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Abstract 

Image zooming is one of the current issues of image processing that maintains the quality and structure of an 

image. In order to zoom an image, it is necessary to place the extra pixels in the image data. Adding the data 

to the image must be consistent with the texture in the image in order to prevent artificial blocks. In this 

work, the required pixels are estimated using the radial basis functions and calculating the shape parameter c 

with the genetic algorithm. Then all the estimated pixels are revised on the basis of the sub-algorithm of edge 

correction. The proposed method is a non-linear one that preserves the edges and minimizes the blur and 

block artifacts on the zoomed image. This method is evaluated on several images for calculating the suitable 

shape parameter of the radial basis functions.  The numerical results obtained are presented using the PSNR 

and SSIM fidelity measures on different images as compared to some other methods. The average PSNR of 

the original image and image zooming was found to be 33.16, which shows that image zooming by factor of 

2 is similar to the original image, which emphasizes that the proposed method has an efficient performance. 

 

Keywords: Image Zooming, Radial Basis Function, Genetic Algorithm, Interpolation. 

1. Introduction 

Image zooming is used to enhance the resolution 

of an image in order to achieve a high-quality 

image. It plays an important role in image 

processing and machine vision, and has a variety 

of applications in the printing industry, electronic 

publishing, digital cameras, medical imaging and 

sampling, images on web pages, license plate 

recognition, and face recognition systems [1]. 

Recent studies have shown that in many 

applications the main task regards the visual 

quality of images. Resolution of the edges and 

lack of blurred and additional artifacts are two 

important factors involved in the quality of 

zoomed images. 

In most algorithms of image zooming, the 

interpolation method is used. This is to find a set 

of unknown pixel values from a set of known 

pixel values in the image. 

 In image zooming, several basic parameters 

affect the image quality, as follow [2]: 

1. The zooming method should maintain the 

edges and borders of the image. 

2. The method should not produce constant 

undesirable pieces or blocks of other 

areas.  

3. The method should involve efficient 

computations, and it should not depend on 

the inner parameters too much. 

Traditional technologies use linear interpolation 

methods to create high resolution samples in 

zooming images. Pixel replication, bi-linear 

interpolation, quadratic interpolation, bi-cubic 

interpolation, and spline interpolation are among 

the linear interpolation methods [3-5]. These 

methods serve to smooth out image edges, and, in 

some cases, to produce stair edges. Also the 

outputs of these methods are blurred images. 

In the bi-linear interpolation method, artificial 

blocks and undesirable visual effects appear at a 

high zooming rate, and the edges are preserved to 

an acceptable degree.  

In the bi-cubic interpolation method, at a suitable 

zooming rate, the artificial blocks and the 

undesirable visual effects are fewer than in the bi-  
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linear interpolation method, and the edges are 

preserved as well. Determining the image quality 

in these methods is difficult but in terms of high 

quality, one may refer to the spline interpolation, 

bi-cubic interpolation, quadratic interpolation, and 

bi-linear interpolation methods in a descending 

order [6].  

To modify the linear methods in terms of 

improving the image quality and solving the 

problem of image blur, the non-linear 

interpolation technique has been used. The 

changes in the non-linear methods depend on their 

interpolation. This means that the performance of 

these methods with sharp edges is different from 

their performance with soft edges. Indeed, it is in 

contrast with the linear methods that treat all 

pixels equally [7-9]. 

In non-linear methods, a subset of edge pixels is 

estimated [8], and resampling, parameter 

optimization, contextual interpolation, and edge 

direct interpolation are conducted to preserve the 

image quality and edges [10-13]. 

In reference [10], statistical methods have been 

used to set the structure of the edges and the 

correction technique of bi-linear interpolation, and 

the interpolation error theorem [11] have been 

used in the edge-adaptive method. 

In reference [14], as a part of the edge-directed 

non-linear interpolation method, the technique of 

filtering direction and data fusion has been used, 

and a missed pixel has been interpolated in 

different directions. Then the results of edge-

directed interpolation have been combined with 

the linear least squares estimation, and thus the 

desirable outcome has been achieved.  

In reference [15], the LAZ method has been 

introduced as a local adaptive zooming algorithm 

in order to find the edges in different directions 

using the information of discontinuity or sharp 

brightness changes. Also two threshold values 

have been considered, and the missed pixels have 

been estimated regarding the direction of the 

edge. 

In the recent years, some methods based on the 

partial differential equations (PDEs) have been 

proposed and have shown better performance than 

the previous methods. In references [16 and 17], 

the edge-directed interpolation methods have been 

discussed based on the diverse issues with PDEs. 

 In reference [18], the non-linear curvature 

interpolation method and PDEs for image-

zooming have been provided.  

In reference [19], the non-linear fourth-order 

PDEs method is a combination of the locally 

adaptive zooming algorithm for image zooming. 

In reference [20], an image zooming algorithm 

has been presented using non-linear PDE 

combined with edge-directed bi-cubic algorithm.    

Most PDE-based methods provide clear images 

with sharp edges. The effects resulting from 

blurring and the artificial blocks are minimized in 

these methods.  

In reference [21], a non-linear image-zooming 

method has been provided based on the radial 

basis functions and the contextual edge correction 

techniques. Given that the radial basis functions 

have the shape parameter c in this method, an 

interval has been proposed for c by performing 

numerical experiments. 

In reference [22], the artificial neural network 

methods have been used for zooming operations 

on digital images. 

In reference [23], a non-linear image interpolation 

algorithm based on the moving least squares 

technique has been presented. In this method, 

ability for image zooming and preserving edge 

features is demonstrated. 

In reference [24], image magnification by least 

squares surfaces has been presented in such a way 

that extra pixels are estimated using the surface of 

least squares. 

In the present work, using the Genetic Algorithm 

(GA) and the measure of similarity of two images, 

the required pixels were calculated regarding the 

radial basis functions, and the shape parameter c 

was desirably obtained. Then all the estimated 

pixels were revised based on the proposed edge 

correction sub-algorithm.   

The structure of this paper is as what follows. In 

Section 2, the radial basis functions and their 

properties are discussed. In Section 3, GA and 

image zooming are briefly reviewed. In Section 4, 

the proposed method is provided. In Section 5, the 

evaluation criteria and the results of running and 

calculating the shape parameter c are discussed 

using GA in radial basis functions and compared 

with other methods. In the final part, the 

conclusion and the future research works in this 

field are given. 

2. Radial basis functions 

Radial basis functions play a key role in various 

fields of engineering and applied mathematics 

including functions in the discussion of 

interpolation and solving partial differential 

equations. Solving a high-dimensional 

interpolation problem is not as easy as solving 

univariate functions because the amount of 

calculations and the complexity of the algorithm 

are high. According to Hardy [25], a multivariate 

interpolating function is not unique. 
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Due to these obstacles, Hardy [26] provided new-

basis functions in 1971. Later, on the basis of this 

provision, radial basis functions emerged as a 

standard method of approximation. These 

functions and their importance and applied 

properties are defined as follow: 

Definition 1-2: function : nR R   is called 

‘radial function’ if x y , then ( ) ( )x y  , 

where .   is the Euclidean norms. in fact, suppose 

that 1 2( , ,..., ) d

dX x x x R   and : dR R  . 

Then 
1 1 2

( ,..., ) ( ,.., )d dX x x x x  , where 

2
1

d

i

i

X X


  . 

2
X  is the distance of X from the origin. Thus 

the above functions are called ‘radial functions’ 

because the discussion is on the distances of the 

points from a particular center that is the origin. 

If the constant points 1 2, ,..., d

nx x x R  are given 

and the following linear composition is displayed 

from the functions g to the center of the points ix : 

1 1

:

( ) ( )

d

n n

i i i i

i i

f R R

x g x x x x  
 



    
 (1) 

 

where, ixx   is an Euclidean norm between the 

points , ,ix x  , is the radial basis function,  and 
i  

is the real coefficient. Then function f can be 

displayed as (2). Also the obtained function f is 

placed in a space composed of the radial basis 

functions with a finite dimension. 

1

( ) ( )
n

i i

i

f x x x 


   (2) 

 

Definition 2-2: we suppose a set of n distinct 

points  
1

 
n

i i
x


 with the corresponding distinct 

values  
1

 
n

i i
f


 given. In this case, the interpolating 

function is defined as (3) using the radial basis 

function. 

 ( )

1

n
s x x x

i i
i

  


 (3) 

 

where, the interpolation condition is: 

,  (  i 1,2,( ) ,n)i iS x f x   . 

Equation (3) is equivalent with the linear 

equations system (4), where the coefficient 
i can 

be calculated. 
A F   (4) 

where 

1 1 1 2 1

2 1 2 2 2

1 2

(|| ||) (|| ||) (|| ||)

(|| ||) (|| ||) (|| ||)

(|| ||) (|| ||) (|| ||)

n

n

n n n n

x x x x x x

x x x x x x
A

x x x x x x

  

  

  

   
 

   
 
 

   

A  is an interpolating matrix of n n  with the 

element ( ), , 1,...,ij i jA x x i j n   . 

In addition,  

1 1

2 2

. .
,

. .

. .

n n

f

f

F

f









   
   
   
   

    
   
   
   
   
   

 

In matrix A ,  s are radial basis functions, and it 

is clear that matrix A  is a symmetric matrix 

regarding the radial basis function. 

Shoenberg [27] has proved that any non-constant 

function : 0,   R   is strictly positive definite 

if and only if the function  :    r r   on 

 0,  is completely monotonic. In his article, 

Michely [28] has shown that if     0,  C   and 

 are completely monotonic and non-constant, 

and (0) 0  , then matrix A  is non-singular for 

each ψ( )   (√  ). 
If the positive definite radial basis functions are 

used to form matrix A , then A  is positive 

definite and the system always has a solution. 

However, if the conditional positive definite radial 

basis functions are used to form matrix A , the 

interpolating system will be in a specific form; 

according to (3), if  s are the positive definite 

functions with the order Q  where 
1Q d

q
d

  
  
 

, 

then with the condition in which:  

 
1 1

( ) ( )
qn

i i k k

i k

s x x x B P x 
 

     (5) 

1

( ) 0, 1
n

i k i

i

P x k q


    (6) 

Equations (5) and (6) are converted to matrix (7): 

00T

A P F

BP

     
     
     
     
      

    

 (7) 

 

where, ( )ij i jA x x  for , 1,...,i j n and 

( )ij j iP P x  are the assumptions of the 

interpolating matrix A ,  for a given . 
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Using this trick, the new matrix is non-singular, 

and the system will have a solution without any 

damage to the generality of the problem of 

interpolation. 

In general, the radial basis functions are classified 

into two groups: extremely smooth functions and 

piecewise smooth functions. Table 1 shows some 

extremely smooth and piecewise functions. 

In extremely smooth radial basis functions, c  0 

is a shape parameter that plays a key role in the 

accuracy of the methods based upon these 

functions. Finding the optimal parameters has 

been considered for many years and they are often 

calculated through trial and error. Selecting an 

appropriate c often depends on the problem, and c 

cannot be selected with certainty. 

3. Genetic algorithm and image zooming 

Genetic algorithm (GA) is used as a method for 

finding suitable solutions to most engineering and 

optimization problems. This algorithm, which 

uses the evolutionary computation to find suitable 

solutions, has been inspired by the Darwinian 

evolutionary theory. This algorithm has been 

developed by Holand [29], starting with a 

completely random population and going on 

through generations. In each generation, the entire 

population is evaluated, based on the principal of 

the survival of the fittest, and the better results are 

selected based on the targeted function (fitness) 

and transmitted to a new generation. This process 

is repeated until the termination condition of the 

algorithm is established. Choosing a fitness 

function in GA is very important. Therefore, it 

must be proportionate to the problem. This 

algorithm leads to suitable solutions by using the 

operators of selection, cross-over, and mutation.  
 

Table 1. Radial basis function. 

( )r  Type of function         Name of function 

2cre 
 

 

2 2rc   

 

2 2

1

c r
 

 

2 2

1

c r
 

 

r  
 
3r  

 

2 lnr r  

 

Extremely smooth 

 
 

Extremely smooth 

 
 

 
Extremely smooth 

 

 
 

Extremely smooth 

 
 

 

Piecewise smooth 
 

 

Piecewise smooth 
 

 

Piecewise smooth 
 

Gaussian function 

 
 

Multiple quadratic 

 
 

 
Reverse quadratic 

 

 
 

Reverse multiple quadratic 

 
 

 

Linear spline 
 

 

Cubic spline 
 

 

Thin plate spline 
 

 

In image zooming, a number of new pixels are 

placed among the original pixels of the image. In 

zooming, the aim is to estimate the amount of new 

pixels, which is determined on the basis of their 

neighboring pixels. There are two kinds of 

neighborhoods in 2D images, namely 4-cell and 8-

cell neighborhoods. These neighborhoods are 

shown in figure 1. In most of the proposed 

methods, attempt is made to keep the zooming 

rate at a power of two but it should be noted that 

this algorithm is usable for every zooming rate.  

Suppose that the dimensions of the original image, 

n  n, spread regularly to 2n  2n.  

More precisely, if S(i ,j) represents the pixel of the 

original image in the i
th
 row, and the j

th
 column  

 

and Z(l, k) represent the pixel of the zoomed 

image in the l
th
 row and the k

th
 column, then 

function f defined by (8) places the values for the 

original image pixels in the interlaced places of 

the new image. 

:

( ( , )) (2 1,2 1)

, 1,2,...,

f S Z

f S i j Z i j

i j n



  



 (8) 

 

The result is shown in figure 2. The original 

image pixels are shown with ●, and the other 

pixels that must be estimated in three steps are 

shown with ○. These steps estimate the pixels 

with even columns and even rows, odd rows and 

even columns, and even rows and odd columns. In   
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order to estimate the values for these pixels, the 

radial basis functions and the related linear system 

are used, and then all the pixels are revised with 

the edge-modified sub-algorithm. 

 

 

 

 

 

 

 

 
4-cell neighborhood                     8-cell neighborhood 

Figure 1. Types of neighborhoods. 

 

For the image zooming by factor of 4, the original 

image expands to the image according to figure 2. 

Then all the required pixels are estimated. This 

process is repeated once more. 

4. Proposed method 

In this method, the points are referred to the pixel 

coordinate of the image whose brightness and 

number of columns and rows are considered as a 

point in a 3D space. In order to estimate the 

required pixels based on the 4-cell neighborhood, 

the intended point is selected, and then the 

intended pixels are estimated by selecting the 

radial basis function and solving the related linear 

system by (4).  

Thus the shape parameter c is determined in the 

radial basis function with GA. 

The flow chart of the proposed method is shown 

in figure 3. It should be noted that to approximate 

the pixels of the last column and row, the 

penultimate row and column are repeated.  

The steps of the proposed algorithm are as follow: 

Step 1. The radial basis function is selected. 

Step 2. GA is called to determine the random 

shape parameter c.  

Step 3. The linear equation system with regard to 

the selected radial basis function is formed. 

Step 4. The linear equation system and the 

coefficient are solved. 

 

 

● ● ● ● ● 
● ● ● ● ● 
● ● ● ● ● 

● ● ● ● ● 

● ● ● ● ● 

 

 

● ○ ● ○ ● ○ ● ○ ● 
○ ○ ○ ○ ○ ○ ○ ○ ○ 

● ○ ● ○ ● ○ ● ○ ● 
○ ○ ○ ○ ○ ○ ○ ○ ○ 

● ○ ● ○ ● ○ ● ○ ● 
○ ○ ○ ○ ○ ○ ○ ○ ○ 

● ○ ● ○ ● ○ ● ○ ● 
○ ○ ○ ○ ○ ○ ○ ○ ○ 

● ○ ● ○ ● ○ ● ○ ● 
Figure 2. Image zooming. 

 

Step 5. The intended pixels are estimated by 

replacing the number of columns and rows in the 

radial basis function. 

Step 6. Steps 3 to 5 in three stages are repeated 

according to the zooming algorithm and 

estimating the required pixel. 

Step 7. The measure PSNR or SSIM of the 

original image with the zoomed image is 

calculated. 

Step 8. If the stop condition is satisfied, go to step 

9; otherwise, go to step 2.  

Step 9. The suitable parameter c of the radial 

basis function in zooming the images with regard 

to the termination condition in GA is determined. 

Step 10. All the estimated pixels, again based on 

the directed edge sub-algorithm, are revised 

(explained in the next part). 

4.1. Modified sub-algorithm of image edges 

After estimating all the required pixels, they are 

revised to improve the edges, as shown in figure  

 

 

4. Based upon the following conditions, they are 

modified if required [15]. A, B, C, and D are the 

original pixels, and X, Y1, Y2, Z1, and Z2 are the 

estimated pixels. The advantage of this sub-

algorithm is that there is no threshold for the 

image edges. The steps of the proposed sub-

algorithm are as follow: 

Step 1. If  A D B C   , then 
2

B C
X


 . In 

fact, the edge is in the NE-SW direction. 

Step 2. If A D B C   , then 
2

A D
X


 . In 

fact, the edge is in the NW-SE direction. 

Step 3. If       0A D B C   then 1
2

A B
Y


  

and 2
2

C D
Y


 . In fact, the edge is in the NS 

direction. 
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Figure 3. A flow chart of proposed algorithm. 

 

 

Step 4. If     0A D B C   then 1
2

A C
Z


  

and 2
2

B D
Z


 . In fact, the edge is in the EW 

direction. 

 

B Y1 A 

Z2 X Z1 

D Y2 C 

Figure 4. A design for correcting edges. 

5. Experimental results  

In order to evaluate the proposed method, for 

image zooming by factor of 2, a digital image was 

first considered as an original image, and then 

reduced to half its size by removing its rows and 

columns alternately. Next, it was enlarged to 

double its size using the proposed method and the 

other existing methods. As it was expected, the 

more similar the original and the zoomed images, 

the better the performance of the algorithm. 

In the next section, evaluation of quality metrics is 

presented. 

5.1. Assessment criteria 

The PSNR and SSIM criteria are used to compare 

two images in terms of their similarity. The 

greater the amount of PSNR and the closer the 

amount of SSIM is to one, the more is the 

conformity of the two images [30]. The measure 

PSNR is calculated on the basis of (9) and (10): 
2

10

MAXI
PSNR=10*Log  ( )       (dB)

MSE
 (9) 

m-1 n-1
2

i 0 j 0

1
MSE= [I(i,j)-K(i,j)]

m n  

  (10) 

 

where,  I i, j  and  K i, j   are the pixels of the 

original image and the estimated image, 
respectively, and 

 MAXI  is the maximum amount 

of the image pixels. 
The measure SSIM, which includes the structural 

elements of the picture, measures the quality of 

the structural content and the similarity between 

the two images, that is a number between zero and 

one, and is calculated by (11). The closer the 

measure is to one, the more similar the two 

images are. However, the closer the measure is to 

zero, the less similar the two images are. 

No 

Yes 

Yes 

Estimate the pixels 

Solve the linear equation 

system and calculate coefficients 

Start 

Choose the radial basis 

function 

Call GA and determine the 

random shape parameter 

Create the system of linear 

equation 

 all pixels 

estimated? 

No 

 Calculate the PSNR 

Is stop      

condition 

satisfied? 

Find suitable C 

Call the modified edges algorithm 

Stop 
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x y 1 y 2 xy 3

2 2 2 2

x y 1 x y 2 x y 3

SSIM(x,y)=  

(2 +c )(2  +c  )( +c )
 
( + +c  )( + +c  )( +c )

x    

     

 (11) 

 

where,  , 2  and xy  are the mean, variance, 

and co-variance of the pixels, respectively, and 

1c , 
2c  , and 

3c  are three constants to prevent the 

denominator from being zero. 

5.2. Numerical experiments of proposed 

method 

The shape parameter c of radial basis function is 

determined using GA.  Important parameters in 

GA are shown in table 2. 

Table 2. GA setting. 

Scaling function Rank 

Cross-over rate 0.8 

Mutation rate 0.2 

Mutation function Adaptive feasible 

Cross-over function Constraint dependent 

Selection function Uniform 

 

The results of running the proposed algorithm in 

the MATLAB software were tabulated in tables 3 

and 4. In table 3, the measures PSNR and SSIM 

were used to zoom the image. Also 10 different 

standard images are shown in figure 5, in which 

their size is 512  512 [31]. 

 

   
 

Fire Disk Elaine Lifting body 

    
Airplane House Balloons Dog 

 

  

 

 Swan Fruit  

Figure 5. Different standard images for image zooming. 

 

The results of the proposed method were obtained 

using the extremely smoothly Gaussian radial 

basis function
2C

e
r  (GRBF).  In GA, the used 

range was [-10, 10], and the initial population was 

considered to be 10. However, a better number of 

population was considered to be 5 so that the next 

generation would be continued regarding the 

values for PSNR and SSIM. 

 For the proposed images, on average, the 

termination condition was achieved after 70 

repetitions. After running the algorithm, a suitable 

value for c was found to be 2.4335. Figure 6 

shows the process of reaching a suitable solution 

in zooming the image with GA.  

 
Figure 6. Process of reaching a suitable solution using GA 

and GRBF in image of lifting body. 

 

It should be noted that PSNR was used in the 

algorithm because in a GA, the minimum value 

for the targeted function is calculated. After 

running the algorithm and calculating a suitable 

value for the shape parameter c, the sub-algorithm 

of edge correction was run on the image.  

The results obtained were tabulated in table 3. The 

minimum difference of PSNR by the GRBF 

method with edge correction and without edge 

correction was 0.08 and the maximum was 0.47, 

whilst the average was 0.21. Also it could be seen 

that the quality of the images was preserved at a 

desirable level. 

Table 4 shows the results of implementing the 

proposed method using the extremely smoothly 

reverse quadratic radial basis function 
2 2

1

c r
 

(RQRBF). In GA, the applied range was [0,100], 

and the initial population was considered to be 20; 

however, a better number of population was 

considered to be 10 so as to the next generation to 

continue with regard to the values for PSNR and 

SSIM. 

For the proposed images, on average, the 

termination condition was achieved after 51 

repetitions. A suitable value for c, obtained after 

running the algorithm, is shown in table 3. Figure 

7 shows the process of reaching a suitable solution 

in zooming the image with GA. After running the 

algorithm and calculating the optimal value for 

the shape parameter c, the directed edge sub-

algorithm was run on the image. 
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Figure 7. Process of reaching a suitable solution using GA 

and RQRBF in image of lifting body 

The results obtained were tabulated in table 4. The 

least difference of PSNR between with and 

without edge correction by the RQRBF method 

was 0.07, the most was 0.51, and its average was 

0.21.  As it can be seen, the quality of the images 

is preserved at a desirable level. 
According to the results obtained, it can be 

concluded that a suitable value for the shape 

parameter c in the Gaussian radial basis function 

is independent from the image but the reverse 

quadratic radial basis function depends on it. 

 

Table 3. Results of running GRBF with suitable c on different images using SSIM and PSNR, with and without edge 

correction by factor of 2 in zooming. 

Methods 

images 

Without edge correction With edge correction 

SSIM PSNR SSIM PSNR 

Lifting body 0.9766 35.92 0.9769 36.39 

Elaine 0.9601 34.58 0.9589 34.66 

Disk 0.9952 33.00 0.9956 33.08 

Fire 0.9850 32.09 0.9857 32.21 

Swan 0.9835 33.09 0.9842 33.22 

Dog 0.9806 33.78 0.9814 33.94 

Balloons 0.9889 32.31 0.9894 32.55 

House 0.9860 33.83 0.9867 33.99 

Airplane 0.9792 29.65 0.9812 29.95 

Fruits 0.9616 31.24 0.9608 31.59 

Table 4. Results of running RQRBF with suitable c on different images using SSIM and PSNR, with and without edge 

correction by factor of 2 in zooming. 

Methods 

images 

Without edge correction With edge correction suitable values of the shape 

parameter c SSIM PSNR SSIM PSNR 

Lifting body 0.9766 35.88 0.9769 36.39 12.781 

Elaine 0.9601 34.59 0.9589 34.66 17.875 

Disk 0.9952 33.00 0.9956 33.08 0.607 

Fire 0.9850 32.10 0.9857 32.21 18.625 

Swan 0.9835 33.08 0.9842 33.22 20.026 

Dog 0.9806 33.78 0.9814 33.94 17.688 

Balloons 0.9890 32.34 0.9893 32.57 10.188 

House 0.9860 33.86 0.9867 34.00 13.75 

Airplane 0.9792 29.67 0.9812 29.97 12.938 

Fruits 0.9617 31.24 0.9608 31.59 14.871 
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5.3. Comparison of results of proposed method 

with other methods  

In order to evaluate the proposed algorithm, the 

results were obtained using the extremely 

smoothly GRBF     
 
. This was compared with 

non-linear PDE with edge directed bi-cubic 

(PDEWBC) [20] and least square ellipsoid (LSE) 

methods [24], bi-linear interpolation (BIL) 

method, bi-cubic interpolation (BIC) method, and 

curvature interpolation  method (CIM) [18]. 

The results obtained are presented in table 5. As 

one can see in this table, the average difference of 

PSNR between the GRBF and LSE methods is 

0.24, between GRBF method and PDEWBC is 

1.33, and between the GRBF method and CIM is 

1.75. Also the average difference of PSNR 

between the GRBF and BIC methods is 2.26, and 

between the GRBF and BIL method is 2.16. 

With regard to comparison of the results, it can be 

concluded that the proposed GRBF method has a 

better performance than the other methods on the 

selected image. 

It is to emphasize that the results are also obtained 

by zooming factor of 4 with GRBF with suitable 

c, as shown in table 6. 

 

Table 5. Comparison of GRBF and other methods by PSNR criterion by factor of 2 in zooming. 

Methods 

images 

 

BIL 

 

BIC 

 

CIM 

 

PDEWBC 

 

LSE 

 

GRBF 

Lifting body 33.34 33.30 33.87 34.41 36.17 36.39 

Elaine 31.26 31.08 31.49 31.80 34.61 34.66 

Disk 30.94 30.82 31.56 31.93 32.70 33.08 

Fire 31.66 31.71 31.82 31.97 31.95 32.21 

Swan 31.19 30.74 31.44 31.88 32.73 33.22 

Dog 31.83 31.37 32.05 32.65 33.63 33.94 

Balloons 31.29 31.73 32.28 32.77 34.07 32.55 

House 32.64 32.60 32.97 33.24 33.83 33.99 

Airplane 29.70 29.59 30.12 30.49 31.30 29.95 

Fruits 26.17 26.08 26.49 27.12 28.20 31.59 

Average 31.00 30.90 31.41 31.83 32.92 33.16 

Table 6. Results of running GRBF using PSNR, with edge correction and compare other methods by factor of 4 in zooming. 

Methods 

images 

 

BIL 

 

BIC 

 

CIM 

 

PDEWBC 

 

GRBF 

Lifting body 27.39 27.05 27.89 28.41 30.43 

Elaine 26.49 26.14 28.49 29.21 30.68 

Disk 25.77 25.56 26.68 28.74 30.92 

Fire 25.60 25.46 25.71 26.02 26.08 

Swan 26.90 26.75 26.93 26.98 26.37 

Dog 27.55 27.38 27.61 27.85 27.68 

Balloons 24.94 24.75 25.34 25.76 26.28 

House 27.09 26.90 27.56 28.06 28.84 

Airplane 22.49 22.12 23.85 24.34 25.16 

Fruits 23.07 22.72 24.23 25.16 26.99 

Average 25.73 25.48 26.43 27.06 27.94 
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These results were compared with the BIL, BIC, 

CIM, and PDEWCB methods. As indicated in 

table 6, the PSNR value, average difference of 

PSNR between the GRBF and BIL methods is 

2.21, between the GRBF and BIC methods is 

2.46, between the GRBF method and CIM is 1.51, 

and between the GRBF and PDEWBC methods is 

0.88.  The merit of the presented method is that 

the objective evaluation results are better than the 

performance of the other methods. 

From a visual perspective, figure 8 shows the 

sample image Elaine zoomed with the proposed 

method and in two modes with and without edge 

correction. The images obtained from the 

proposed method are clearer and blur less with 

good performance on the edges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Results of Elaine’s image zooming by factor of 2 and using different methods. 

6. Conclusion 

In this research work, a suitable value for the 

shape parameter c was achieved by radial basis 

functions with the application of GA. This 

achieved result has been used in zooming images. 

This method provided desirable results. 

 In addition, the edge correction technique was 

used to enhance the quality of images after 

calculating a suitable value for the shape   

  

GRBF without edge correction Difference with been original image and GRBF without edge correction 

  

GRBF with edge correction Difference with been original image and GRBF  edge correction 

  

RQRBF without edge correction Difference with been original image and RQRBF without edge correction 

  

RQRBF with edge correction Difference with been original image and RQRBF with edge correction 
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parameter c. In the future studies, the proposed 

method can be developed with other edge 

correction techniques or non-linear methods such 

as the two-variable interpolation method or a 

combination of radial basis function isolation and 

edge correction techniques. It is to note that 

proving the independence of the shape parameter 

c in the Gaussian radial basis function in zooming 

images will be investigated in our future research 

project. 
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 چکیده:

باشظه  در مهظ  می در آنشظه  نماییحفظ  کیفیظت س سظار ار تصظویر بزرگکه نمایی تصویر یکی از مسائل موجود در زمینه پردازش تصویر است بزرگ

کردن اطلاعات بظه تصظویر بایظه بظا بافظت موجظود در تصظویر های اضافی در اطلاعات تصویر قرار داد  شود  اضافهتصویر لازم است که پیکسلنمایی بزرگ

توسظ    cشظکل س محاسبه پارام ر ای شعاعیاس فاد  از توابع پایه های مورد نیاز باهای مصنوعی ایجاد نکنه  در این پژسهش، پیکسلسازگار باشه س بلوک

گیرنظه  رسش های تخمین زد  شه ، بر اساس زیر الگوری   اصلاح لبه مورد بظازنگری قظرار میشونه س سپس تمام پیکسلزد  می الگوری   ژن یک تخمین

رسظانه  یشظه  را بظه حظهاقل منماییکنه س ماتی س مصنوعات بلوکی تصظویر بزرگها را حف  میشود، لبهپیشنهادی که یک رسش غیررطی محسوب می

چنظه رسش پیشنهادی بر رسی چنه تصویر برای محاسبه  پارام ر شکل مناسب توابع پایه شعاعی مورد ارزیابی قرار گرف ظه اسظت  ن ظاید عظهدی بظر رسی 

صظلی س مربظو  بظه تصظویر ا PSNRمورد مقایسه س ارزیابی قرار گرف ظه اسظت  میظانگین SSIM س   PSNRهای دیگر توس  معیارمخ لف با رسش تصویر

کنظه رسش تاکیظه میس  بظه تصظویر اصظلی شظباهت زیظادی دارد 1نمایی شه  بظا ضظریب دهه تصویر بزرگمی باشه که نشانمی 22/33نمایی شه  بزرگ

 پیشنهادی از کارائی مطلوبی برروردار است 
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