

Journal of AI and Data Mining

Vol 6, No 2, 2018, 399-407 DOI: 10.22044/JADM.2017.990

Data Extraction using Content-Based Handles

A. Pouramini

*
, S. Khaje Hassani and Sh. Nasiri

Department of Computer Engineering, University of Sirjan Technology, Sirjan, Iran.

Received 17 January 2016; Revised 09 November 2016; Accepted 21 February 2017

*Corresponding author: pouramini@sirjantehc.ac.ir (A. Pouramini).

Abstract

In this paper, we present an approach and a visual tool called Handle-based Wrapper (HWrap) for creating

web wrappers to extract data records from web pages. In our approach, we rely mainly on the visible page

content to identify the data regions on a web page. In our extraction algorithm, we were inspired by the way

a human user scans the page content for a specific data. In particular, we use text features such as textual

delimiters, keywords, constants or text patterns, which we call handles, to construct patterns for the target

data regions and data records. We offer a polynomial algorithm, in which these patterns are checked against

the page elements in a mixed bottom-up and top-down traverse of the DOM-tree. The extracted data is

directly mapped onto a hierarchical XML structure, which forms the output of the wrapper. The wrappers

that are generated by this method are robust and independent of the HTML structure. Therefore, they can be

adapted to similar websites to gather and integrate information.

Keywords: Web Data Record Extraction, Web Wrapper Generation, Web Information Extraction.

1. Introduction

Extracting structured data from web pages has

many applications in different areas including

business and competitive intelligence, comparison

shopping, customizable Web information

gathering, and so on. [1]. Many research works

have proposed methods to analyze web documents

and extract their information in structured formats

automatically; these proposals are commonly

referred to as information extractors or wrappers

[2-4]. These methods range from hard-coded

wrappers to unsupervised wrapper induction

methods. They vary mainly in the degree of

automation they provide by reducing the human

efforts. However, providing a higher automation

can lead to a lower accuracy and a lesser flexibility

[1].

Different approaches to wrapper generation model

a web page in different ways. The most common

approach is to work on the DOM-tree as the

HTML structure of a document [2-4]. However,

some other works claim that HTML is mainly used

for the presentation layer. Therefore, it is not

accurate enough to discriminate different semantic

portions of a web document [8 ,10-12]. Moreover,

as the complexity of typical web documents

increases, information extractors have to analyze

more and more irrelevant regions that have an

impact on both efficiency and effectiveness [7,

10]. This has motivated a number of researchers to

work on region extractors as a means to relieve

information extractors from the burden of

analyzing many regions of a web document that do

not contain any relevant information [6-17].

From this viewpoint, a region is defined as an

HTML fragment that shows information about an

item or several related items when it is rendered on

a web browser. Such items can be data records,

e.g. information about products, goods, services or

pieces of news, headers with navigation menus,

footers with contact information or sidebars with

advertisements, etc. The difference between region

extractors and information extractors or wrappers

is that the wrappers focus on extracting and

structuring data records and their attributes,

whereas region extractors focus on identifying the

HTML fragments that contain this information.

In this paper, we present a supervised method to

define patterns for the data regions on a webpage.

Then we present an algorithm to apply the

resulting patterns to a webpage.

Pouramini et al./ Journal of AI and Data Mining, Vol 6, No 2, 2018.

400

In our approach, we mainly rely on the page‟s

visible content to locate the data regions and data

records. As a result, the resulting wrappers are

robust and easier to maintain. Moreover, they can

be adapted to multiple websites with similar

content structure to gather and integrate

information from various sources. In the following

sections, after reviewing the existing approaches,

we present our data extraction method and an

algorithm to implement it.

2. Related works

As mentioned before, a region extractor can be

considered as a part of an information extractor or

as a stand-alone application. Since in our method

we focus on identifying data regions on a web

page, we first review some proposals for extracting

data regions from web documents.

Embley et al. [12] have proposed a method to

extract the data records from the largest data

region in a web document. It is an unsupervised

method, which makes the following assumptions

to identify data regions. There is a unique data

region that is the largest region in the web

document. This region contains multiple data

records. Some tags are more likely to be data

record separators based on their type and their

occurrences. Finally, an ontology can help identify

data records.

Some of the heuristics proposed by Embley et al.

have been used in other region extractors [13]. For

example, OMINI assumes that the main data

region corresponds to the subtree with the largest

number of children.

Mining Data Records [14] (or MDR for short) is

another region extractor that aims to extract data

records. It assumes that a data region contains

repetitive structures in a document. Each repetitive

structure inside a data region is a data record, and

they are usually rendered inside tables and forms.

There are other methods such as TPC and U-REST

that search for repetitive and similar structures in a

document to identify data regions [16, 17, 21].

Some of the assumptions they make include a data

region containing multiple contiguous or non-

contiguous data records. The data records have

similar HTML structures, have small separators

and are rendered similarly, visually aligned.

One of the most-cited region extractors is VIPS

[8]. It is a vision-based approach to build the

content structure of a web page by exploring the

visual characteristic of the page elements and not

only relying on their HTML hierarchical structure.

The algorithm divides a web page into a collection

of contiguous regions based on their visual

properties. For example, if the background color of

a child node is different from the background color

of its parent, that child is counted as a sub-region.

Figure 1 shows the regions returned by VIPS on a

sample web page of Amazon website. Note that

VIPS only identifies and separates regions in a

web document; it is the user‟s responsibility to

select the regions of interest (e.g. the green boxes

in Figure 1).

Subsequently, some approaches to information

extraction used the regions returned by VIPS as

the basis for detecting and extracting informative

regions. VSDR, ViDRE, and RIPB are some

examples of such methods [9, 10, 15]. For

example, RIPB [15] is a supervised method that

requires a few examples of data records. Then a

DOM-tree is built for each example using a tree

alignment method.

Figure 1. A sample results page of a website for “camera”.

Pouramini et al./ Journal of AI and Data Mining, Vol 6, No 2, 2018.

401

These trees constitute tag patterns or the extraction

rules. To extract data from an input document, the

algorithm uses VIPS to segment the document into

a collection of candidate regions. It then compares

these regions with the tag patterns and returns the

regions with the highest score. The similarity

function is based on the tree-edit distance [18, 19].

In general, the proposed methods search for

repetitive structures to identify data regions. As a

result, they require the web page to contain at least

two data records for the region extractor to work.

Most of them are unsupervised and have

assumptions about the structure of the data regions

in a web document. Besides these assumptions

about the layout of data regions, some may use an

ontology [12, 13, 20]. While these unsupervised

methods are scalable, they lack flexibility. Also,

they may need many examples at the learning

phrase. They often rely on the following

algorithms to search a web document for data

records: tree matching, string matching, and

clustering [1, 18].

The majority of the proposed methods rely directly

or indirectly on the DOM-tree or HTML tags.

Some of them work on the region tree produced by

VIPS [9, 10, 15]. This enables them to utilize

visual information of the rendered page elements

such as the position and the rendering box of each

element to increase their accuracy. As a

consequence, this makes it difficult to apply them

to free-text documents whose contents do not rely

heavily on HTML tags.

In the next section, we present our approach to

identify data regions. We explain how our

approach is different from the existing approaches.

3. Our approach

Figure 2 shows an example of a data-rich web

page containing multiple instances of a data

record. In such web pages, the HTML elements

like table cells and divisions are frequently used to

separate data records. Therefore, the DOM-tree is

almost reliable to identify data regions. However,

the main drawback of the approaches that mainly

rely on the HTML structure is the lack of

flexibility. They may use absolute HTML paths to

locate an item. This approach is likely to fail when

minor changes occur in the target HTML structure.

Moreover, In the web of today, it is very common

to use only DIV tags and describe the “semantics”

of a particular division using style-sheet classes

(CSS files). In this respect, the class name is

perhaps the most notable semantic value among

the element‟s attributes.

Our method basically relies on the DOM-Tree.

However, we use the DOM-tree to make patterns

based on delimiters and textual keywords in the

content of a data record which is enclosed in one

or more DOM-tree nodes. We assume that data

regions are contiguous portions on a web page,

comprised of one node or a range of nodes in the

DOM-tree. To make the data region patterns

independent of the DOM structure, we create them

on the top of the page visible content. Our method

is supervised, which means that we require the

user to create the required patterns on a sample

web page. However, as a future work, we aim to

extract these patterns using some heuristics and an

unsupervised learning.

In our method, we are inspired by the way people

typically look for data on a web page. A human

reader may scan a web page top-down or bottom-

up, looking for signs to recognize the page

structure. They rely on visual cues on the page

(fonts, colors, text or link density) as well as

semantic cues or text signals (titles, highlighted

words, keywords, constants) to get a mental image

Figure 2. Identifying handles on a web page in our proposed system, HWrap.

Pouramini et al./ Journal of AI and Data Mining, Vol 6, No 2, 2018.

402

of the content structure. We refer to such textual

signals with the term handle throughout this paper.

A handle can be a visible element that marks the

start or end of a data region or it can be a textual

element or a regular expression in the visible text

of a data region so that it distinguishes the data

region from the rest of the page. In data-rich web

pages, which are the main target of this work, such

handles are prevalent. For example, figure 2 shows

a web page containing the search results for a

product, that includes multiple instances of the

product. In such pages, there is usually the phrase

“Search Results” or the pattern “number +

„results‟” somewhere above a list of items. Such a

phrase or text pattern based on it (regular

expression) can establish a handle for identifying

the start of a data region. As another example, in

each product item, fields such as the product name,

the price or the shipping details can establish

handles to distinguish the product region. Such

elements are not tailored to the template of the

website, and thus they are less affected by

modifications and revisions to the layout. In the

next section, we explain how a wrapper can be

built using handles.

3.1. Interactive wrapper generation

The overall architecture of HWrap wrapper

generation toolkit is shown in figure 3. It consists

of the following modules:

 The Interactive Pattern Builder provides

the user interface that allows a user to

visually specify the desired extraction

patterns. The patterns are created by

specifying one or more handles on a

sample web page. The handles are saved

into Handle Instance Base, and are

indexed using a unique key. The created

patterns are separately saved into another

file called Pattern Instance Base, where

they have some external references to the

handles. These instance bases can be also

stored as separate tables in a relational

database.

 The extractor is the extraction engine that

is provided with one or more web

documents and the instance bases of

handles and patterns. It identifies and

extracts data records from the input

documents and save them into separate

XML documents, one per each input

document. It can be used for extracting

data from the pages of one or more

websites that share common patterns

within their content. In that case, the

output of different documents can be

integrated into a single output XML

document.

In what follows, we describe the steps required for

creating a wrapper in our proposed system.

3.1.1. Creating handles

The user loads a sample page into an embedded

web browser to specify handles (see Figure 2). To

facilitate this task, the page elements get

highlighted as the user hover the mouse pointer

over each element. After selecting an element, a

pop-up allows the user for creating a handle based

on some of the element‟s properties. This window

is shown in figure 4 (Left). As seen in this figure,

in addition to the text or a text pattern within the

content, the user can create a handle using the

values of some more constant attributes such as id

and class name (e.g. the “main” value for the

identifier of the main division of the page). These

values can also be specified using a regular

expression.

3.1.2. Creating region patterns

After creating handles, the user must specify how

target data regions are identified by using these

handles. The user creates region patterns based on

one or more handles. Through this paper, we refer

to such region patterns with the term pattern.

Figure 4 (Right) shows different ways to create a

pattern using the given handles.

For a single handle, the possible patterns are:

 Self: The region enclosed by the node that

matches the handle.

Figure 3. Architecture of HWrap.

Pouramini et al./ Journal of AI and Data Mining, Vol 6, No 2, 2018.

403

 Parent: The region enclosed by the

handle‟s parent node (container node of

the handle).

 Following: The region following the
handle.

 Preceding: The region preceding the

handle.

For multiple handles, a region pattern can be

specified using the following options:

 Common ancestor: The region enclosed by

the container of two or more handles.

 Between: The region that lies between two

handles.

Each pattern can be designated either for data

extraction purpose or for restricting the location of

the other patterns. To illustrate how these patterns

are used in the data extraction process, let us return

to our previous example of a web page containing

the results of a search for a product. Suppose we

want to identify the region that encloses the list of

the product items. We create a handle using an

element containing the text “Search Results” to

mark the beginning of this region. We then create

the target pattern named “Products” using this

handle and the “Following” option. This pattern

matches a region containing the elements that

follow the handle in the document. In order to

restrict the length of this region, we can find

another handle to mark the end of it. For example,

“page navigation bar”, which usually appears

under a search results, is a suitable candidate for

this purpose. Finally, the pattern can be created

using these two handles and the “Between” option.

As another example, suppose we want to create a

pattern for the region enclosing each product. We

first identify two handles within a product item,

such as the price and the shipping details. A

handle for the price can be created using a text

pattern that matches a price value and currency

(e.g. $NN.NN). Similarly, for the shipping

information, the handle can be created using the

“Ship” or “Get it by” keywords, and a text pattern

for a calendar date (e.g. “Get it by Month Day” or

“Ships within N days”). Alternatively, any

constant keyword repeating in all the product

items, such as “Add to Cart”, can be a candidate

for creating a handle. Having these handles, we

create the pattern “Product” as the common

ancestor or the immediate container of these

handles. To restrict the occurrence of this pattern

to a certain part of the page, we can assign it a

parent pattern from the list of the previously

defined patterns (e.g. “Products”).

3.2. Data extraction algorithm

In this section the data extraction algorithm is

described. The handles and the patterns created in

the previous section are input to this algorithm (see

Algorithm 1). It is mainly a recursive function that

is initially called with the root of the DOM-tree

(body element) and traverses its nodes in depth-

first manner. However, the algorithm may

backtrack and travers a node for several times.

First, the input node is checked against the list of

handles. If no match found, the function is

recursively called with the child nodes. Otherwise,

the pattern associated with the matching handle is

retrieved from the list of patterns. Let‟s name this

pattern P. If P has a parent pattern that has not

been matched, it is ignored and the algorithm

continues with the rest of the nodes. Otherwise, the

state of P is updated to “Open” or “Closed”

depending on the handle that has been matched. If

P has been defined as a region over a node (Self,

Parent and Common Ancestor options), the

corresponding node in the DOM-tree is retrieved.

Let‟s name this node PNode.

Figure 4. Screenshot of dialog boxes for creating handles (left) and patterns (right).

Pouramini et al./ Journal of AI and Data Mining, Vol 6, No 2, 2018.

404

PNode encloses a portion of the page which

corresponds to the region specified by P. After

matching P, if it has been designated for data

extraction, its content is added to the output XML

structure as an XML node with the same name as

the P‟s name. If P has a parent pattern, this node is

placed under a node that represents its parent.

Finally, if P has one or more child patterns, the

function must reevaluate the PNode‟s children

once again to match the child patterns. To do this,

the P instance including a pointer to PNode is

returned to the function calling point in the “for”

loop (line 24 in Algorithm 1). At this point, the

algorithm steps back (in the case of Self) or

traverse up (in the cases of Parent and Common

Ancestor) to find the PNode in order to reevaluate

its child nodes (see Algorithm 1 (continued)).

3.2.1. Time complexity

The time complexity of this algorithm is

polynomial and depends on the size of the DOM-

tree and the number of handles and patterns. In the

best case, if the algorithm does not traverse back to

revisit a node (traversing a node twice), then the

time complexity is O(N), where N is the number of

the DOM-tree nodes. The explanation is as what

follows. The algorithm is called N times, one call

per each node of the DOM-tree. On each call, the

input node is checked against the list of handles

(MatchHandle at line 2), and if a match is found, a

pattern is retrieved from the list of patterns

(GetPattern at line 4). Searching through the list of

handles and patterns depends on the number of

handles, H, and the number of patterns, P.

Therefore, O(logH+logP) is the total time for

these operations. The runtime of other functions in

the algorithm is roughly O(1). The FindNode

function at line 9 returns either the current node (in

the case of the Self option) or an ancestor of the

input node (in the cases of the Parent and Common

ancestor options). It is supposed that the

immediate ancestor of any two handle nodes, from

which one is the current node, is in the first few

levels directly above the current node in the DOM-

tree. Also the ExtractData at line 16 receives a

reference to the pattern node, and therefore,

extracting its content takes O(1). Since, in the best

case, the number of patterns and handles is not

Algorithm 1 Data Extraction Algorithm

function Extract(node)
handle ← MatchHandle(node, handles)

if (handle !=null) then

 pattern ← GetPattern(handle, patterns)
 if (pattern = null or pattern.Parent ≠ “Open”) then

 return null

 end if

 UpdatePatternState(pattern, handle)

 patternNode ← FindNode(pattern)

 if (pattern.ExtractDataFlag) then
 ExtractData (pattern, patternNode)

 end if

 if (patternNode ≠ null and pattern.Node ≠ patternNode) then
 ► the data region hasn‟t been previously evaluated

 pattern.Node ← patternNode

 if (pattern.hasChild) then
 return pattern

 end if

 end if

 else

 for (i ← 0; i ≤ node.children; i ← i + 1) do

 child ← node.children[i]
 prevPattern ← curPattern

 curPattern ← Extract(child)

 if (prevPattern ≠ null and prevPattern.State = “Open”) then
 prevPattern.State ← “Closed”

 end if

 if (curPattern ≠ null and curPattern.Node ≠ null) then
 ► then the children of the pattern node musb be reevaluated

 if (curPattern.Node = child) then

 curPattern.State = “Open”
 i ← i -1 ► decrement the counter to reevaluate the child

 else

 return curPattern ► return the pattern up the stack

end if

 end if

 end for

 end if

return null

end function

Pouramini et al./ Journal of AI and Data Mining, Vol 6, No 2, 2018.

405

considerable, we can ignore the (logH+logP) term,

and the time complexity is roughly O(N).

In the worst case, when most of the patterns are

defined using either “Parent” or “Common

Ancestor” options, the algorithm‟s time

complexity is O(N
2
logN). The explanation is as

what follows. In the worst case, for each node of

the DOM-tree, at most one handle can be defined

to match that node, and one pattern can be defined

to match the region enclosed by this node. The

algorithm, as before, is called N times. On each

call, after matching a pattern, a sub-tree must be

revisited, which in the worst case will be the entire

DOM-tree; therefore, N is multiplied by N in the

formula. O(logH + logP), as before, is the time for

searching through the lists of handles and patterns.

By bounding P and H to N, the time complexity of

these operations is O(logN). The time complexity

of the FindNode function is similarly O(logN) in

the worst case because the algorithm must traverse

the DOM-tree up to the root and it takes O(logN).

Therefore, the total time of the algorithm will be

O(N
2
logN), which is again polynomial. However,

this is a very loose bound and in practice the time

complexity is near to O(N).

3.3. Data extraction and integration

Figure 5 displays the result of applying the

extraction algorithm to the web page shown in fig.

2. In this structure, each pattern forms an XML

node, which is nested in another node that

corresponds to its parent. If the user desires to

extract any specific data, he must first create an

appropriate pattern for the region that encloses that

data and mark it for data extraction (“Extract

Data” checkbox in the form shown in Figure 4).

As seen in fgure 5, the exact HTML source code of

each product item is added to the “Product” node

in the output XML tree. This code can be further

processed to extract the subfields (e.g. price, bids,

and supplier) or be directly rendered in a web

browser to be displayed to the user for visual

comparison.

If the user defines a pattern more generally by

ignoring details, the resulting wrapper can be

reused for gathering and integrating data from

different websites that have this pattern in

common. In some cases, minor changes are

required to adapt an existing handle or pattern to a

new website. Therefore, the user often needs to

follow the same procedure to create wrappers for

similar websites, and this makes creating them

easier. To facilitate this process, the Pattern

Builder automatically highlights the matching

items on the page when the user loads a previously

created pattern file.

On the other hand, the user can define a pattern in

more details when he wants to extract some fields

of a data record. To do so, he must create a pattern

for each target filed inside the pattern that has been

defined for the data record. For example, to extract

the price field from each product and store it as a

child node of the product‟s node in the XML tree,

an appropriate pattern can be defined using the

“price” handle, the “Self” option, and the

“Products” pattern as its parent.

4. Experimental results

We tested the accuracy and expressiveness of our

proposed method on a number of websites

including Amazon, eBay, IMDB, world weather,

and YouTube (see Table 1). We collected 30 pages

from each website. Table 1 shows the number of

handles and patterns required to identify the data

records on each website.

In all cases, the website was wrapable and required

a few number of handles to identify the data

records. Similar to the example reviewed through

this paper, the handles were easily identifiable on a

sample web page. The “Common ancestor” option

was very useful to specify a record by identifying

two or more handles within it. The experiments

show that by providing suitable handles and

patterns, the system can achieve a high

performance of 98.9% in F-Measure.

Table 1. Evaluation of generated wrappers.
Website # Handles # Patterns Precision Recall F-Score

Amazon 5 3 98.5 100 99.2

eBay 5 3 98.7 100 99.3

IMDB Search 5 4 97.6 100 98.7

World Weather 4 2 98.4 99.5 98.9

Youtube 4 3 97.3 98.9 98.1

Average 98.1 99.7 98.9

The precision refers to the average fraction of

regions that are identified by the system and

correspond to the actual data regions. Recall refers

to the average fraction of actual data regions that

are identified by the system. The higher recall

values in table 1 indicate that most of the actual

data regions were identified by our method.

However, the lower performance values indicate

that some of the identified regions are not the

actual data regions. For example, they can be some

records on the advertisement area beside the main

data region (see Figure 1).

The performance of our proposed system is close

to the performances reported by the related works

in this filed. Table 2 shows the performance

Pouramini et al./ Journal of AI and Data Mining, Vol 6, No 2, 2018.

406

measures reported by some of the proposals that

were reviewed in the “Related Works” section.

Table 2. Performance of some related works.
Proposal Precision Recall

OMINI 100 94

MDR 100 99.8

RIPB 98.1 95.7

TPC 96. 97.0

VSDR 89 97.6

Note that they are not comparable side-by-side

because they were calculated on different datasets.

However, they can provide a rough reference for

comparison. As is seen, the performance of our

proposed method, especially in terms of recall, is

higher than most of these proposals. One reason is

that most of these methods are unsupervised and

search for repetitive structures within the page.

Therefore, when a data record has a slightly

different structure than the rest, it can be ignored.

Since our method relies on the content of the data

records rather than their internal structures, it can

better cover such structural dissimilarities in data

records.

Table 3 shows the percentage of the handles that

are common among the websites used in the

experiment. Since our method relies on the visible

content and textual identifiers, common handles

can be found in the websites that offer a similar

service. For example, in most shopping websites,

the price and shipping details fields are among a

product‟s information, and thus they can be used to

identify a product item by selecting “Common

Ancestors” Option. Note that this option finds the

closest ancestor that encloses all the specified

handles regardless of the specific structure of each

website and the number of nesting elements.

Table 3. Shopping websites with similar handles.
Website Common Handles

eBay 80%

DHGate 80%

AliExpress 80%

Etsy 50%

5. Conclusion and future works

In this paper, we presented an approach to the

problem of extracting data records from web

pages. We based our approach on the textual

handles within the visible content of the web page.

We were inspired by the way a human user scans a

web page for the data of interest. Handles serve as

identifiers for a data region so that a pattern can be

constructed on the basis of one or more handles.

Each pattern may be treated as the sub-pattern of

another pattern. Given these patterns, we proposed

a data extraction algorithm. This algorithm

traverses the DOM-tree nodes in a mixed top-

down and bottom-up manner to match the given

handles and patterns. This algorithm is time-

polynomial and in the worst case, has O(N
2
logN)

time complexity. However, in the average case, it

grows linearly with the number of nodes (O(N)).

As our proposed method relies mainly on the page

visible content rather than the HTML structure, the

generated wrappers are robust and maintainable.

We showed that they could be adapted to gather

data from similar web pages and integrate them

into an XML document.

In this paper, we defined a pattern for a data region

using one or several handles. In addition, we

provided a means to restrict the location of a

pattern inside another pattern. As a future work,

we aim to provide an option to define a pattern

based on handles and other patterns. For instance,

a pattern can be defined as the common ancestor of

two existing patterns or one handle and one

existing pattern. For example, the data region

enclosing several product records can be defined

as the common ancestor of two product patterns.

As another work, we aim to find the required

handles and patterns on a web page using an

unsupervised method similar to the works

reviewed in the “related works” section. Then we

use these patterns in our proposed algorithm to

extract the data records.

References
[1] Ferrara, E., De Meo, P., Fiumara, G., &

Baumgartner, R. (2014, November). Web data

extraction, applications and techniques: A survey.

Knowledge-Based Systems, vol. 70, no. 1, pp. 301-

323.

[2] Sahuguet, A., & Azavant, F. (1999, September).

Building light-weight wrappers for legacy web data-

sources using W4F. In Proceeding of VLDB, pp. 738-

741.

[3] Liu, L., Pu, C., & Han, W. (2000). XWRAP: An

XML-enabled wrapper construction system for web

information sources. In Data Engineering Proceedings.

16th International Conference on (pp. 611-621). IEEE.

[4] Gottlob, G., Koch, C., Baumgartner, R., Herzog,

M., & Flesca, S. (2004, June). The Lixto data

extraction project: back and forth between theory and

practice. In Proceedings of the twenty-third ACM

SIGMOD-SIGACT-SIGART symposium on Principles

of database systems (pp. 1-12). ACM.

[5] Wang, J., & Lochovsky, F. H. (2003, May). Data

extraction and label assignment for web databases. In

Pouramini et al./ Journal of AI and Data Mining, Vol 6, No 2, 2018.

407

Proceedings of the 12th international conference on

World Wide Web (pp. 187-196). ACM.

[6] Bing, L., Lam, W., & Gu, Y. (2011, October).

Towards a unified solution: data record region

detection and segmentation. In Proceedings of the 20th

ACM international conference on Information and

knowledge management (pp. 1265-1274). ACM.

[7] Wang, J., & Lochovsky, F. H. (2002, December).

Data-rich section extraction from html pages. In Web

Information Systems Engineering, 2002. WISE 2002.

Proceedings of the Third International Conference on

(pp. 313-322). IEEE.

[8] Cai, D., Yu, S., Wen, J. R., & Ma, W. Y. (2003).

VIPS: A vision-based page segmentation algorithm.

Microsoft technical report, MSR-TR-2003-79

[9] Liu, W., Meng, X., & Meng, W. (2006, July).

Vision-based web data records extraction. In Proc. 9th

international workshop on the web and databases (pp.

20-25).

[10] Li, L., Liu, Y., Obregon, A., & Weatherston, M.

(2007, August). Visual segmentation-based data record

extraction from web documents. In Information Reuse

and Integration, 2007. IRI 2007. IEEE International

Conference on (pp. 502-507). IEEE.

[11] Li, L., Liu, Y., Obregon, A., & Weatherston, M.

(2007, August). Visual segmentation-based data record

extraction from web documents. In Information Reuse

and Integration, 2007. IRI 2007. IEEE International

Conference on (pp. 502-507). IEEE.

[12] Embley, D. W., Jiang, Y., & Ng, Y. K. (1999,

June). Record-boundary discovery in Web documents.

In ACM SIGMOD Record (vol. 28, no. 2, pp. 467-

478). ACM.

[13] Buttler, D., Liu, L., & Pu, C. (2001, April). A fully

automated object extraction system for the World Wide

Web. In Distributed Computing Systems, 2001. 21st

International Conference on. (pp. 361-370). IEEE.

[14] Liu, B., Grossman, R., & Zhai, Y. (2004). Mining

web pages for data records. IEEE Intelligent Systems,

vol. 19, no. 6, pp. 49-55.

[15] Kang, J., & Choi, J. (2008). Recognising

Informative Web Page Blocks Using Visual

Segmentation for Efficient Information Extraction. J.

UCS, vol. 14, no. 11, pp. 1893-1910.

[16] Shen, Y. K., & Karger, D. R. (2007, May). U-

REST: an unsupervised record extraction system. In

Proceedings of the 16th international conference on

World Wide Web (pp. 1347-1348). ACM.

[17] Miao, G., Tatemura, J., Hsiung, W. P., Sawires,

A., & Moser, L. E. (2009, April). Extracting data

records from the web using tag path clustering. In

Proceedings of the 18th international conference on

World wide web (pp. 981-990). ACM.

[18] Zhai, Y., & Liu, B. (2005, May). Web data

extraction based on partial tree alignment. In

Proceedings of the 14th international conference on

World Wide Web (pp. 76-85). ACM.

[19] Bille, P. (2005). A survey on tree edit distance and

related problems. Theoretical computer science, vol.

337, no. 1, pp. 217-239.

[20] Su, W., Wang, J., & Lochovsky, F. H. (2009).

ODE: Ontology-assisted data extraction. ACM

Transactions on Database Systems (TODS), vol. 34,

no. 2, pp. 12-17.

[21] Naeem, M., Bilal Khan, M., & Tanvir Afzal, M.

(2013). Expert Discovery: A web mining approach

Journal of AI and Data Mining: Shahrood University of

Technology, vol. 1, no. 1, pp. 35-47.

 نشریه هوش مصنوعی و داده کاوی

 های مبتنی بر محتویفاده از دستگیرهاستخراج داده از وب با است

 شهرام نصیری و سمیه خواجه حسنی، *احمد پورامینی

 .ایران، سیرجان، برق و رایانه، دانشگاه صنعتی سیرجانگروه

 67/16/6171 پذیرش؛ 10/77/6172 بازنگری؛ 71/17/6172 ارسال

 چکیده:

وب ارائاه صاحاا هاای داده از وب جهت استخراج فقره هایپوشندهبرای ایجاد (HWrap) 7مبتنی بر دستگیره پوشندهبا نام را ما روشی ،در این مقاله

یا از ناوه پاوی الگوریتم استخراج دادهکنیم. استحاده میاز ماتوای قابل مشاهده صحاه داده حاویتشخیص نواحی برای کنیم. در این رویکرد، می

متنای، کمااا جداسازهایهای متنی مانند ویژگی برخی . به طور مشخص، ما ازالهام گرفته استصحاه توسط انسان برای جستجوی اطلاعا موردنظر

ای اساتحاده هاای دادهداده و فقرهحااوی ایجااد الگوهاایی بارای ناواحی جهاتگوییم به آنها دستگیره میها یا الگوهای عددی و متنی که کمیدی، ثابت

کنیم. در این الگوریتم، در ی پیااای تاو م ارائه می با استحاده از این الگوها ای برای استخراج دادهکنیم. سپس ی الگوریتم با پیچیدگی چندجامهمی

و سااختارهای منطباب باا ایان الگوهاا اساتخراج شاوند(مطابقت داده میDOM)درخت Htmlختار با سا معرفی شدهبالا الگوهای بهپایین و پایینبالابه

کاه باا ایپوشندهشوند. نگاشته میمتناظر با الگوهای تعریف شده XMLمراتبی های استخراج شده مستقیااً به ی ساختار سمسمهدادهسپس . شوندمی

مشاابهی بارای ماتاوایسایتهای کاه توان از آنها در وبمی ا بوده و بسیار باثبا هستند. هاینطورمبتنی بر ماتوای صحا شونداین روش ساخته می

 ای دارند استحاده کرد. دادههای فقره

 وب، پوشنده وب.داده کاوی، وب کاوی، استخراج اطلاعا ، استخراج فقره داده از :کلمات کلیدی

1 based Wrapper-Handled

