
 
Journal of AI and Data Mining  

Vol 6, No 2, 2018, 399-407                                                                                                                                          DOI: 10.22044/JADM.2017.990 
 

Data Extraction using Content-Based Handles 

  
A. Pouramini

*
, S. Khaje Hassani and Sh. Nasiri 

 

 
Department of Computer Engineering, University of Sirjan Technology, Sirjan, Iran. 

Received 17 January 2016; Revised 09 November 2016; Accepted 21 February 2017 

*Corresponding author: pouramini@sirjantehc.ac.ir (A. Pouramini). 

 

Abstract 

In this paper, we present an approach and a visual tool called Handle-based Wrapper (HWrap) for creating 

web wrappers to extract data records from web pages. In our approach, we rely mainly on the visible page 

content to identify the data regions on a web page. In our extraction algorithm, we were inspired by the way 

a human user scans the page content for a specific data. In particular, we use text features such as textual 

delimiters, keywords, constants or text patterns, which we call handles, to construct patterns for the target 

data regions and data records. We offer a polynomial algorithm, in which these patterns are checked against 

the page elements in a mixed bottom-up and top-down traverse of the DOM-tree. The extracted data is 

directly mapped onto a hierarchical XML structure, which forms the output of the wrapper. The wrappers 

that are generated by this method are robust and independent of the HTML structure. Therefore, they can be 

adapted to similar websites to gather and integrate information. 

 

Keywords: Web Data Record Extraction, Web Wrapper Generation, Web Information Extraction. 

1. Introduction

Extracting structured data from web pages has 

many applications in different areas including 

business and competitive intelligence, comparison 

shopping, customizable Web information 

gathering, and so on. [1]. Many research works 

have proposed methods to analyze web documents 

and extract their information in structured formats 

automatically; these proposals are commonly 

referred to as information extractors or wrappers 

[2-4]. These methods range from hard-coded 

wrappers to unsupervised wrapper induction 

methods. They vary mainly in the degree of 

automation they provide by reducing the human 

efforts. However, providing a higher automation 

can lead to a lower accuracy and a lesser flexibility 

[1].  

Different approaches to wrapper generation model 

a web page in different ways. The most common 

approach is to work on the DOM-tree as the 

HTML structure of a document [2-4]. However, 

some other works claim that HTML is mainly used 

for the presentation layer. Therefore, it is not 

accurate enough to discriminate different semantic 

portions of a web document [8 ,10-12]. Moreover, 

as the complexity of typical web documents 

increases, information extractors have to analyze 

more and more irrelevant regions that have an 

impact on both efficiency and effectiveness [7, 

10]. This has motivated a number of researchers to 

work on region extractors as a means to relieve 

information extractors from the burden of 

analyzing many regions of a web document that do 

not contain any relevant information [6-17].  

From this viewpoint, a region is defined as an 

HTML fragment that shows information about an 

item or several related items when it is rendered on 

a web browser. Such items can be data records, 

e.g. information about products, goods, services or 

pieces of news, headers with navigation menus, 

footers with contact information or sidebars with 

advertisements, etc. The difference between region 

extractors and information extractors or wrappers 

is that the wrappers focus on extracting and 

structuring data records and their attributes, 

whereas region extractors focus on identifying the 

HTML fragments that contain this information. 

In this paper, we present a supervised method to 

define patterns for the data regions on a webpage. 

Then we present an algorithm to apply the 

resulting patterns to a webpage.  
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In our approach, we mainly rely on the page‟s 

visible content to locate the data regions and data 

records. As a result, the resulting wrappers are 

robust and easier to maintain. Moreover, they can 

be adapted to multiple websites with similar 

content structure to gather and integrate 

information from various sources. In the following 

sections, after reviewing the existing approaches, 

we present our data extraction method and an 

algorithm to implement it. 
 

2. Related works 

As mentioned before, a region extractor can be 

considered as a part of an information extractor or 

as a stand-alone application. Since in our method 

we focus on identifying data regions on a web 

page, we first review some proposals for extracting 

data regions from web documents. 

Embley et al. [12] have proposed a method to 

extract the data records from the largest data 

region in a web document. It is an unsupervised 

method, which makes the following assumptions 

to identify data regions. There is a unique data 

region that is the largest region in the web 

document. This region contains multiple data 

records. Some tags are more likely to be data 

record separators based on their type and their 

occurrences. Finally, an ontology can help identify 

data records.  

Some of the heuristics proposed by Embley et al. 

have been used in other region extractors [13]. For 

example, OMINI assumes that the main data 

region corresponds to the subtree with the largest 

number of children.  

Mining Data Records [14] (or MDR for short) is 

another region extractor that aims to extract data 

records. It assumes that a data region contains 

repetitive structures in a document. Each repetitive 

structure inside a data region is a data record, and 

they are usually rendered inside tables and forms. 

There are other methods such as TPC and U-REST 

that search for repetitive and similar structures in a 

document to identify data regions [16, 17, 21]. 

Some of the assumptions they make include a data 

region containing multiple contiguous or non-

contiguous data records. The data records have 

similar HTML structures, have small separators 

and are rendered similarly, visually aligned.  

One of the most-cited region extractors is VIPS 

[8]. It is a vision-based approach to build the 

content structure of a web page by exploring the 

visual characteristic of the page elements and not 

only relying on their HTML hierarchical structure. 

The algorithm divides a web page into a collection 

of contiguous regions based on their visual 

properties. For example, if the background color of 

a child node is different from the background color 

of its parent, that child is counted as a sub-region. 

Figure 1 shows the regions returned by VIPS on a 

sample web page of Amazon website. Note that 

VIPS only identifies and separates regions in a 

web document; it is the user‟s responsibility to 

select the regions of interest (e.g. the green boxes 

in Figure 1).  

Subsequently, some approaches to information 

extraction used the regions returned by VIPS as 

the basis for detecting and extracting informative 

regions. VSDR, ViDRE, and RIPB are some 

examples of such methods [9, 10, 15]. For 

example, RIPB [15] is a supervised method that 

requires a few examples of data records. Then a 

DOM-tree is built for each example using a tree 

alignment method.  

Figure 1. A sample results page of a website for “camera”. 
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These trees constitute tag patterns or the extraction 

rules. To extract data from an input document, the 

algorithm uses VIPS to segment the document into 

a collection of candidate regions. It then compares 

these regions with the tag patterns and returns the 

regions with the highest score.  The similarity 

function is based on the tree-edit distance [18, 19]. 

In general, the proposed methods search for 

repetitive structures to identify data regions. As a 

result, they require the web page to contain at least 

two data records for the region extractor to work. 

Most of them are unsupervised and have 

assumptions about the structure of the data regions 

in a web document. Besides these assumptions 

about the layout of data regions, some may use an 

ontology [12, 13, 20]. While these unsupervised 

methods are scalable, they lack flexibility. Also, 

they may need many examples at the learning 

phrase. They often rely on the following 

algorithms to search a web document for data 

records:  tree matching, string matching, and 

clustering [1, 18].  

The majority of the proposed methods rely directly 

or indirectly on the DOM-tree or HTML tags. 

Some of them work on the region tree produced by 

VIPS [9, 10, 15]. This enables them to utilize 

visual information of the rendered page elements 

such as the position and the rendering box of each 

element to increase their accuracy. As a 

consequence, this makes it difficult to apply them 

to free-text documents whose contents do not rely 

heavily on HTML tags. 

In the next section, we present our approach to 

identify data regions. We explain how our 

approach is different from the existing approaches.  
 

3. Our approach 

Figure 2 shows an example of a data-rich web 

page containing multiple instances of a data 

record. In such web pages, the HTML elements 

like table cells and divisions are frequently used to 

separate data records. Therefore, the DOM-tree is 

almost reliable to identify data regions. However, 

the main drawback of the approaches that mainly 

rely on the HTML structure is the lack of 

flexibility. They may use absolute HTML paths to 

locate an item. This approach is likely to fail when 

minor changes occur in the target HTML structure. 

Moreover, In the web of today, it is very common 

to use only DIV tags and describe the “semantics” 

of a particular division using style-sheet classes 

(CSS files). In this respect, the class name is 

perhaps the most notable semantic value among 

the element‟s attributes.  

Our method basically relies on the DOM-Tree. 

However, we use the DOM-tree to make patterns 

based on delimiters and textual keywords in the 

content of a data record which is enclosed in one 

or more DOM-tree nodes. We assume that data 

regions are contiguous portions on a web page, 

comprised of one node or a range of nodes in the 

DOM-tree. To make the data region patterns 

independent of the DOM structure, we create them 

on the top of the page visible content. Our method 

is supervised, which means that we require the 

user to create the required patterns on a sample 

web page. However, as a future work, we aim to 

extract these patterns using some heuristics and an 

unsupervised learning. 

In our method, we are inspired by the way people 

typically look for data on a web page. A human 

reader may scan a web page top-down or bottom-

up, looking for signs to recognize the page 

structure. They rely on visual cues on the page 

(fonts, colors, text or link density) as well as 

semantic cues or text signals (titles, highlighted 

words, keywords, constants) to get a mental image 

Figure 2. Identifying handles on a web page in our proposed system, HWrap. 
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of the content structure. We refer to such textual 

signals with the term handle throughout this paper.  

A handle can be a visible element that marks the 

start or end of a data region or it can be a textual 

element or a regular expression in the visible text 

of a data region so that it distinguishes the data 

region from the rest of the page. In data-rich web 

pages, which are the main target of this work, such 

handles are prevalent. For example, figure 2 shows 

a web page containing the search results for a 

product, that includes multiple instances of the 

product. In such pages, there is usually the phrase 

“Search Results” or the pattern “number + 

„results‟” somewhere above a list of items. Such a 

phrase or text pattern based on it (regular 

expression) can establish a handle for identifying 

the start of a data region. As another example, in 

each product item, fields such as the product name, 

the price or the shipping details can establish 

handles to distinguish the product region. Such 

elements are not tailored to the template of the 

website, and thus they are less affected by 

modifications and revisions to the layout. In the 

next section, we explain how a wrapper can be 

built using handles. 

 

3.1. Interactive wrapper generation  

The overall architecture of HWrap wrapper 

generation toolkit is shown in figure 3. It consists 

of the following modules:  

 The Interactive Pattern Builder provides 

the user interface that allows a user to 

visually specify the desired extraction 

patterns. The patterns are created by 

specifying one or more handles on a 

sample web page. The handles are saved 

into Handle Instance Base, and are 

indexed using a unique key. The created 

patterns are separately saved into another 

file called Pattern Instance Base, where 

they have some external references to the 

handles. These instance bases can be also 

stored as separate tables in a relational 

database.   

 The extractor is the extraction engine that 

is provided with one or more web 

documents and the instance bases of 

handles and patterns. It identifies and 

extracts data records from the input 

documents and save them into separate 

XML documents, one per each input 

document. It can be used for extracting 

data from the pages of one or more 

websites that share common patterns 

within their content. In that case, the 

output of different documents can be 

integrated into a single output XML 

document. 

In what follows, we describe the steps required for 

creating a wrapper in our proposed system. 
 

3.1.1. Creating handles 

The user loads a sample page into an embedded 

web browser to specify handles (see Figure 2). To 

facilitate this task, the page elements get 

highlighted as the user hover the mouse pointer 

over each element. After selecting an element, a 

pop-up allows the user for creating a handle based 

on some of the element‟s properties. This window 

is shown in figure 4 (Left). As seen in this figure, 

in addition to the text or a text pattern within the 

content, the user can create a handle using the 

values of some more constant attributes such as id 

and class name (e.g. the “main” value for the 

identifier of the main division of the page). These 

values can also be specified using a regular 

expression. 
 

3.1.2. Creating region patterns 

After creating handles, the user must specify how 

target data regions are identified by using these 

handles. The user creates region patterns based on 

one or more handles. Through this paper, we refer 

to such region patterns with the term pattern. 

Figure 4 (Right) shows different ways to create a 

pattern using the given handles. 

For a single handle, the possible patterns are: 

  Self: The region enclosed by the node that 

matches the handle. 

Figure 3. Architecture of HWrap. 
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  Parent: The region enclosed by the 

handle‟s parent node (container node of 

the handle). 

  Following: The region following the 
handle. 

  Preceding: The region preceding the 

handle. 
 

For multiple handles, a region pattern can be 

specified using the following options: 

  Common ancestor: The region enclosed by 

the container of two or more handles. 

  Between: The region that lies between two 

handles. 

Each pattern can be designated either for data 

extraction purpose or for restricting the location of 

the other patterns. To illustrate how these patterns 

are used in the data extraction process, let us return 

to our previous example of a web page containing 

the results of a search for a product. Suppose we 

want to identify the region that encloses the list of 

the product items. We create a handle using an 

element containing the text “Search Results” to 

mark the beginning of this region. We then create 

the target pattern named “Products” using this 

handle and the “Following” option. This pattern 

matches a region containing the elements that 

follow the handle in the document. In order to 

restrict the length of this region, we can find 

another handle to mark the end of it. For example, 

“page navigation bar”, which usually appears 

under a search results, is a suitable candidate for 

this purpose. Finally, the pattern can be created 

using these two handles and the “Between” option. 

As another example, suppose we want to create a 

pattern for the region enclosing each product. We 

first identify two handles within a product item, 

such as the price and the shipping details. A 

handle for the price can be created using a text 

pattern that matches a price value and currency 

(e.g. $NN.NN). Similarly, for the shipping 

information, the handle can be created using the 

“Ship” or “Get it by” keywords, and a text pattern 

for a calendar date (e.g. “Get it by Month Day” or 

“Ships within N days”). Alternatively, any 

constant keyword repeating in all the product 

items, such as “Add to Cart”, can be a candidate 

for creating a handle. Having these handles, we 

create the pattern “Product” as the common 

ancestor or the immediate container of these 

handles. To restrict the occurrence of this pattern 

to a certain part of the page, we can assign it a 

parent pattern from the list of the previously 

defined patterns (e.g. “Products”). 
 

3.2. Data extraction algorithm 

In this section the data extraction algorithm is 

described. The handles and the patterns created in 

the previous section are input to this algorithm (see 

Algorithm 1). It is mainly a recursive function that 

is initially called with the root of the DOM-tree 

(body element) and traverses its nodes in depth-

first manner. However, the algorithm may 

backtrack and travers a node for several times.  

First, the input node is checked against the list of 

handles. If no match found, the function is 

recursively called with the child nodes. Otherwise, 

the pattern associated with the matching handle is 

retrieved from the list of patterns. Let‟s name this 

pattern P. If P has a parent pattern that has not 

been matched, it is ignored and the algorithm 

continues with the rest of the nodes. Otherwise, the 

state of P is updated to “Open” or “Closed” 

depending on the handle that has been matched. If 

P has been defined as a region over a node (Self, 

Parent and Common Ancestor options), the 

corresponding node in the DOM-tree is retrieved. 

Let‟s name this node PNode.  

Figure 4. Screenshot of dialog boxes for creating handles (left) and patterns (right). 
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PNode encloses a portion of the page which 

corresponds to the region specified by P. After 

matching P, if it has been designated for data 

extraction, its content is added to the output XML 

structure as an XML node with the same name as 

the P‟s name. If P has a parent pattern, this node is 

placed under a node that represents its parent. 

Finally, if P has one or more child patterns, the 

function must reevaluate the PNode‟s children 

once again to match the child patterns. To do this, 

the P instance including a pointer to PNode is 

returned to the function calling point in the “for” 

loop (line 24 in Algorithm 1). At this point, the 

algorithm steps back (in the case of Self) or 

traverse up (in the cases of Parent and Common 

Ancestor) to find the  PNode in order to reevaluate 

its child nodes (see Algorithm 1 (continued)). 
 

3.2.1. Time complexity 

The time complexity of this algorithm is 

polynomial and depends on the size of the DOM-

tree and the number of handles and patterns. In the 

best case, if the algorithm does not traverse back to 

revisit a node (traversing a node twice), then the 

time complexity is O(N), where N is the number of 

the DOM-tree nodes. The explanation is as what 

follows. The algorithm is called N times, one call 

per each node of the DOM-tree. On each call, the 

input node is checked against the list of handles 

(MatchHandle at line 2), and if a match is found, a 

pattern is retrieved from the list of patterns 

(GetPattern at line 4). Searching through the list of 

handles and patterns depends on the number of 

handles, H, and the number of patterns, P. 

Therefore, O(logH+logP) is the total time for 

these operations. The runtime of other functions in 

the algorithm is roughly O(1). The FindNode 

function at line 9 returns either the current node (in 

the case of the Self option) or an ancestor of the 

input node (in the cases of the Parent and Common 

ancestor options). It is supposed that the 

immediate ancestor of any two handle nodes, from 

which one is the current node, is in the first few 

levels directly above the current node in the DOM-

tree. Also the ExtractData at line 16 receives a 

reference to the pattern node, and therefore, 

extracting its content takes O(1). Since, in the best 

case, the number of patterns and handles is not 

Algorithm 1 Data Extraction Algorithm 

function Extract(node) 
handle ← MatchHandle(node, handles) 

if (handle !=null) then 

  pattern ← GetPattern(handle, patterns) 
  if (pattern = null or pattern.Parent ≠ “Open”) then 

   return null 

  end if 

  UpdatePatternState(pattern, handle) 

  patternNode ← FindNode(pattern) 

  if (pattern.ExtractDataFlag) then 
   ExtractData (pattern, patternNode) 

  end if 

  if (patternNode ≠ null and pattern.Node ≠ patternNode) then 
   ► the data region hasn‟t been previously evaluated 

   pattern.Node ← patternNode 

   if (pattern.hasChild) then 
    return pattern 

   end if 

  end if 

 else 

  for (i ← 0; i ≤ node.children; i ← i + 1) do 

   child ← node.children[i] 
   prevPattern ← curPattern 

   curPattern ← Extract(child) 

   if (prevPattern ≠ null and prevPattern.State = “Open”) then 
    prevPattern.State ← “Closed” 

   end if 

   if (curPattern ≠ null and curPattern.Node ≠ null) then 
   ► then the children of the pattern node musb be reevaluated 

    if (curPattern.Node = child) then 

     curPattern.State = “Open” 
     i ← i -1 ► decrement the counter to reevaluate the child 

    else 

     return curPattern ► return the pattern up the stack 

end if 

   end if 

  end for 

 end if 

return null 

end function 
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considerable, we can ignore the (logH+logP) term, 

and the time complexity is roughly O(N).  

In the worst case, when most of the patterns are 

defined using either “Parent” or “Common 

Ancestor” options, the algorithm‟s time 

complexity is O(N
2
logN). The explanation is as 

what follows. In the worst case, for each node of 

the DOM-tree, at most one handle can be defined 

to match that node, and one pattern can be defined 

to match the region enclosed by this node. The 

algorithm, as before, is called N times. On each 

call, after matching a pattern, a sub-tree must be 

revisited, which in the worst case will be the entire 

DOM-tree; therefore, N is multiplied by N in the 

formula. O(logH + logP), as before, is the time for 

searching through the lists of handles and patterns. 

By bounding P and H to N, the time complexity of 

these operations is O(logN). The time complexity 

of the FindNode function is similarly O(logN) in 

the worst case because the algorithm must traverse 

the DOM-tree up to the root and it takes O(logN). 

Therefore, the total time of the algorithm will be 

O(N
2
logN), which is again polynomial. However, 

this is a very loose bound and in practice the time 

complexity is near to O(N). 
 

3.3. Data extraction and integration 

Figure 5 displays the result of applying the 

extraction algorithm to the web page shown in fig. 

2. In this structure, each pattern forms an XML 

node, which is nested in another node that 

corresponds to its parent. If the user desires to 

extract any specific data, he must first create an 

appropriate pattern for the region that encloses that 

data and mark it for data extraction (“Extract 

Data” checkbox in the form shown in Figure 4). 

As seen in fgure 5, the exact HTML source code of 

each product item is added to the “Product” node 

in the output XML tree. This code can be further 

processed to extract the subfields (e.g. price, bids, 

and supplier) or be directly rendered in a web 

browser to be displayed to the user for visual 

comparison.  

If the user defines a pattern more generally by 

ignoring details, the resulting wrapper can be 

reused for gathering and integrating data from 

different websites that have this pattern in 

common. In some cases, minor changes are 

required to adapt an existing handle or pattern to a 

new website. Therefore, the user often needs to 

follow the same procedure to create wrappers for 

similar websites, and this makes creating them 

easier. To facilitate this process, the Pattern 

Builder automatically highlights the matching 

items on the page when the user loads a previously 

created pattern file. 

On the other hand, the user can define a pattern in 

more details when he wants to extract some fields 

of a data record. To do so, he must create a pattern 

for each target filed inside the pattern that has been 

defined for the data record. For example, to extract 

the price field from each product and store it as a 

child node of the product‟s node in the XML tree, 

an appropriate pattern can be defined using the 

“price” handle, the “Self” option, and the 

“Products” pattern as its parent. 
 

4. Experimental results 

We tested the accuracy and expressiveness of our 

proposed method on a number of websites 

including Amazon, eBay, IMDB, world weather, 

and YouTube (see Table 1). We collected 30 pages 

from each website. Table 1 shows the number of 

handles and patterns required to identify the data 

records on each website.  

In all cases, the website was wrapable and required 

a few number of handles to identify the data 

records. Similar to the example reviewed through 

this paper, the handles were easily identifiable on a 

sample web page. The “Common ancestor” option 

was very useful to specify a record by identifying 

two or more handles within it. The experiments 

show that by providing suitable handles and 

patterns, the system can achieve a high 

performance of 98.9% in F-Measure. 

Table 1. Evaluation of generated wrappers. 
Website         # Handles   # Patterns  Precision  Recall   F-Score 

Amazon  5      3           98.5        100         99.2 

eBay             5      3           98.7        100         99.3 

IMDB Search            5      4           97.6        100         98.7 

World Weather 4      2           98.4        99.5        98.9 

Youtube  4      3           97.3        98.9        98.1 

Average                              98.1        99.7        98.9         

 

The precision refers to the average fraction of 

regions that are identified by the system and 

correspond to the actual data regions. Recall refers 

to the average fraction of actual data regions that 

are identified by the system. The higher recall 

values in table 1 indicate that most of the actual 

data regions were identified by our method. 

However, the lower performance values indicate 

that some of the identified regions are not the 

actual data regions. For example, they can be some 

records on the advertisement area beside the main 

data region (see Figure 1).  

The performance of our proposed system is close 

to the performances reported by the related works 

in this filed. Table 2 shows the performance 
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measures reported by some of the proposals that 

were reviewed in the “Related Works” section.  

Table 2. Performance of some related works. 
Proposal  Precision  Recall 

OMINI                 100                94 

MDR                  100                99.8 

RIPB                   98.1               95.7 

TPC                   96.                          97.0 

VSDR                   89                            97.6 

 

Note that they are not comparable side-by-side 

because they were calculated on different datasets. 

However, they can provide a rough reference for 

comparison. As is seen, the performance of our 

proposed method, especially in terms of recall, is 

higher than most of these proposals. One reason is 

that most of these methods are unsupervised and 

search for repetitive structures within the page. 

Therefore, when a data record has a slightly 

different structure than the rest, it can be ignored. 

Since our method relies on the content of the data 

records rather than their internal structures, it can 

better cover such structural dissimilarities in data 

records.  

Table 3 shows the percentage of the handles that 

are common among the websites used in the 

experiment. Since our method relies on the visible 

content and textual identifiers, common handles 

can be found in the websites that offer a similar 

service. For example, in most shopping websites, 

the price and shipping details fields are among a 

product‟s information, and thus they can be used to 

identify a product item by selecting “Common 

Ancestors” Option. Note that this option finds the 

closest ancestor that encloses all the specified 

handles regardless of the specific structure of each 

website and the number of nesting elements.  

Table 3. Shopping websites with similar handles. 
Website       Common Handles 

eBay         80% 

DHGate           80% 

AliExpress           80% 

Etsy            50% 

 

5. Conclusion and future works 

In this paper, we presented an approach to the 

problem of extracting data records from web 

pages. We based our approach on the textual 

handles within the visible content of the web page. 

We were inspired by the way a human user scans a 

web page for the data of interest. Handles serve as 

identifiers for a data region so that a pattern can be 

constructed on the basis of one or more handles. 

Each pattern may be treated as the sub-pattern of 

another pattern. Given these patterns, we proposed 

a data extraction algorithm. This algorithm 

traverses the DOM-tree nodes in a mixed top-

down and bottom-up manner to match the given 

handles and patterns. This algorithm is time-

polynomial and in the worst case, has O(N
2
logN) 

time complexity. However, in the average case, it 

grows linearly with the number of nodes (O(N)). 

As our proposed method relies mainly on the page 

visible content rather than the HTML structure, the 

generated wrappers are robust and maintainable. 

We showed that they could be adapted to gather 

data from similar web pages and integrate them 

into an XML document. 

In this paper, we defined a pattern for a data region 

using one or several handles. In addition, we 

provided a means to restrict the location of a 

pattern inside another pattern. As a future work, 

we aim to provide an option to define a pattern 

based on handles and other patterns. For instance, 

a pattern can be defined as the common ancestor of 

two existing patterns or one handle and one 

existing pattern. For example, the data region 

enclosing several product records can be defined 

as the common ancestor of two product patterns. 

As another work, we aim to find the required 

handles and patterns on a web page using an 

unsupervised method similar to the works 

reviewed in the “related works” section. Then we 

use these patterns in our proposed algorithm to 

extract the data records.  
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 چکیده:

وب ارائاه صاحاا  هاای داده از وب جهت استخراج فقره هایپوشندهبرای ایجاد  (HWrap) 7مبتنی بر دستگیره پوشندهبا نام  را ما روشی ،در این مقاله

یا  از ناوه پاوی   الگوریتم استخراج دادهکنیم. استحاده میاز ماتوای قابل مشاهده صحاه داده  حاویتشخیص نواحی برای کنیم. در این رویکرد، می

متنای، کمااا   جداسازهایهای متنی مانند ویژگی برخی . به طور مشخص، ما ازالهام گرفته استصحاه توسط انسان برای جستجوی اطلاعا  موردنظر 

ای اساتحاده هاای دادهداده و فقرهحااوی ایجااد الگوهاایی بارای ناواحی  جهاتگوییم به آنها دستگیره میها یا الگوهای عددی و متنی که کمیدی، ثابت

کنیم. در این الگوریتم، در ی  پیااای  تاو م ارائه می با استحاده از این الگوها ای برای استخراج دادهکنیم. سپس ی  الگوریتم با پیچیدگی چندجامهمی

و سااختارهای منطباب باا ایان الگوهاا اساتخراج  شاوند( مطابقت داده میDOM)درخت  Htmlختار با سا معرفی شدهبالا الگوهای بهپایین و پایینبالابه

کاه باا  ایپوشندهشوند. نگاشته میمتناظر با الگوهای تعریف شده  XMLمراتبی های استخراج شده مستقیااً به ی  ساختار سمسمهدادهسپس . شوندمی

مشاابهی بارای  ماتاوایسایتهای کاه توان از آنها در وبمی ا  بوده و بسیار باثبا  هستند. هاینطورمبتنی بر ماتوای صحا شونداین روش ساخته می

 ای دارند استحاده کرد. دادههای فقره

 وب، پوشنده وب.داده کاوی، وب کاوی، استخراج اطلاعا ، استخراج فقره داده از  :کلمات کلیدی
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