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Abstract 

The aim of image restoration is to obtain a higher quality desired image from a degraded one. In this 

strategy, an image inpainting method fills the degraded or lost area of the image by an appropriate 

information. This is achieved in such a way that the image obtained is undistinguishable for a casual person 

who is unfamiliar with the original image. In this work, different images are degraded by two procedures; 

one is to blur and to add noise to the original image, and the other one is to lose a percentage of the original 

image pixels. Then the degraded image is restored by the proposed method and also two state-of-art 

methods. For image restoration, it is required to use the optimization methods. In this work, we use a linear 

restoration method based upon the total variation regularizer. The variable of optimization problem is split, 

and the new optimization problem is then solved using the Lagrangian augmented method. The experimental 

results obtained show that the proposed method is faster, and the restored images have a higher quality 

compared to the other methods. 
 

Keywords: Image Restoration, Image Inpainting, Deblurring, Total Variation Regularizer, Lagrangian 

Augmented. 

1. Introduction 

Image restoration is known as one of the most 

important image processing techniques. It is used 

in various applications and areas such as medical, 

astronomical imaging, image and video coding, 

remote sensing, military, seismography, aerology, 

and film restoration [1]. In space exploration, the 

image restoration systems have been used by 

researchers since 1960 [2]. Providing the desired 

image from the degraded one is the aim of the 

image restoration systems. An image restoration 

system contains de-blurring, de-noising, and 

preserving fine details [3]. The information and 

details of the image are lost when the image is 

captured. The restoration not only removes the 

noise of images but also is widely used in blind 

deconvolution, image inpainting, and various 

image processing methods [4, 6]. 

Image restoration may contain several 

applications such as blind deconvolution, image 

deblurring, image inpainting, and image 

denoising. For each application, a special method 

is used for image degradation and restoration. 

This paper focuses on image inpainting and 

deblurring. The image inpainting is a process of 

reconstructing the corrupted or lost parts of the 

image that is undistinguishable for a casual 

person who is unfamiliar with the original image. 

The image inpainting plays an important role in 

various image processing applications such as 

removal of scratches in old photographs and 

videos, filling in missing blocks in unreliably 

transmitted images, and removal of overlaid text 

or graphics [5]. Image demolition is caused by a 

non-adjusted camera, object and camera motion, 

reflection from uncontrollable sources, and non-

ideal photographic and communication systems 

[5]. The most common problems involved in 

photography are the image blurring and noise. 

The blurring occurs due to a localized averaging 

of pixels, and significant in light limited 

situations and resulting in a ruined photograph. 

Image deblurring is the process of recovering a 

sharp image from a corrupted one. The blurring 

contains environmental blurs and motion blurs. 
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The reason for the environmental blurs is a light 

passing through the media environment with 

different refractive indices. The motion blurs are 

caused by the relative motion between a camera 

and a scene [7]. In this paper, we assumed that 

the motion blurs were distinguishable and 

estimable, and that the noise was Gaussian 

distribution with zero mean. The image 

restoration system includes three important parts: 

a) modelling the degraded image, b) formulating 

the image restoration problem, and c) designing 

an efficient and accurate method in order to solve 

the image restoration problem. 

In the modelling part, the blurring and noise 

information is used to create a model of the 

degraded image. In many recent research works, 

a linear model is used to model the degraded 

image. Common degradations include noise, 

blurring, color imperfections, and geometrical 

distortions.   The image restoration problems can 

be modeled using the following expressed linear 

degradation model:  

(1) y Bx n  , 

where, B is a Point Spread Function (PSF), x is the 

original image, n is the noise matrix, and y 

represents the degraded image. Note that PSF is the 

degree to which an optical system blurs (spreads) 

a point of light. PSF is the inverse Fourier 

transform of Optical Transfer Function (OTF) in 

the frequency domain. OTF describes the 

Response of a linear, position-invariant system to 

animpulse. OTF is the Fourier transfer of the point 

(PSF). If PSF is specified (PSF is the same for all 

image pixels), Equation (1) indicates the 

deconvolution problem, otherwise it presents the 

blind deconvolution problem. 

Blind Image Restoration: This technique allows 

the reconstruction of original images from the 

degraded ones even when a little or no knowledge 

is available about PSF. Blind Image Deconvolution 

(BID) is an algorithm of this type [22]. 

 Non-Blind Restoration: This technique aids in the 

reconstruction of original images from the degraded 

ones when the process of image degradation is 

known, which means that the PSF information is 

available [22].The image restoration problem is 

more accurately expressed using a non-linear 

regularizer. Therefore, in this work, it was tried to 

use this regularizer. In (1), x and y indicate the 

original and degraded images, respectively, and B is 

a linear operator that represents a blur matrix in case 

of blurring image or losing a number of image 

pixels in case of inpainting image. In order to 

construct the degraded image, it is required to add 

the linear operator of B and noise to the original 

image. Depending upon the linear operator, B, 

which includes the blur or the lost pixels, the image 

restoration problem will differ. If B contains the 

blur, the image restoration problem changes to the 

deblurring, and if B indicates the lost pixels, it 

converts to the inpainting. 

In the formulating part, the information for the 

degraded and original images is used to formulate 

the objective function and then to remove the noise 

and blurring from the degraded image. This 

function is solved using the inverse function or 

optimization problem. The image restoration 

problem that is solved by convex optimization uses 

unconstrained optimization, as follows: 

(2)  
2

2
x

1
min y Bx x

2
   , 

where, ‖ ‖  is p-norm, and is given by: 

(3) 

1
n p

p

ip
i 1

aA


 
  
 
  

where, n is the number of matrix element A after 

reshaping.  

The optimization problem contains two parts: data 

fidelity and smooth regularizer. In a practical 

research work, the regularizer is completely unable 

to model the characteristic of the original image. 

Therefore, we should compromise between the 

regularizer and the data fidelity. For instance, in 

figure 1(a), the cameraman image is degraded by 

the 9*9 uniform blur and additive Gaussian noise 

with zero mean. Figure 1(b) shows that the 

regularizer has a small effect, and the output noise 

is amplified for a very small regularizer parameter 

(τ       ). On the other hand, figure 1(C) shows 

that the large regularizer parameter (τ    ) 

provides a much smoothed image and removes the 

edges of image. Thus it is required that the 

regularizer parameter is appropriately selected such 

that the aforementioned problems are avoided. 

  

 

Figure 1.  a) Degraded image by 9*9 uniform blur and 

additive Gaussian noise with zero mean b) restored image 

by small regularizer parameter (𝛕       ) c) restored 

image by large regularizer parameter (𝛕    ). 

(a) (b) 

(C) 
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2. Related works 

The image restoration methods are classified into 

three categories: 1) methods bas 

ed on filtering 2) methods based on regularizer, and 

3) methods based on Bayesian restoration. The 

image processing systems normally use a low-pass 

filter to model the blurring of the image. The filter-

based methods contain the inverse filtering, pseudo-

inverse filtering, and wiener filtering. 

Equation (4) results in the restored image using (1) 

in the Fourier domain [2]: 

(4) 

 
 

 
 
 

i j1

i j

i j1

i j

i j

Y ,
x f

B ,

N ,
f X ,

B ,





 


 

 
   

 

 
  
 

 
  
 

 

where,     indicates the inverse Fourier transform.
 

 
i j

Y ,  ,  
i j

B ,  , and  
i j

X ,   are 2D 

Fourier transforms of the degraded image, the blur 

PSF, and the original image, respectively. The 

simple theory and low complexity are advantages of 

the inverse filtering methods. However, the inverse 

filtering method provides an accurate restoration 

image when there is not additive noise in the 

degraded image but the degraded image normally 

contains an additive noise in practice. Therefore, in 

a noisy degraded image, the inverse filtering 

method provides a weak performance and 

unacceptable results [2]. 

The pseudo-inverse filtering method uses the 

matrix-vector form of the degraded image in which 

B is a non-invertible matrix. If the columns of B are 

lineally independent, (1) can be modified and 

approximated using pseudo-inverse solvation as [8]:     

(5)  
1

T T
x B B B y



 . 

The mentioned advantages of inverse filter can be 

enumerated for the pseudo-inverse filter. This 

method provides a better performance than the 

inverse method, although it is unable to provide 

acceptable results for a noisy degraded image [8]. 

As the name implies, the median filter is a statistics 

method. In this method, the median of the pixel is 

found, and then the pixel is replaced by median of 

the gray levels in their neighborhood of that pixel. 

The median filter is used to remove the salt and 

pepper noise [23]. 

The Wiener filter method is based upon 

optimization of Mean Square Error (MSE), and it 

provides a better performance than the inverse filter. 

This filter is the base of many new restoration 

methods because it is an optimal filter to minimize 

MSE. For example, the edge mapping Wiener filter 

has been proposed to preserve the edges and the 

details of images. The collaborative Wiener filter 

has been reported to remove image noise in a sparse 

3D transform domain [9]. Although the Wiener 

filter is known as the most optimum method for 

minimization of MSE and can be efficiently solved 

in frequency domain, it is unable to provide a high 

quality for the restored image. 

The regularization methods were developed to 

make the image restoration problem well-posed by 

introducing information about the original image. In 

this situation, there is a large number of possible 

solutions; additional information is required to 

choose the correct solution. Finally, since 

discontinuities cause instability in many algorithms, 

the solution must depend continuously upon data.  

The regularization methods solve this problem 

using the prior information about the image to 

calculate the estimate. It requires the selection of a 

regularization parameter, α, which controls the 

trade-off between fidelity to measurements and to 

the prior information. 

The regularizer-based method is the second 

category of the image restoration methods. This 

method repeatedly combines additional 

information, and a regularizer solves the restoration 

problem. These methods, such as Tikhonove-Miller 

regularizer, are known as a framework to well-pose 

the restoration problem. The traditional regularizers 

such as L2-norm adversely affect the sharp edge 

restoration because the images are piecewise 

smoothed. Therefore, the advanced regularizers 

model the characteristics of the original image using 

non-linear penalty functions [10]. 

The Bayesian approach provides the means to 

incorporate prior knowledge in data analysis. The 

Bayesian analysis revolves around the posterior 

probability, which summarizes the degree of one’s 

certainty concerning a given situation. The Bayes’s 

law states that the posterior probability is 

proportional to the product of the likelihood and the 

prior probability. The likelihood encompasses the 

information contained in the new data. The prior 

expresses the degree of certainty concerning the 

situation before the data is taken. Although the 

posterior probability completely describes the state 

of certainty about any possible image, it is often 

necessary to select a single image as the ‘result’ or 

reconstruction. A typical choice is to choose an 

image that maximizes the posterior probability, 

which is called the MAP estimate. Other choices for 

the estimator may be more desirable, for example, 

the mean of the posterior density function. In 

situations where only a very limited data is 

available, the data alone may not be sufficient to 

specify a unique solution to the problem. The prior 

introduced with the Bayesian method can help to 
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guide the result toward a preferred solution. As the 

MAP solution differs from the maximum likelihood 

(ML) solution solely because of the prior, choosing 

the prior is one of the most critical aspects of the 

Bayesian analysis.  

The Bayesian restoration methods model the 

restoration problem using the probability theory. 

The Bayesian methods combine additional 

information of new models of the image with the 

prior image, and can be iteratively solved. High 

computational cost and being unable to provide a 

specific optimization framework are the 

disadvantages of the Bayesian methods [11]. 

In this work, we used the regularizer method to 

restore the image. There are several methods 

available to solve the linear inverse optimization by 

minimization of the objective function, which is 

formulated as: 

(6)    
2

2
x

1
f x min y Bx x

2
     

 

where, B is a linear operator and (x)  is a 

regularizer [4]. This optimization equation should 

find the best compromise between the candidate 

estimated, x, and the obtained data of
2

2
y Bx . 

The undesired degree of equation is distinguished 

by the (x)  parameter, and the relation between 

two parts of (6) is identified by regulating parameter 

( ). The unsmooth and non-quadratic regularizers 

such as the Total Variant, TV, and p
l -norm are 

used in various image processing applications [8]. If 

B = I, where I is a unit vector (identity matrix), the 

denoising problem is confronted. If   is suitable 

and convex, the optimization problem is strictly 

convex and has a unique minimizer. Therefore, the 

denoising function is formulated by: 

(7)    
2

τ 2
x

1
ψ argmin xy y x

2
     

For example, (y) soft(y, )


    if 

1 i 1i
(x) x x  (the L norm).    

  

soft(w, ) sign(w).( w )

0     if  a<0
where (a)

a     if  a>0





   


 


. 

 

The soft function is shown in figure 2. 

The Iterative Shrinkage Thresholding (IST) methods 

have been reported to efficiently and simply solve 

the sparsity-based restoration problems. These 

methods have firstly been developed as a proximal 

forward-backward iterative scheme in [12, 13]. In 

the IST method, x in the k+1 step is obtained by: 

(8)   k 1 k T k

τ
α

k

1
x ψ (x B Bx y


  


 

 
Figure 2. Soft function. 

 

These methods are suitable and efficient when 

multiplication of B and 
T

B  is dissolvable. These 

methods converge to minimum when

k

2

2
aB 2   . 

Another method is Two-step Iterative Shrinkage 

Thresholding (TwoIST), in which each current 

iterate incorporates to the previous two iterates. The 

TwoIST method is faster than the IST method. In 

the TwoIST algorithm, each iteration depends upon 

the two previous iterates rather than only on the 

previous one (as in IST). This algorithm may be 

seen as a non-linear version of the so-called two-

step methods for linear problems. TwoIST was 

shown to be considerably faster than IST on a 

variety of wavelet-based image restoration 

problems; the speed gains can reach up to two 

orders of magnitude in typical benchmark problems 

[14]. 

An improved two-step variant of the IST method is 

called Fast IST Algorithm (FISTA). FISTA is faster 

than the TwoIST and IST methods. The non-

smooth variation of Nesterovs optimal gradient-

based algorithm is used in FISTA [15]. 

Sparse Reconstruction by Separable Approximation 

Algorithm (SpaRSA) is another fast variant of IST 

algorithm. This method uses a different    in each 

iteration, which is updated by    (where      is a 

step size) [12]. This method has been shown to 

outperform standard IST by selecting an aggressive 

step-size at each iteration. When the slowness is 

caused by using a small value of the regularization 

parameter, the continuation schemes have been 

found quite effective in speeding up the algorithm. 

The key observation is that the IST algorithm 

benefits significantly from warm-starting, i.e. from 

being initialized near a minimum of the objective 

function.  

Neural Network Approach: The neural network is a 

form of multi-processor computer system with 
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simple processing elements interconnected group of 

nodes [29, 30]. These interconnected components 

are called neurons, which send message to each 

other. When an element of the neural network fails, 

it can continue without any problem by their 

parallel nature [24].  

Block-matching: This is employed to find blocks 

that contain high correlation because its accuracy is 

significantly impaired by the presence of noise. We 

utilize a block-similarity measure that performs a 

coarse initial denoising in local 2D transform 

domain. In this method, the image is divided into 

blocks and noise or blur is removed from each 

block [23]. 

Since the reported methods in [25, 26] are based 

upon non-blind de-convolution and use grayscale 

images, same databases, and evaluation measures, 

the proposed method is compared with them. The 

reported method in [25] is based upon the genetic 

algorithm, and is briefly given as follows: 

Step 1: Get Blurred Image (initial image).  

Step 2: Apply Fast Fourier Transform on blurred 

Image.  

Step 3: Apply Inverse Fourier Transform, and 

create an initial population for applying genetic 

algorithm . 

Step 4: Calculate the value of objective functions 

for the current population. 

Step 5: Apply the cumulative fitness assignment 

criteria and selection procedure. Use genetic 

algorithm for selection of new population . 

Step 6: Find the best individuals. 

Step 7: Apply cross-over and Mutation on the new 

population (obtained in Step 5) in order to create a 

new population . 

Step 8: Get the restored image using the best 

individuals (obtained in Step 6). 

This method tries to maximize all the objectives. 

We proposed a fitness function criterion that is 

based upon individual objectives such as intensity, 

entropy, and edges. After evaluating fitness of all 

individual objectives (entropy, edge, and intensity), 

the combined fitness or cumulative fitness is 

calculated. The proposed method evaluates and 

maximizes all the objectives. This means that the 

image restoration criterion is defined as a function 

of entropy, edges, and intensity.  

Edges can be defined as rapid changes in image 

intensity over a small region. In order to measure 

these changes, one method is to use discrete 

difference operators. It consists of two masks that 

calculate the changes in both directions, i.e. x-

direction and y-direction. 

We took different images with the same size. The 

maximum number of generation to run the program 

was chosen as 20; this also works as a criterion to 

end the evolution. Mutation has to be taken as 

simple mutation having probability = 0.1, arithmetic 

cross-over has to be taken having the cross-over 

probability = 0.8, selection was taken as the 

tournament selection, and finally, the population 

size had to be taken as 48. 

The reported method in [26] is based upon the 

Wavelet transform, and is given by: 

Step 1: Obtain an initial de-blurred result via the 

IDD-BM3D method, which will be used as the 

reference image for support estimation. 

Step 2: Solve the resulting truncated ℓ1-regularized 

problem. 

In this work, we just took the anisotropic ℓ1 norm 

as an example to illustrate the benefit of new 

regularization, though it can be also readily 

extended to the isotropic ℓ1 norm.  

Ones just solved a plain ℓ1-regularized convex 

optimization problem, i.e. each frame coefficient 

was treated equally and penalized uniformly. In this 

case, it generates the bias, which means that the 

large coefficients are penalized more heavily than 

the smaller ones. Therefore, the customized ℓ1-

regularized model often achieves a sub-optimal 

performance. In practice, if the positions of the 

frame coefficients with large non-zero absolute 

values (we term the locations of large frame 

coefficients in magnitudes as support information) 

are known, we need to remove these coefficients 

out of the ℓ1 norm and to use a truncated ℓ1 norm 

instead in the restoration model. 

The Gaussian Scale Mixture (GSM) model is 

developed using the simultaneous sparse coding 

(SSC), and its applications into image restoration 

are explored. It is shown that the variances of 

sparse coefficients (the field of scalar multipliers 

of Gaussians) can be jointly estimated along with 

the unknown sparse coefficients via the method 

of alternating optimization [27]. 

The so-called non-locally centralized sparse 

representation (NCSR) model is as simple as the 

standard sparse representation model, while our 

extensive experiments on various types of image 

restoration problems including denoising, 

deblurring, and super-resolution validate the 

generality and state-of-the-art performance of the 

proposed NCSR algorithm. 

The patches of image x are clustered into K 

clusters and a PCA sub-dictionary k is learnt for 

each cluster. For a given patch, it is firstly 

checked which cluster it falls into by calculating 

its distances to means of the clusters, and then the 

PCA sub-dictionary of this cluster is selected 

[28].The mentioned methods are unable to 

converge very fast, and therefore, in this paper, we 
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propose a new method to increase the speed and 

also improve the quality of the restored image. 

 

3. Proposed method 

We presented a new algorithm to solve the 

optimization formulation of regularized image 

restoration. The approach that can be used with 

different types of regularization is based upon the 

variable splitting technique. Then it solves the 

problem with the Lagrangian augmented 

optimization. 

 

 

 

 

Figure 3. Degraded Cameraman and Lifting-body: A) 

Original Image and B) degraded image with uniform blur 

and Gaussian noise.  

 

3.1. Construction of degraded images for 

deblurring and inpainting 

Assume that the aim of the proposed method is to 

degrade an image with a size of N*N by an m*m 

uniform blur, where m < N. First, a vector with the 

length of N is constructed so that the first m 

elements have the value of 1/m and the rest of the 

elements are zero. Next, the vector obtained is 

shifted to left with the size of (m-1)/2, and then it is 

multiplied by its transpose. Therefore, the m*m 

matrix is constructed, which is called the blur 

matrix. In order to obtain the blurred image, it 

requires to multiply the Fourier transform of the 

blurred matrix by the Fourier transform of the 

original image, and then to use inverse Fourier 

transform. The matrix obtained is Bx indicated in 

(1). Next, a desired noise is added to Bx, and 

therefore, the blurred/noisy image is constructed. In 

order to construct the degraded image for the 

inpainting case, it requires losing a number of 

pixels. Losing the pixels is randomly performed. In 

order to obtain the degraded image in (1), the 

random matrix is constructed such as a percentage 

of the original image pixels that is lost.  

Note that the size of random matrix is the same as 

the original image. Some degraded images are 

shown in figures 3 and 4. 

 

3.2. Solving problem of Lagrangian augmented 

optimization 

In order to obtain the estimated image, x, (2) is 

used. The proposed method is based upon variable 

splitting for an optimization problem. The objective 

function in (2) is the sum of two functions. The 

main idea in the proposed method is to split the 

variable of x into the variable pairs of x and v such 

that each of them is an argument of one part in the 

objective function. Then the objective function is 

minimized under one constraint, which results in 

being equally the new problem with the problem in 

(2), given by: 

(9) 

 
n

2

2
x,v

1
min Bx y v  

2

 subject to x v



  



R . 

The new determined optimization problem is solved 

by the Lagrangian augmented method. The 

formulation of undetermined optimization for 

regulated image restoration is given by: 

(10) 

 

   

2

1 2

2

1
f x Bx y

2

f x x

G I    i.e.  v=Gx

 

 



. 

A 

B 

A 

B 
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Figure 4. Degraded Cir and Peppers: A) Original Image 

and B) degraded image with losing 40% of pixels and 

Gaussian noise.  

 

The formulation of the determined optimization 

using variable splitting is given by:  

(11)  
n

2

2
x,v R

1
objective fun min Bx y v

2

subject to x v



   



 

In order to solve the determined optimization 

problem, it is better to use the Lagrangian 

augmented method, which is given by: 

 

(12) 

   

 

1 2 2
x , v arg Bx y v x v d2k 1 k 1 k 2

x,v 2 2

d d Gx v
k 1 k k 1 k 1


      

 

  
  

 

where,  is a positive value that is given by the 

user. It has been shown that the performance of the 

least-squares penalty is better than the Lagrangian 

method. In addition, the Lagrangian augmented 

method is converged under more principle 

conditions. Therefore, we propose a new method in 

order to solve the optimization problem, as follows: 

First, k is set to zero, and µ > 0, 
0

d , and 
0

v  are set 

to the initial values that are zero, and then it requires 

to solve the optimization problem given by: 

(13) 2 2

k 1 k k2 2
x

x arg min Bx y x v d

      

Here, 
1k

x


is a strictly convex function, which has 

to be minimized. This corresponds to a linear 

system that is given by: 

(14)     
1

H H

k 1 k k
x B B I B y v d




     

By obtaining 
1k

x


 from the previous step, it is 

inserted in (15), and therefore, it requires solving 

the optimization problem as: 

(15)  
2

k 1 k 1 k 2
v

v arg min v x v d
2

 


      

This can be solved using (7). Then 
k 1

d


is obtained 

by 
k 1

x


 and 
k 1

v


 in the previous step: 

(16)  k 1 k k 1 k 1
d d x v

  
    

Next, one is added to k (k = k + 1), and the stop 

criterion is measured, which is given by: 

(17)    

 

objective fun k 1 objective fun k
tolerance

objective fun k

 
  

This criterion is equal to the changes of the 

objective function. If the stop criterion is satisfied, 

the procedure is stopped; otherwise the previous 

steps are repeated until the stop criterion is satisfied. 

 

3.2.1. Variable splitting: Consider the 

undetermined optimization problem, which contains 

two terms: 

(18)     
n 1 2

x R

min f x f g x


 , 

B 

A 

A 

B 
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where, the g :
n d
R R  variable splitting includes 

construction of a new variable as  g x v  that 

corresponds to a new optimization problem, given 

by: 

(19) 
   

 

n d 1 2
x ,v

min f x f v

s.t : g x v

 




R . 

 

This is equal to the optimization problem in (18). 

We use the variable splitting method reported in [7] 

to provide a fast restoration image. In [4, 10], the 

optimization problem in (19) is changed to (20) 

with consideration of the second order penalty and 

the periodical minimization with respect to x and v. 

(20) 
     

n d

2

1 2 2
x ,v

min f x f v g x v
2 


  

R

 

 

The function of variable splitting is as the one 

reported by Bregman [18, 19]. This directly solves 

the determined optimization problem. It has been 

shown that when g is a linear function, i.e. 

 g x Gx , the Bregmanʹs method is similar to the 

Lagrangian augmented method. 

 

 3.2.2. Lagrangian augmented: Consider the 

optimization problem with constraint as follows: 

(21)  min

.  0

n
z

E z

s t Hz b



 

R . 

where, b = 0, 
X

z
V


 
 
 

 and  H G I  . 

In this case, the Lagrangian function is given by: 

(22)      
2T μ

z, λ, μ E z λ b Hz Hz b 22A     L

 

where, λ  is a value for the Lagrangian coefficient, 

and µ > 0 is called the penalty parameter. In this 

method,  z, λ,μ
A

L  is minimized with respect to z 

and maintaining λ  as a constant value, and then λ  

is updated and the minimization of  z, λ,μ
A

L  is 

repeated. This procedure continues until the 

convergence criterion is satisfied [20]. 

 

3.2.3. Variable splitting using Lagrangian 

augmented method: Consider the variable splitting 

problem given by: 

(23) min  R(x) (v)   s.t   v=Gx  . 

where, R(.) is the fidelity term that guarantees that x 

is compatible with the observed y.  

In this case, the Lagrangian augmented method is 

given by:  

(24)        
2T

2

ρ
x, ,μ μ Gx v V Gx

2ρ
v x v      L R  

where, µ is the Lagrangian coefficients vector and is 

a constant that is selected by a user [21]. We use the 

Gauss–Seidel method for minimization. Therefore, 

the minimization problem is formulated as: 

(25)  ρ k k1 k
minarg ,v ,μ

k
x

   x x

 L , 

(26)  k+1 ρ k+1 k k
v

v = arg  min ,v ,μx  L , 

(27)  k+1 k k+1 k+1
μ =μ +ρ Gx -v  . 

 

3.2.4. Total variation regularizer: Total variation 

regularizers, due to having the ability for noise 

cancellation and maintaining image edges, are 

widely used in the image restoration methods [7]. 

These regularizers have improved under this 

assumption that the image has bounded variations. 

If the variations of the image inside are bounded, 

then the sum of the absolute variations of the image 

inside will be limited.  

Therefore, the total variation regularizers are 

designed to restrict the variations of the image 

inside. The variation is defined by: 

(28)      i w

2

w

w

1

j

2
x x x

l



    , 

where,  i w
x  and  j w

x  are the first-order 

vertical and horizontal difference in the
th i pixel, 

respectively. On the other hand, the sparsity 

regularizer causes the transform coefficients of the 

restored images to be scattered. These regularizers 

reduce the noise without any destructive effect on 

the edges. 

 

3.2.5. Calculation of 
k 1

x


: In (14), the initial vales 

for 
0

x ,
0

d , and 
0

v  are set to zero. Thus in (28), 

 0
v that is related to the total variation 

regularizer can be solved and 
2

0 2
Bx y  can be 

calculated using (3). The initial objective function is 

then calculated using  
0

v  and 
2

0 2
Bx y . In 

what follows, calculation of 
k 1

x


 is distinctly 

explained for the deblurring/denoising and 

inpainting problems. 

 

A) Calculation of 
k 1

x


 for deblurring/denoising: 

First, the absolute of Fourier transform of blur 

matrix, B, is obtained and each element is squared 

and added with µ: 
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(29) H
(B B μI)

  

, 

The matrix elements obtained are then inversed. 

Next, the Fourier transform of  H

k k
B y v d   

is obtained and multiplied by (20). 
k 1

x


 is the 

inverse Fourier transform of the resulting matrix. 

 

B) Calculation of 
k 1

x


 for inpainting: In order to 

obtain the inverse of 
H

(B B μI) , the Sherman-

Morrison-Woodbury equation is used, which is 

given by: 

(30)  
1

H H1 1
B B I I B B

1



   
  

 
 
 

, 

where, 
H

B B   is a number of zeros in the main 

diagonal. These zeros indicate the lost positions in 

the image.   

Thus 
k 1

x


 is obtained by multiplication of 

H

k k
B y (v d )  with (30). 

 

3.2.6. Calculation of 
k 1

v


: 
k 1

v


 can be calculated 

by the Moreau proximal mapping for 
k 1 k

x d

 . 

This means that: 

(31)  k 1 k 1 kv x d   , 

where,   is given by equation (9). If this mapping 

is accurately calculated in the closed form, then it is 

guaranteed that the proposed method is converged. 

 

4. Results 
All experiments were executed using the 

MATLAB software, applied on a personal 

computer containing a microprocessor of Intel 

(R) i5CPU:2.53 GHz and 4 GB RAM. The value 

for µ in (13) was selected as 10% of the 

regularizer parameter or 10τ .  

The number of iterations, the processing time 

(CPU time), ISNR, and MSE were used as the 

evaluation measures. We used various images 

such as cameraman, Lena, moon, lifting-body, 

tire, coins, and peppers. For blurring, we used a 

uniform blur with a size of 9*9 and white normal 

Gaussian noise with different variances, and for 

inpainting, 30%, 40%, and 50% of the original 

pixels were lost. 

 

4.1. Evaluation measures 

In order to compare the performance of the 

different image restoration methods, the 

quantitative measures that evaluate the quality of 

the restored image are very important. These 

measures include Improvement in SNR, ISNR, and 

Mean Square Error (MSE), which are calculated by 

[2, 9]:  

(32) 

2

kK

10 2

k
K

x y
ISNR 10log

x x









 

(33) 2

k

K

1
MSE x x

M*N
   

 

where, M and N are the image dimensions, x is the 

original image, and 
k

y and kx are the observed and 

the estimated image in the 
thk iteration. In this 

work, in addition to these two measures, the 

processing time was also considered, which 

indicates the speed of convergence for capability of 

the methods. 

 

4.2. Indexing results 

4.2.1. Results obtained for deblurring 

Table 1 shows the evaluation measures for the 

aforementioned images. The results obtained 

show that the proposed method improves ISNR, 

decreases MSE, and reduces the processing time 

considerably compared to the TwoIST and 

SpaRSA methods.  

Table 1. Results of deblurring images degraded by 

Gaussian noise with          and Uniform blur 9*9 in 

size. 

MSE 
ISNR 

(dB) 

CPU 

time 

(s) 

Iterations Method Image 

94٫1 7.63 16.2 69 TwoIST 

Cameraman 
89.2 7.86 25.7 123 SpaRSA 

78.2 8.43 3.67 20 
Proposed 
method 

37.4 6.56 51.1 46 TwoIST 

Lena 
39.1 6.36 52 56 SpaRSA 

29.5 7.59 13.1 16 
Proposed 

method 

12.3 8.64 45.3 41 TwoIST 

Lifting-body 
11.6 8.88 49.5 53 SpaRSA 

8.14 10.4 20.3 24 
Proposed 

method 
54.4 8.87 13.8 61 TwoIST 

Coins 
56.5 8.71 23.1 115 SpaRSA 

44.5 9.75 4.06 22 
Proposed 
method 

62.8 3.86 13.1 25 TwoIST 

Moon 
70.2 3.73 9.14 22 SpaRSA 

67.4 3.91 6.18 17 
Proposed 

method 
31.8 7.93 55.5 51 TwoIST 

Peppers 
30.1 7.97 73.4 78 SpaRSA 

27 8.45 14.8 18 
Proposed 
method 

 

As observed in table 1, for instance, for the Lena 

image, ISNR was improved by the proposed 

method 1.03 dB and 1.23 dB compared to the 

TwoIST and SpaRSA methods, respectively, and 
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the processing time was nearly 25% of the one 

provided by the TwoIST and SpaRSA methods. 

In addition, MSE obtained by the proposed 

method decreased 10 units. For the Lifting-body 

image, the processing time required by the 

proposed method was less than half of the ones 

resulted by the other two methods and ISNR 

improved around 1.5 dB. In addition, MSE 

decreased to 3.46 and 4.16 compared to the 

SpaRSA and TwoIST methods, respectively. 

Figure 5 shows the objective function indicated in 

(8) for the aforementioned images. As observed, 

the objective function compared to the SpaRSA 

and TwoIST methods is faster converged. For 

instance, for the cameraman image, the objective 

function is converged to the final value in less 

than 4 s, whereas 30 s is required for the other 

two methods at least. For the Lena image, the 

proposed method is converged in 3 s, whereas the 

SpaRSA and TwoIST methods require 30 s and 

50 s, respectively, for convergence. The same 

results can be observed for the other images. As 

an example, figures 6-9 show the restored image 

by the proposed method. As observed, the blurred 

effect has been highly removed in the restored 

image by the proposed method. 

 

  

  

 

 

 

 

Figure 5. Output of deblurring for objective function related to equation (8) obtained by TwoIST, SpaRSA, and proposed 

method for images: A) Cameraman, B) Lena, C) Lifting-body, D) Coins, E) Moon, and F) Peppers. 

 

(f) 

(a) 

(c) (d) 

(e) 

(b) 
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Figure 6. Deblurring results: A) Original Image, B) degraded image, and C) restored image by proposed method. 

 

  

  

Figure 7. Deblurring results for Cameraman, Coins, Lena, and Peppers: A) Original Image, B) degraded image, and C) 

restored image by proposed method. 

In the next experiment, the effect of different 

blurs with additive Gaussian noise ( 0.3080  ) 

was investigated. The results obtained are shown 

in table 2. As observed, the processing time (CPU 

time), ISNR, and MSE were improved compared 

to the other methods. It was also observed that the 

best results with respect to ISNR and MSE were 

achieved by uniform blur with a size of 9*9. In 

addition, the results obtained for the case of 

Gaussian blur with 1.41   were better than the 

one with 2.83   . In the case of blur matrix in 

which i,j

2 2
h =1/(1+i +j )  for i,j=-7,...7 , the results 

obtained provided higher ISNR and lower MSE 

and CPU time compared to the other cases. 

In another experiment, the effect of different 

additive noises with uniform blur with a size of 

9*9 was examined. As expected, the results 

obtained show that when the variance of 

Gaussian noise increases, ISNR decreases, MSE 

increases, and the quality of the restored image 

degrades. As an example, tables 3-7 show the 

results obtained for different images using 

different blurs and Gaussian noise with   

                and      . 

In tables 5 and 7, the values for Peak Signal for 

the restored images by the proposed method and 

other methods are shown. The PSNR values by 

the proposed method are higher than the results 

obtained by the TwoIST, SpaRSA, Genetic 

Algorithm, Wavelet Frame Truncated, NCSR, 

and SSC-GSM methods. As shown, the results 

obtained by the proposed method are better in 

terms of the Peak Signal to Noise Ratio.  

In tables 5 and 6, the MSE values for the restored 

images by different images are shown. The MSE 

values by the proposed method are less than the 

results obtained by the TwoIST, SpaRSA, 

Genetic Algorithm, Wavelet Frame Truncated, 

NCSR, and SSC-GSM methods. 

Similar results were obtained for the other 

images, which seem to be unnecessary to be 

shown. 

 

4.2.2. Results obtained for inpainting 

In the inpainting problem, the aim is the 

restoration of the degraded image in which a 

percentage of the pixels has been lost and noise 

has been added. In this experiment, 40% of the 

image pixels were lost and a normal white 

Gaussian noise was added to the image. For 

evaluation, the aforementioned images were used 

and the proposed method was compared to the 

TwoIST and FISTA methods. The results 

C A B 

   C                                                  B                                                A    C                                                  B                                                A 

   C                                                  B                                                A    C                                                  B                                                A 
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obtained were shown in table 8. As observed, the 

proposed method resulted in a higher ISNR, a 

lower MSE, and also a shorter processing time 

compared to the TwoIST and FISTA methods. 

For instance, for the Lena image, the processing 

time was almost 10% of the one provided by the 

other two methods and improved ISNR and MSE 

at least 0.3 dB and 1.2, respectively. For the 

lifting-body image, the processing time was 

around 1000 s and 845 s less the ones obtained 

for the TwoIST and FISTA methods, 

respectively. Also ISNR obtained by the 

proposed method was 0.64 dB and 0.97 dB higher 

than the ones resulted by the TwoIST and FISTA 

methods, respectively. In this case, the proposed 

method provided 0.4 and 0.5 reduction in MSE 

compared to the FISTA and TwoIST methods, 

respectively. The same results could also be 

concluded for other images. 

Figure 10 shows the objective function resulted 

by inpainting for the aforementioned images. As 

observed, the resulting objective function by the 

proposed method can converge to the final value 

in a shorter time compared to the TwoIST and 

FISTA methods. For instance, in figure 10(a), 

which is related to the cameraman image, the 

objective function converges in 50 s, 200 s, and 

300 s for the proposed method, TwoIST, and the 

FISTA method, respectively. The same results 

can be observed for the other images. Therefore, 

the objective function by the proposed method 

converges faster than the other two methods. 

  

  

 

 

Figure 8. Deblurring results for Lifting-body: A) 

Original Image, B) degraded image, and C) restored 

image by proposed method. 

Figure 9. Deblurring results for Moon: A) Original 

Image, B) degraded image, and C) restored image by 

proposed method. 

A 

B 

A 

B 

C 

C C 
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Table 2. Results of restored images degraded by Gaussian noise with          and different blurs.  

Image Method 
Uniform blur with size of 9*9  Gaussian blur with 1.41    

CPU time(s) ISNR (dB) MSE CPU time(s) ISNR (dB) MSE 

Cameraman 

TwoIST 62.45 5.24 94٫1 26.59 3.65 113.27 
SpaRSA 64.5 5.92 89٫1 22.73 3.71 107.78 

Proposed method 11.01 8٫43 78٫2 1.45 4.19 92.76 

Lena 

TwoIST 51٫1 6٫56 37٫4 25.4 2.87 99.1 
SpaRSA 52 6٫36 39٫1 26.7 2.34 63.7 

Proposed method 13٫1 7٫59 29٫5 3.9 3.42 49.8 

Lifting-body 

TwoIST 45٫3 8٫64 12٫3 19.9 4.52 34.1 
SpaRSA 49٫5 8٫88 11٫6 21.4 4.69 28.9 

Proposed method 20٫3 10٫4 8٫14 11.9 5.73 22.7 

Coins 

TwoIST 13٫8 8٫87 54٫4 16.2 4.95 67.7 
SpaRSA 23٫1 8٫71 56٫5 29.5 4.99 65.4 

Proposed method 4٫06 9٫75 44٫5 1.36 5.74 50.2 

Moon 

TwoIST 13٫1 3٫86 68٫2 17.7 1.27 79.4 
SpaRSA 9٫14 3٫73 70٫2 24.01 1.31 90.7 

Proposed method 6٫18 3٫91 67٫4 1.47 2.07 70.9 

Peppers 

TwoIST 55٫5 7٫73 31٫8 29.78 3.75 44.8 
SpaRSA 73٫4 7٫97 30٫1 36.6 3.81 42.9 

Proposed method 14٫8 8٫45 27 4.39 4.49 37.7 

  
Gaussian blur with 2.83   Blur matrix 

i,j

2 2
h =1/(1+i +j )  for i,j=-7,...7  

CPU time(s) ISNR (dB) MSE CPU time(s) ISNR (dB) MSE 

Cameraman 

TwoIST 24.21 2.57 79.7 19.25 4.64 100.6 
SpaRSA 23.18 2.69 69.8 17.45 4.61 98.2 

Proposed method 2.67 3.35 58.98 1.41 6.05 81.3 

Lena 

TwoIST 23.64 1.36 110 19.47 3.45 45.3 
SpaRSA 25.01 1.70 75 24.88 3.49 43.7 

Proposed method 4.12 3.29 50.45 3.25 6.21 35.4 

Lifting-body 

TwoIST 15.89 3.44 59.2 14.35 5.41 38.3 
SpaRSA 19.46 3.55 54.3 15.18 5.56 32.1 

Proposed method 12.10 5.41 43.9 9.42 8.35 21.6 

Coins 

TwoIST 14.75 3.81 79.1 13.89 4.99 60.7 
SpaRSA 23.40 3.86 63.7 22.70 5.01 62.9 

Proposed method 2.41 5.24 46.7 1.32 8.31 55.4 

Moon 

TwoIST 15.14 0.904 95.1 12.36 2.35 71.3 
SpaRSA 18.95 0.915 91.35 16.87 2.47 84.7 

Proposed method 2.56 1.86 79.4 1.48 4.95 61.6 

Peppers 

TwoIST 21.27 2.62 76 21.12 4.26 39.4 
SpaRSA 30.49 2.76 75.2 28.64 4.95 40.8 

Proposed method 5.17 4.24 60.9 3.39 7.12 30.7 

Table 3. Results of restored cameraman image degraded by uniform blur with size of 9*9 and different noises. 

Method 

MSE ISNR 

Poisson 

noise 

Gaussian 

noise with 

variance 2 

Gaussian 

noise with 

variance 1 

Gaussian noise 

with variance 

0.308033 

Poisson 

noise 

Gaussian 

noise with 

variance 2 

Gaussian 

noise with 

variance 1 

Gaussian 

noise with 

variance 

0.308033 

TwoIST 41.07 10´  166 148 94٫1 10.6  5.17 5.21 7.63 

SpaRSA 32.86 10  141 138 89٫1 4.83  5.87 5.95 7.86 

Wiener filter 41.11 10  
38.93 10  

38.93 10  
3

8.93 10  10.7  0.629 0.633 1.28 

Inverse filter 91.06 10  
62.5 10  

55.5 10  52.4 10  60.5  35.8  30  14.6  

Proposed method 31.99 10  134 132 78٫2 3.27  6.08 6.14 8.43 

 

Table 4. Results of restored Lena image degraded by uniform blur with size of 9*9 and different noises. 

Method 

MSE ISNR 

Poisson 

noise 

Gaussian 

noise with 

variance 2 

Gaussian 

noise with 

variance 1 

Gaussian noise 

with variance 

0.308033 

Poisson 

noise 

Gaussian 

noise with 

variance 2 

Gaussian 

noise with 

variance 1 

Gaussian noise 

with variance 

0.308033 

TwoIST 37.14 10  101 100 37٫4 10.6  5.42 5.45 6٫56 

SpaRSA 31.79 10  100 99.6 39٫1 4.83  5.45 5.48 6٫36 

Wiener filter 39.41 10  33.94 10  33.94 10  33.94 10  10.7  0.435 0.438 0.891 

Inverse filter 84.47 10  61.22 10  57.23 10  44.91 10  60.5  35.4  30.31  15.01  

Proposed method 31.27 10  95 80.2 29٫5 3.27  5.92 6.08 7٫59 
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Table 5. Results of MSE and PSNR restored images degraded by Gaussian noise with     and different blurs.  

Image  Blur TwoIST SpaRSA 
Genetic 

Algorithm  
Wavelet Frame 

Truncated  
NCSR 

SSC-

GSM 
Proposed 

method 

 PSNR 

Cameraman 

9 × 9 uniform blur 25.45 25.97 27.94 27.97 28.62 28.82 28.89 

Gaussian blur: (σ =1.6) 26.27 26.35 27.48 27.78 28.33 28.39 28.53 

Motion blur: fspecial 

(‘motion’, 15, 30) 
27.78 27.87 29.54 29.77 29.80 29.86 29.93 

Lena 

9 × 9 uniform blur 27.09 27.63 29 29.04 29.87 29.94 30.10 
Gaussian blur: (σ =1.6) 26.62 26.76 30.87 30.93 30.90 31.04 31.29 
Motion blur: fspecial 

(‘motion’, 15, 30) 
28.81 28.91 31.17 31.20 31.41 31.79 32.91 

 MSE 

Cameraman 

9 × 9 uniform blur 185.39 164.468 104.49 103.77 89.35 85.33 83.96 
Gaussian blur: (σ = 1.6) 153.49 150.68 116.16 108.41 95.52 94.21 91.21 

Motion blur: fspecial 
(‘motion’, 15, 30) 

110.17 106.19 72.30 68.56 68.09 67.15 66.08 

Lena 

9 × 9 uniform blur 129.74 112.22 81.86 81.1 67.00 65.93 66.84 
Gaussian blur: (σ =1.6) 141.60 137.1 53.22 52.49 52.85 51.19 48.31 
Motion blur: fspecial 

(‘motion’,15,30) 
86.12 83.57 49.67 49.33 46.99 43.06 33.27 

 

 
 

  

  

Figure 10. Output of inpainting for objective function related to equation (8) obtained by TwoIST, FISTA, and proposed 

methods for images: A) Cameraman, B) Lena, C) Lifting-body, D) Coins, E) Moon, F)Tire, and G) Peppers. 

(a) 
(b) 

(c) (d) 

(e) (f) 
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Table 6.  Results of MSE restored images degraded by Gaussian noise with       and different blurs. 

image Cameraman Lena Butterfly Foreman House Leaves moon baboon Barbara Peppers 

9 × 9 uniform blur, σ = 0.5 

TwoIST 100.71 48.32 89.94 32.89 27.73 86.51 84.74 306.96 99.10 42.18 

SpaRSA 96.40 43.56 87.04 31.99 26.55 81.86 82.05 305.25 94.86 41.50 

Genetic 

Algorithm 
65.48 41.50 61.46 25.83 18.15 75.70 77.10 272.95 77.28 39.27 

Wavelet 

Frame 
Truncated  

64.58 42.27 59.13 22.97 18.36 75.00 76.75 275.47 76.93 40.18 

NCSR 64.72 41.69 52.13 22.14 18.48 65.17 78.00 248.50 81.67 41.31 

SSC-GSM 63.39 41.41 51.66 22.03 18.01 52.37 74.83 266.73 79.26 41.12 

Proposed 

method 
52.49 32.33 50.38 15.00 10.59 43.65 69.51 224.95 53.10 31.75 

Gaussian blur: (σ =1.6), Gaussian noise with σ = 0.5 

TwoIST 87.92 110.05 74.99 39.09 27.87 61.96 87.52 327.40 105.70 66.85 

SpaRSA 85.92 68.53 67.91 38.46 26.42 60.82 98.42 325.15 101.41 66.37 

Genetic 

Algorithm  
82.24 56.03 49.14 33.27 25.30 55.60 88.73 300.66 83.96 59.30 

Wavelet 
Frame 

Truncated  
81.68 53.78 50.86 26.48 23.34 54.46 92.27 293.14 85.52 58.89 

NCSR 82.61 51.77 52.25 26.98 21.63 46.46 96.18 299.97 95.08 59.99 

SSC-GSM 81.67 49.90 48.87 21.88 20.28 39.54 94.21 302.75 86.91 57.29 

Proposed 

method 
61.96 45.32 46.35 19.81 13.55 38.73 74.83 242.70 77.64 41.79 

Motion blur: fspecial (‘motion’, 20, 45),  σ = 0.5 

TwoIST 87.51 51.40 73.69 65.62 32.14 76.22 81.67 318.48 92.70 43.16 

SpaRSA 85.92 49.78 69.87 30.34 30.34 71.96 77.28 325.15 87.72 41.22 

Genetic 
Algorithm  

76.75 39.86 53.76 22.28 21.29 59.44 71.13 263.08 75.52 44.47 

Wavelet 

Frame 

Truncated  
75.35 39.54 52.41 21.38 20.66 58.89 68.72 260.66 79.13 34.84 

NCSR 79.63 36.99 52.73 22.70 21.09 51.53 71.13 266.73 72.29 36.23 

SSC-GSM 75.52 34.28 51.53 20.61 20.00 46.57 67.46 260.06 78.40 34.84 

Proposed 
method 

52.73 30.21 30.18 11.54 11.78 25.89 62.24 227.03 51.77 24.84 
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Table 7. Results of PSNR restored images degraded by Gaussian noise with       and different blurs. 

image Cameraman Lena Butterfly Foreman House Leaves moon baboon Barbara Peppers 

9 × 9 uniform blur,  σ = 0.5 

TwoIST 28.10 31.38 28.59 32.96 33.70 28.76 28.85 23.26 28.17 31.88 

SpaRSA 28.29 31.74 28.73 33.08 33.89 29.00 28.99 23.27 28.36 31.95 

Genetic 

Algorithm  
29.97 31.95 30.25 34.01 35.54 29.34 29.26 23.77 29.25 32.19 

Wavelet 
Frame 

Truncated  
30.03 31.87 30.41 34.52 35.49 29.38 29.28 23.73 29.27 32.09 

NCSR 30.02 31.93 30.96 34.68 35.48 29.99 29.21 23.59 29.01 31.97 

SSC-GSM 30.11 31.96 30.999 34.70 35.59 30.94 29.39 23.87 29.14 31.99 

Proposed 

method 
30.93 33.05 31.11 36.37 37.88 31.73 29.71 24.61 30.88 33.11 

Gaussian blur: (σ = 1.6), Gaussian noise with σ = 0.5 

TwoIST 28.69 27.71 29.38 32.21 33.68 30.21 28.71 22.98 27.89 29.88 

SpaRSA 28.79 29.77 29.81 32.28 33.91 30.29 28.29 23.01 28.07 29.91 

Genetic 
Algorithm  

28.98 30.65 31.22 32.91 34.10 30.68 28.65 23.35 28.89 30.40 

Wavelet 

Frame 

Truncated  
29.01 30.82 31.07 33.90 34.45 30.77 28.48 23.46 28.81 30.43 

NCSR 28.96 30.99 30.95 33.82 34.78 31.46 28.30 23.36 28.35 30.35 

SSC-GSM 29..01 31.15 31.24 34.73 35.06 32.16 28.39 23.32 28.74 30.56 

Proposed 
method 

30.21 31.57 31.47 35.16 36.81 32.25 29.39 24.28 29.23 31.92 

Motion blur: fspecial (‘motion’, 20, 45), σ = 0.5 

TwoIST 28.71 31.02 29.47 29.96 33.06 29.31 29.01 23.10 28.46 31.78 

SpaRSA 28.79 31.16 29.68 33.31 33.31 29.56 29.25 23.01 28.70 31.98 

Genetic 

Algorithm  
29.28 32.13 30.83 34.65 34.85 30.39 29.61 23.93 29.35 32.65 

Wavelet 

Frame 
Truncated  

29.36 32.16 30.94 34.83 34.98 30.43 29.76 23.97 29.49 32.71 

NCSR 29.12 32.45 30.91 34.57 34.89 31.01 29.61 23.82 29.54 32.54 

SSC-GSM 29.35 32.78 31.01 34.99 35.12 31.45 29.84 23.99 29.78 32.71 

Proposed 

method 
30.91 33.33 33.34 37.51 37.42 34.00 30.19 24.57 30.99 34.18 

 

As an example for inpainting, figures 11-14 show 

the restored image by the proposed method. As 

observed, the restored image is highly similar to 

the original one. 

In the next experiment, the effect of different 

percentages of losing pixels with additive 

Gaussian noise with 0.308033  and 1.0 

was investigated. As expected, as the percentage  

 

of losing the pixels increases, ISNR decreases, 

and MSE and CPU time increases. As an 

example, tables 9-11 show the results obtained 

for the Cameraman, Lena, and Lifting-body 

images, respectively. The same results were 

obtained for the other images, which seem to be 

unnecessary to be presented.    
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Figure 11. Results of inpainting: A) Original Image, B) degraded image, and C) restored image by proposed method. 

Table 8. Results of inpainting images degraded by Gaussian noise with          and Losing 40% of pixels. 

MSE ISNR (dB) CPU time(s) Iterations Method Image 

95.6 18.8 313 502 TwoIST 

Cameraman 90.7 19 194 500 SpaRSA 

85.7 19.2 27.5 73 Proposed method 

22.7 24.9 1340 502 TwoIST 

Lena 21 25.2 915 500 SpaRSA 

19.8 25.5 100 55 Proposed method 

30.2 7.96 1080 502 TwoIST 

Lifting-body 30.3 7.64 925 500 SpaRSA 

29.8 8.61 79.7 44 Proposed method 

112 17.4 214 502 TwoIST 

Coins 95.6 18.1 184 500 SpaRSA 

90.9 18.3 25.9 78 Proposed method 

37 21.7 1059 502 TwoIST 

Moon 35.3 21.9 1499 500 SpaRSA 

33.5 23.1 256 127 Proposed method 

85.1 15.3 105 502 TwoIST 

Tire 71.5 16 89 500 SpaRSA 

61.9 16.7 11.3 63 Proposed method 

26.3 24.1 803 502 TwoIST 

Peppers 25.7 24.3 559 500 SpaRSA 

22.6 24.9 72.6 61 Proposed method 

36.8 19.3 294 502 TwoIST 

Cir 36.2 19.4 204 500 SpaRSA 

35.4 19.5 6.57 6.57 Proposed method 

 

Table 9. Results of inpainting for cameraman image with different degradations. 

Gaussian 

noise with 

variance  

0.308033 

Method 
Losing 30% of  pixels Losing 40% of pixels Losing 50% of pixels 

CPU 

time(s) 

ISNR 

(dB) 
MSE 

CPU 

time(s) 

ISNR 

(dB) 
MSE 

CPU 

time(s) 

ISNR 

(dB) 
MSE 

TwoIST 374 66.5 19.2 313 95.6 18.8 404 144 17.9 
FISTA 274 62.7 19.5 194 90.7 19 274 135 18.2 

Proposed 

method 22.3 60.7 22.7 27.5 85.7 19.2 33.6 129 18.4 

Gaussian 

noise with 

variance  
1 

Method 
Losing 30% of  pixels Losing 40% of pixels Losing 50% of pixels 

CPU 

time(s) 

ISNR 

(dB) 
MSE 

CPU 

time(s) 

ISNR 

(dB) 
MSE 

CPU 

time(s) 

ISNR 

(dB) 
MSE 

TwoIST 315 68 19 476 101 18.5 532 143 18 
FISTA 291 64 19.3 274 93.2 18.6 288 139 18.1 

Proposed 
method 38.6 48.8 20.5 39.4 80.4 19.1 39.5 114 18.3 

 

 

 

A B C 
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Table 10. Results of inpainting for Lena image with different degradations.   

Gaussian 

noise with 

variance  

0.308033 

Method 
Losing 30% of  pixels Losing 40% of pixels Losing 50% of pixels 

CPU 

time(s) 

ISNR 

(dB) 
MSE 

CPU 

time(s) 

ISNR 

(dB) 
MSE 

CPU 

time(s) 

ISNR 

(dB) 
MSE 

TwoIST 134 61.3 19.3 273 93 18.8 158 122 18.5 
FISTA 115 60.8 19.3 175 89 19 119 115 18.6 

Proposed 

method 10.2 59.2 19.4 10.9 85.7 19.2 11 113 18.7 

Gaussian 

noise with 

variance  
1 

Method 
Losing 30% of  pixels Losing 40% of pixels Losing 50% of pixels 

CPU 

time(s) 

ISNR 

(dB) 
MSE 

CPU 

time(s) 

ISNR 

(dB) 
MSE 

CPU 

time(s) 

ISNR 

(dB) 
MSE 

TwoIST 233 62.4 18.95 141 92.3 18.3 159 119 17.9 
FISTA 157 57.9 19.0 167 84.8 18.5 157 112 18.1 

Proposed 

method 24.1 50.1 19.2 23.4 74.8 18.9 24.9 95.4 18.6 

 

Table 11. Results of inpainting for Lifting-body image with different degradations.   

Gaussian 

noise with 

variance  

0.308033 

Method 
Losing 30% of  pixels Losing 40% of pixels Losing 50% of pixels 

CPU 

time(s) 

ISNR 

(dB) 
MSE 

CPU 

time(s) 

ISNR 

(dB) 
MSE 

CPU 

time(s) 

ISNR 

(dB) 
MSE 

TwoIST 973 4.65 31.3 808 8.34 29.9 807 12 29.1 
FISTA 871 4.81 31.1 822 7.74 30.3 820 12.5 29.3 

Proposed 

method 38.7 4.28 34.05 46.3 7.44 30.4 57.7 11.4 29.4 

Gaussian 

noise with 

variance  
1 

Method 
Losing 30% of  pixels Losing 40% of pixels Losing 50% of pixels 

CPU 

time(s) 

ISNR 

(dB) 
MSE 

CPU 

time(s) 

ISNR 

(dB) 
MSE 

CPU 

time(s) 

ISNR 

(dB) 
MSE 

TwoIST 888 6.17 30 923 8.35 28.8 908 14.3 27.8 
FISTA 815 5.83 30.3 817 7.49 29 1150 12 28.2 

Proposed 

method 193 4.68 33.2 222 5.89 29.2 219 9.43 28.9 

  

  

 

 

Figure 12. Results of inpainting for Coins, Lena, Moon, and Peppers: A) Original Image, B) degraded image, and C) restored 

image by proposed method. 

 

   C                                                  B                                                A 

   C                                                  B                                                A    C                                                  B                                                A 

   C                                                  B                                                A    C                                                  B                                                A 
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Figure 13. Results of inpainting for Cir: A) Original 

Image, B) degraded image, and C) restored image by 

proposed method. 

Figure 14. Results of inpainting for Tire: A) Original Image, 

B) degraded image, and C) restored image by proposed 

method.   

 

5. Conclusions 

In this paper, a new image restoration method 

was proposed. It used variable splitting based 

upon the total variant regularizer to solve the 

optimization problem more rapidly. In the 

optimization problem, since the objective 

function includes two terms, one term being 

second-order and the other one being non-linear 

regularizer, the variable splitting was used. This 

caused the argument of each term to include an 

individual variable. For the new optimization 

problem to be equal with the initial one, the 

undetermined optimization problem was 

converted to the determined one, and then the 

new problem was solved using the Lagrangian 

augmented method. Since image piecewise 

smoothed, traditional regularizers such as L2-

norm affected restoration of edge sharpness and 

smooth the edges. Therefore, the total variant 

regularizer, due to maintaining the sharpness of 

the edges and removing the additive noise, was 

used. The image restoration was applied on two 

cases; deblurring/denoising and inpainting. In 

case of deblurring, different additive noises with 

A 

B 

C 

A 

B 

C 
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altered blurs, and for inpainting, different types of 

noises with different percentage of losing the 

pixels were used. The performance of the 

proposed method was compared with the TwoIST 

and SpaRSA methods for deblurring/denoising, 

and also it was compared with the FISTA and 

TwoIST methods for inpainting. The evaluation 

measures included required time for convergence 

(speed), ISNR, and MSE. The experimental 

results showed that the proposed method 

provided a higher ISNR, a lower MSE, and 

consequently, a higher quality of the restored 

image with higher speed of convergence 

compared to the TwoIST, SpaRSA, and FISTA 

methods for both the deblurring/denoising and 

inpainting cases.   
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 نشریه هوش مصنوعی و داده کاوی

 

 

 بازسازی تصویر با استفاده از جداسازی متغیر مبنی بر تنظیم کننده تغییرات کلی

 

 3سجاد محمد زادهو ،*2حسن فرسی، 1عفت صحراگرد

  .ایران، بیرجند، دانشگاه بیرجند، برق و کامپیوتر دانشکده مهندسی 1

 .ایران، بیرجند، دانشگاه بیرجند، برق و کامپیوتر دانشکده مهندسی 2

 .ایران، دانشگاه بیرجند، دانشکده فنی و  مهندسی فردوس 3

 11/12/2112 پذیرش؛ 12/11/2112 بازنگری؛ 22/11/2112 ارسال

 چکیده:

 رفتوهمخودوش و از دسوت نووایی کردنپر یکه به معن میراستا از ترم نیخراب است. در ا ریمطلوب از تصو ریآوردن تصوبدست ،ریتصو یهدف از بازساز

نباشود.  صیتشخ بلقا ست،یآشنا ن یاصل ریکه با تصو یمعمول ینندهیب یشود که برا یانجام م ایامر به گونه نی. اشودیاست استفاده م تالیجید رتصاوی

روش  نیو چنود یشنهادیشده و سپس با روش پ بیها، تخرکسلیاز پ یبا از دست دادن درصد گریو بار د زیو نو یابتدا با محو شدگ ریمقاله تصاو نیدر ا

 یخطو یمقالوه از روش بازسواز نیواستفاده شود. در ا یسازنهیبه یهالازم است تا از روش ریتصو یبازساز یانجام شده است. برا ریتصو یمتداول بازساز

بوا روش لاگرانو   د،یوجد یسوازنهیبه یشده و سپس مسئله یجداساز ،یسازنهیبه یمسئله ری. متغاست دهیاستفاده گرد یکل راتییتغ میبر تنظ یمبتن

 ریاز سوا م،یو هوم در یالوت تورم یشدگ و محو زیهم در یالت یذف نو یشنهادیکه روش پ دهدیانجام گرفته نشان م یهاشی. آزماشودیافزوده یل م

 .باشندمیبرخوردار  بهتری تیفیشده از ک یبازساز ریبوده و تصاو ترعیموجود سر یهاروش

 .لاگران  افزوده ،یکل راتییتغ یکننده میتنظ ز،یو نو ییذف محو شدگ ر،یتصو میترم ر،یتصو یبازساز :کلمات کلیدی


