(N’logN)
time complexity. However, in the average case, it
grows linearly with the number of nodes (O(N)).
As our proposed method relies mainly on the page
visible content rather than the HTML structure, the
generated wrappers are robust and maintainable.
We showed that they could be adapted to gather
data from similar web pages and integrate them
into an XML document.

In this paper, we defined a pattern for a data region
using one or several handles. In addition, we
provided a means to restrict the location of a
pattern inside another pattern. As a future work,
we aim to provide an option to define a pattern
based on handles and other patterns. For instance,
a pattern can be defined as the common ancestor of
two existing patterns or one handle and one
existing pattern. For example, the data region
enclosing several product records can be defined
as the common ancestor of two product patterns.
As another work, we aim to find the required
handles and patterns on a web page using an
unsupervised method similar to the works
reviewed in the “related works” section. Then we
use these patterns in our proposed algorithm to
extract the data records.

References

[1] Ferrara, E., De Meo, P., Fiumara, G., &
Baumgartner, R. (2014, November). Web data
extraction, applications and techniques: A survey.
Knowledge-Based Systems, vol. 70, no. 1, pp. 301-
323.

[2] Sahuguet, A., & Azavant, F. (1999, September).
Building light-weight wrappers for legacy web data-
sources using W4F. In Proceeding of VLDB, pp. 738-
741.

[3] Liu, L., Pu, C., & Han, W. (2000). XWRAP: An
XML-enabled wrapper construction system for web
information sources. In Data Engineering Proceedings.
16th International Conference on (pp. 611-621). IEEE.

[4] Gottlob, G., Koch, C., Baumgartner, R., Herzog,
M., & Flesca, S. (2004, June). The Lixto data
extraction project: back and forth between theory and
practice. In Proceedings of the twenty-third ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems (pp. 1-12). ACM.

[5] Wang, J., & Lochovsky, F. H. (2003, May). Data
extraction and label assignment for web databases. In

Pouramini et al./ Journal of Al and Data Mining, Published online

Proceedings of the 12th international conference on
World Wide Web (pp. 187-196). ACM.

[6] Bing, L., Lam, W., & Gu, Y. (2011, October).
Towards a unified solution: data record region
detection and segmentation. In Proceedings of the 20th
ACM international conference on Information and
knowledge management (pp. 1265-1274). ACM.

[7] Wang, J., & Lochovsky, F. H. (2002, December).
Data-rich section extraction from html pages. In Web
Information Systems Engineering, 2002. WISE 2002.
Proceedings of the Third International Conference on
(pp. 313-322). IEEE.

[8] Cai, D., Yu, S., Wen, J. R., & Ma, W. Y. (2003).
VIPS: A vision-based page segmentation algorithm.
Microsoft technical report, MSR-TR-2003-79

[9] Liu, W., Meng, X., & Meng, W. (2006, July).
Vision-based web data records extraction. In Proc. 9th
international workshop on the web and databases (pp.
20-25).

[10] Li, L., Liu, Y., Obregon, A., & Weatherston, M.
(2007, August). Visual segmentation-based data record
extraction from web documents. In Information Reuse
and Integration, 2007. IRl 2007. IEEE International
Conference on (pp. 502-507). IEEE.

[11] Li, L., Liu, Y., Obregon, A., & Weatherston, M.
(2007, August). Visual segmentation-based data record
extraction from web documents. In Information Reuse
and Integration, 2007. IRl 2007. IEEE International
Conference on (pp. 502-507). IEEE.

[12] Embley, D. W., Jiang, Y., & Ng, Y. K. (1999,
June). Record-boundary discovery in Web documents.
In ACM SIGMOD Record (vol. 28, no. 2, pp. 467-
478). ACM.

[13] Buittler, D., Liu, L., & Pu, C. (2001, April). A fully
automated object extraction system for the World Wide
Web. In Distributed Computing Systems, 2001. 21st
International Conference on. (pp. 361-370). IEEE.

[14] Liu, B., Grossman, R., & Zhai, Y. (2004). Mining
web pages for data records. IEEE Intelligent Systems,
19(6), 49-55.

[15] Kang, J., & Choi, J. (2008). Recognising
Informative Web Page Blocks Using Visual
Segmentation for Efficient Information Extraction. J.
UCS, vol. 14, no. 11, pp. 1893-1910.

[16] Shen, Y. K., & Karger, D. R. (2007, May). U-
REST: an unsupervised record extraction system. In
Proceedings of the 16th international conference on
World Wide Web (pp. 1347-1348). ACM.

[17] Miao, G., Tatemura, J., Hsiung, W. P., Sawires,
A., & Moser, L. E. (2009, April). Extracting data
records from the web using tag path clustering. In
Proceedings of the 18th international conference on
World wide web (pp. 981-990). ACM.

[18] Zzhai, Y., & Liu, B. (2005, May). Web data
extraction based on partial tree alignment. In
Proceedings of the 14th international conference on
World Wide Web (pp. 76-85). ACM.

[19] Bille, P. (2005). A survey on tree edit distance and
related problems. Theoretical computer science, vol.
337, no. 1, pp. 217-239.

[20] Su, W., Wang, J., & Lochovsky, F. H. (2009).
ODE: Ontology-assisted data extraction. ACM
Transactions on Database Systems (TODS), vol. 34 no.
2, pp. 12-17.

[21] Naeem, M., Bilal Khan, M., & Tanvir Afzal, M.
(2013). Expert Discovery: A web mining approach
Journal of Al and Data Mining: Shahrood University of
Technology. vol. 1, no. 1, pp. 35-47.

o ;b/a)’uJ fod J)f,/p
j’ﬂ%’l’]’?u

GFxo g o (50 Sl eolaiwl b ©g 3l eols ZI yaiuw!

s plﬁgskw@b&dw‘&&cl)% o>

Ol) oy (e g (rduo oIS il g B 095

YAVYIYY Gopdy ¥ VNN 6Kk ¥ VFONY L)l

RN

Sl g Slxas jlosls glwo,ad C‘)"""‘"‘ Sz oy soaiig ol sl (HWrap) ‘o):_.f.'l.wo 3 s ol pb L I g, b lis ool e
So g 0959 5l 0ols gzl sl i 1631 L 0uiS oo oolainl o cdlin JB (slgize losls gyl (Ale i gl 0S5, cnl 5o S o0
Olals e slajlulas asle st o Shg 0 5l b aive job a4 .cwl a8 3 aledl s 50 Sledbl goine sl ludl Lawgs azas
oolaiwl n5|°°|° 6sto)li.é 9 oolo 65L> «5’19—3 Lg‘/,.g ‘sguji” ongl S r“‘iﬁfgs“’ Oﬁi‘.;wé LQ;T a as (S g (GO 6lm5il| L Laswb «Lg.).:.lf
[e|9_: Oimlams SO 50 oty ofl ol 30 oS oo 1)1 oSl ol 5l oolaul b ools zlzeiwl (gl glalozaiz Souzn b o685 SO G oS (o0
zl el LagSIl 0l U Gdate gla il 5 2igds oo ools cuisllas (DOM s jo) HIMI jlislos b ool 8 yme slooSl Yhasyuly 5 mbas¥l
L a5 (sloaidioy .aigd oo 4TSS o0 Ciy pos slasSII b blie XML (5l pealides sl 5 4 Logiinns 00l 2] 5eiul (slaosls s 9 oo
&l sl slgime 45 laulory ;o Ll 5l olgf oo johaien akiwd DLl § 009 Slmio (Glgime p (S g g0 a3l (b, o

2,5 oolazwl wiyls (slosls (slao a8

g 0dibs g 5l ool 0,88 Sl (Ol] il (555 g (g9l ools ‘5-\.45 Olls

Handled-based Wrapper '

