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Abstract

The aim of image restoration is to obtain a higher quality desired image from a degraded one. In this
strategy, an image inpainting method fills the degraded or lost area of the image by an appropriate
information. This is achieved in such a way that the image obtained is undistinguishable for a casual person
who is unfamiliar with the original image. In this work, different images are degraded by two procedures;
one is to blur and to add noise to the original image, and the other one is to lose a percentage of the original
image pixels. Then the degraded image is restored by the proposed method and also two state-of-art
methods. For image restoration, it is required to use the optimization methods. In this work, we use a linear
restoration method based upon the total variation regularizer. The variable of optimization problem is split,
and the new optimization problem is then solved using the Lagrangian augmented method. The experimental
results obtained show that the proposed method is faster, and the restored images have a higher quality
compared to the other methods.

Keywords: Image Restoration, Image Inpainting, Deblurring, Total Variation Regularizer, Lagrangian

Augmented.

1. Introduction

Image restoration is known as one of the most
important image processing techniques. It is used
in various applications and areas such as medical,
astronomical imaging, image and video coding,
remote sensing, military, seismography, aerology,
and film restoration [1]. In space exploration, the
image restoration systems have been used by
researchers since 1960 [2]. Providing the desired
image from the degraded one is the aim of the
image restoration systems. An image restoration
system contains de-blurring, de-noising, and
preserving fine details [3]. The information and
details of the image are lost when the image is
captured. The restoration not only removes the
noise of images but also is widely used in blind
deconvolution, image inpainting, and various
image processing methods [4, 6].

Image restoration may contain  several
applications such as blind deconvolution, image
deblurring, image inpainting, and image
denoising. For each application, a special method
is used for image degradation and restoration.

This paper focuses on image inpainting and
deblurring. The image inpainting is a process of
reconstructing the corrupted or lost parts of the
image that is undistinguishable for a casual
person who is unfamiliar with the original image.
The image inpainting plays an important role in
various image processing applications such as
removal of scratches in old photographs and
videos, filling in missing blocks in unreliably
transmitted images, and removal of overlaid text
or graphics [5]. Image demolition is caused by a
non-adjusted camera, object and camera motion,
reflection from uncontrollable sources, and non-
ideal photographic and communication systems
[5]. The most common problems involved in
photography are the image blurring and noise.
The blurring occurs due to a localized averaging
of pixels, and significant in light limited
situations and resulting in a ruined photograph.
Image deblurring is the process of recovering a
sharp image from a corrupted one. The blurring
contains environmental blurs and motion blurs.
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The reason for the environmental blurs is a light
passing through the media environment with
different refractive indices. The motion blurs are
caused by the relative motion between a camera
and a scene [7]. In this paper, we assumed that
the motion blurs were distinguishable and
estimable, and that the noise was Gaussian
distribution with zero mean. The image
restoration system includes three important parts:
a) modelling the degraded image, b) formulating
the image restoration problem, and c) designing
an efficient and accurate method in order to solve
the image restoration problem.

In the modelling part, the blurring and noise
information is used to create a model of the
degraded image. In many recent research works,
a linear model is used to model the degraded
image. Common degradations include noise,
blurring, color imperfections, and geometrical
distortions. The image restoration problems can
be modeled using the following expressed linear
degradation model:

y =Bx+n, @

where, B is a Point Spread Function (PSF), X is the
original image, n is the noise matrix, and y
represents the degraded image. Note that PSF is the
degree to which an optical system blurs (spreads)
a point of light. PSF is the inverse Fourier
transform of Optical Transfer Function (OTF) in
the frequency domain. OTF describes the
Response of a linear, position-invariant system to
animpulse. OTF is the Fourier transfer of the point
(PSF). If PSF is specified (PSF is the same for all
image pixels), Equation (1) indicates the
deconvolution problem, otherwise it presents the
blind deconvolution problem.

Blind Image Restoration: This technique allows
the reconstruction of original images from the
degraded ones even when a little or no knowledge
is available about PSF. Blind Image Deconvolution
(BID) is an algorithm of this type [22].

Non-Blind Restoration: This technique aids in the
reconstruction of original images from the degraded
ones when the process of image degradation is
known, which means that the PSF information is
available [22].The image restoration problem is
more accurately expressed using a non-linear
regularizer. Therefore, in this work, it was tried to
use this regularizer. In (1), x and y indicate the
original and degraded images, respectively, and B is
a linear operator that represents a blur matrix in case
of blurring image or losing a number of image
pixels in case of inpainting image. In order to
construct the degraded image, it is required to add
the linear operator of B and noise to the original
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image. Depending upon the linear operator, B,
which includes the blur or the lost pixels, the image
restoration problem will differ. If B contains the
blur, the image restoration problem changes to the
deblurring, and if B indicates the lost pixels, it
converts to the inpainting.

In the formulating part, the information for the
degraded and original images is used to formulate
the objective function and then to remove the noise
and blurring from the degraded image. This
function is solved using the inverse function or
optimization problem. The image restoration
problem that is solved by convex optimization uses
unconstrained optimization, as follows:

min%||y—Bx||§+r¢(x), (2)

where, |[. ||, is p-norm, and is given by:

[All, =(in21|ai|"j% 3)

where, n is the number of matrix element A after
reshaping.

The optimization problem contains two parts: data
fidelity and smooth regularizer. In a practical
research work, the regularizer is completely unable
to model the characteristic of the original image.
Therefore, we should compromise between the
regularizer and the data fidelity. For instance, in
figure 1(a), the cameraman image is degraded by
the 9*9 uniform blur and additive Gaussian noise
with zero mean. Figure 1(b) shows that the
regularizer has a small effect, and the output noise
is amplified for a very small regularizer parameter
(t = 0.001). On the other hand, figure 1(C) shows
that the large regularizer parameter (t = 10)
provides a much smoothed image and removes the
edges of image. Thus it is required that the
regularizer parameter is appropriately selected such
that the aforementioned problems are avoided

Figure 1. a) Degraded image by 9*9 uniform blur and
additive Gaussian noise with zero mean b) restored image

by small regularizer parameter (Tt = 0.001) c) restored
image by large regularizer parameter (t = 10).
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2. Related works

The image restoration methods are classified into
three categories: 1) methods bas

ed on filtering 2) methods based on regularizer, and
3) methods based on Bayesian restoration. The
image processing systems normally use a low-pass
filter to model the blurring of the image. The filter-
based methods contain the inverse filtering, pseudo-
inverse filtering, and wiener filtering.

Equation (4) results in the restored image using (1)
in the Fourier domain [2]:

=fl[X(mi,mj)+Mj

B((oi,mj)
where, =1 indicates the inverse Fourier transform.
Y(wi,(oj), B(o)i,(x)j), and X((oi,coj) are 2D
Fourier transforms of the degraded image, the blur
PSF, and the original image, respectively. The
simple theory and low complexity are advantages of
the inverse filtering methods. However, the inverse
filtering method provides an accurate restoration
image when there is not additive noise in the
degraded image but the degraded image normally
contains an additive noise in practice. Therefore, in
a noisy degraded image, the inverse filtering
method provides a weak performance and
unacceptable results [2].
The pseudo-inverse filtering method uses the
matrix-vector form of the degraded image in which
B is a non-invertible matrix. If the columns of B are
lineally independent, (1) can be modified and
approximated using pseudo-inverse solvation as [8]:
x=(B"B) " BTy. (5)
The mentioned advantages of inverse filter can be
enumerated for the pseudo-inverse filter. This
method provides a better performance than the
inverse method, although it is unable to provide
acceptable results for a noisy degraded image [8].
As the name implies, the median filter is a statistics
method. In this method, the median of the pixel is
found, and then the pixel is replaced by median of
the gray levels in their neighborhood of that pixel.
The median filter is used to remove the salt and
pepper noise [23].
The Wiener filter method is based upon
optimization of Mean Square Error (MSE), and it
provides a better performance than the inverse filter.
This filter is the base of many new restoration
methods because it is an optimal filter to minimize
MSE. For example, the edge mapping Wiener filter
has been proposed to preserve the edges and the

(4)
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details of images. The collaborative Wiener filter
has been reported to remove image noise in a sparse
3D transform domain [9]. Although the Wiener
filter is known as the most optimum method for
minimization of MSE and can be efficiently solved
in frequency domain, it is unable to provide a high
quality for the restored image.

The regularization methods were developed to
make the image restoration problem well-posed by
introducing information about the original image. In
this situation, there is a large number of possible
solutions; additional information is required to
choose the correct solution. Finally, since
discontinuities cause instability in many algorithms,
the solution must depend continuously upon data.
The regularization methods solve this problem
using the prior information about the image to
calculate the estimate. It requires the selection of a
regularization parameter, o, which controls the
trade-off between fidelity to measurements and to
the prior information.

The regularizer-based method is the second
category of the image restoration methods. This
method repeatedly combines additional
information, and a regularizer solves the restoration
problem. These methods, such as Tikhonove-Miller
regularizer, are known as a framework to well-pose
the restoration problem. The traditional regularizers
such as L2-norm adversely affect the sharp edge
restoration because the images are piecewise
smoothed. Therefore, the advanced regularizers
model the characteristics of the original image using
non-linear penalty functions [10].

The Bayesian approach provides the means to
incorporate prior knowledge in data analysis. The
Bayesian analysis revolves around the posterior
probability, which summarizes the degree of one’s
certainty concerning a given situation. The Bayes’s
law states that the posterior probability is
proportional to the product of the likelihood and the
prior probability. The likelihood encompasses the
information contained in the new data. The prior
expresses the degree of certainty concerning the
situation before the data is taken. Although the
posterior probability completely describes the state
of certainty about any possible image, it is often
necessary to select a single image as the ‘result’ or
reconstruction. A typical choice is to choose an
image that maximizes the posterior probability,
which is called the MAP estimate. Other choices for
the estimator may be more desirable, for example,
the mean of the posterior density function. In
situations where only a very limited data is
available, the data alone may not be sufficient to
specify a unique solution to the problem. The prior
introduced with the Bayesian method can help to
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guide the result toward a preferred solution. As the
MAP solution differs from the maximum likelihood
(ML) solution solely because of the prior, choosing
the prior is one of the most critical aspects of the
Bayesian analysis.

The Bayesian restoration methods model the
restoration problem using the probability theory.
The Bayesian methods combine additional
information of new models of the image with the
prior image, and can be iteratively solved. High
computational cost and being unable to provide a
specific ~ optimization  framework are the
disadvantages of the Bayesian methods [11].

In this work, we used the regularizer method to
restore the image. There are several methods
available to solve the linear inverse optimization by
minimization of the objective function, which is
formulated as:

f(x)=mxin%||y—Bx||z+r¢(x) (6)

where, B is a linear operator and ¢(x) is a

regularizer [4]. This optimization equation should
find the best compromise between the candidate

estimated, X, and the obtained data of||y — Bx||.

The undesired degree of equation is distinguished
by the ¢(x) parameter, and the relation between

two parts of (6) is identified by regulating parameter
(7). The unsmooth and non-quadratic regularizers

such as the Total Variant, TV, and Ip—norm are

used in various image processing applications [8]. If
B = I, where | is a unit vector (identity matrix), the
denoising problem is confronted. If @ is suitable
and convex, the optimization problem is strictly
convex and has a unique minimizer. Therefore, the
denoising function is formulated by:

v.(y) =argmin—_x - + () @

For example,

v, (y) =soft(y, 1) if
o) =[x], = >_.|x;| (the L;norm).

soft(w, t) =sign(w).(|w| 1),

0 if a<0

a if a0

where (a), :{
The soft function is shown in figure 2.

The Iterative Shrinkage Thresholding (IST) methods
have been reported to efficiently and simply solve
the sparsity-based restoration problems. These
methods have firstly been developed as a proximal
forward-backward iterative scheme in [12, 13]. In
the IST method, x in the k+1 step is obtained by:
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Xk+1 _ \V% (Xk _ai(BT (Bxk _y)) (8)

SOFT THRESHOLD FUNCTION

soft(w, T)

-10 -5 1] =1 10
w

Figure 2. Soft function.

These methods are suitable and efficient when

multiplication of B and B" is dissolvable. These
methods  converge to  minimum  when

||B||§ /2<alk <+o0.

Another method is Two-step Iterative Shrinkage
Thresholding (TwolST), in which each current
iterate incorporates to the previous two iterates. The
TwolIST method is faster than the IST method. In
the TwolIST algorithm, each iteration depends upon
the two previous iterates rather than only on the
previous one (as in IST). This algorithm may be
seen as a non-linear version of the so-called two-
step methods for linear problems. TwoIST was
shown to be considerably faster than IST on a
variety of wavelet-based image restoration
problems; the speed gains can reach up to two
orders of magnitude in typical benchmark problems
[14].

An improved two-step variant of the IST method is
called Fast IST Algorithm (FISTA). FISTA is faster
than the TwolIST and IST methods. The non-
smooth variation of Nesterovs optimal gradient-
based algorithm is used in FISTA [15].

Sparse Reconstruction by Separable Approximation
Algorithm (SpaRSA\) is another fast variant of IST
algorithm. This method uses a different oy, in each
iteration, which is updated by oy (where 1/ay is a
step size) [12]. This method has been shown to
outperform standard IST by selecting an aggressive
step-size at each iteration. When the slowness is
caused by using a small value of the regularization
parameter, the continuation schemes have been
found quite effective in speeding up the algorithm.
The key observation is that the IST algorithm
benefits significantly from warm-starting, i.e. from
being initialized near a minimum of the objective
function.

Neural Network Approach: The neural network is a
form of multi-processor computer system with
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simple processing elements interconnected group of
nodes [29, 30]. These interconnected components
are called neurons, which send message to each
other. When an element of the neural network fails,
it can continue without any problem by their
parallel nature [24].

Block-matching: This is employed to find blocks
that contain high correlation because its accuracy is
significantly impaired by the presence of noise. We
utilize a block-similarity measure that performs a
coarse initial denoising in local 2D transform
domain. In this method, the image is divided into
blocks and noise or blur is removed from each
block [23].

Since the reported methods in [25, 26] are based
upon non-blind de-convolution and use grayscale
images, same databases, and evaluation measures,
the proposed method is compared with them. The
reported method in [25] is based upon the genetic
algorithm, and is briefly given as follows:

Step 1: Get Blurred Image (initial image).

Step 2: Apply Fast Fourier Transform on blurred
Image.

Step 3: Apply Inverse Fourier Transform, and
create an initial population for applying genetic
algorithm .

Step 4: Calculate the value of objective functions
for the current population.

Step 5: Apply the cumulative fitness assignment
criteria and selection procedure. Use genetic
algorithm for selection of new population .

Step 6: Find the best individuals.

Step 7: Apply cross-over and Mutation on the new
population (obtained in Step °) in order to create a
new population .

Step 8: Get the restored image using the best
individuals (obtained in Step 6).

This method tries to maximize all the objectives.
We proposed a fitness function criterion that is
based upon individual objectives such as intensity,
entropy, and edges. After evaluating fitness of all
individual objectives (entropy, edge, and intensity),
the combined fitness or cumulative fitness is
calculated. The proposed method evaluates and
maximizes all the objectives. This means that the
image restoration criterion is defined as a function
of entropy, edges, and intensity.

Edges can be defined as rapid changes in image
intensity over a small region. In order to measure
these changes, one method is to use discrete
difference operators. It consists of two masks that
calculate the changes in both directions, i.e. x-
direction and y-direction.

We took different images with the same size. The
maximum number of generation to run the program
was chosen as 20; this also works as a criterion to
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end the evolution. Mutation has to be taken as
simple mutation having probability = 0.1, arithmetic
cross-over has to be taken having the cross-over
probability = 0.8, selection was taken as the
tournament selection, and finally, the population
size had to be taken as 48.

The reported method in [26] is based upon the
Wavelet transform, and is given by:

Step 1: Obtain an initial de-blurred result via the
IDD-BM3D method, which will be used as the
reference image for support estimation.

Step 2: Solve the resulting truncated £ -regularized
problem.

In this work, we just took the anisotropic £1 norm
as an example to illustrate the benefit of new
regularization, though it can be also readily
extended to the isotropic £1 norm.

Ones just solved a plain €1-regularized convex
optimization problem, i.e. each frame coefficient
was treated equally and penalized uniformly. In this
case, it generates the bias, which means that the
large coefficients are penalized more heavily than
the smaller ones. Therefore, the customized £1-
regularized model often achieves a sub-optimal
performance. In practice, if the positions of the
frame coefficients with large non-zero absolute
values (we term the locations of large frame
coefficients in magnitudes as support information)
are known, we need to remove these coefficients
out of the £1 norm and to use a truncated £1 norm
instead in the restoration model.

The Gaussian Scale Mixture (GSM) model is
developed using the simultaneous sparse coding
(SSC), and its applications into image restoration
are explored. It is shown that the variances of
sparse coefficients (the field of scalar multipliers
of Gaussians) can be jointly estimated along with
the unknown sparse coefficients via the method
of alternating optimization [27].

The so-called non-locally centralized sparse
representation (NCSR) model is as simple as the
standard sparse representation model, while our
extensive experiments on various types of image
restoration  problems including denoising,
deblurring, and super-resolution validate the
generality and state-of-the-art performance of the
proposed NCSR algorithm.

The patches of image x are clustered into K
clusters and a PCA sub-dictionary k is learnt for
each cluster. For a given patch, it is firstly
checked which cluster it falls into by calculating
its distances to means of the clusters, and then the
PCA sub-dictionary of this cluster is selected
[28].The mentioned methods are unable to
converge very fast, and therefore, in this paper, we
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propose a new method to increase the speed and
also improve the quality of the restored image.

3. Proposed method

We presented a new algorithm to solve the
optimization formulation of regularized image
restoration. The approach that can be used with
different types of regularization is based upon the
variable splitting technique. Then it solves the
problem with the Lagrangian augmented
optimization.

original

ariginal

Blurred and noisy

Figure 3. Degraded Cameraman and Lifting-body: A)
Original Image and B) degraded image with uniform blur
and Gaussian noise.
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3.1. Construction of degraded
deblurring and inpainting
Assume that the aim of the proposed method is to
degrade an image with a size of N*N by an m*m
uniform blur, where m < N. First, a vector with the
length of N is constructed so that the first m
elements have the value of 1/m and the rest of the
elements are zero. Next, the vector obtained is
shifted to left with the size of (m-1)/2, and then it is
multiplied by its transpose. Therefore, the m*m
matrix is constructed, which is called the blur
matrix. In order to obtain the blurred image, it
requires to multiply the Fourier transform of the
blurred matrix by the Fourier transform of the
original image, and then to use inverse Fourier
transform. The matrix obtained is Bx indicated in
(1). Next, a desired noise is added to Bx, and
therefore, the blurred/noisy image is constructed. In
order to construct the degraded image for the
inpainting case, it requires losing a number of
pixels. Losing the pixels is randomly performed. In
order to obtain the degraded image in (1), the
random matrix is constructed such as a percentage
of the original image pixels that is lost.

Note that the size of random matrix is the same as
the original image. Some degraded images are
shown in figures 3 and 4.

images for

3.2. Solving problem of Lagrangian augmented
optimization
In order to obtain the estimated image, X, (2) is
used. The proposed method is based upon variable
splitting for an optimization problem. The objective
function in (2) is the sum of two functions. The
main idea in the proposed method is to split the
variable of x into the variable pairs of x and v such
that each of them is an argument of one part in the
objective function. Then the objective function is
minimized under one constraint, which results in
being equally the new problem with the problem in
(2), given by:

1
min = [Bx -y, +7(v)
Ve . (9)

subject to x =v

The new determined optimization problem is solved
by the Lagrangian augmented method. The
formulation of undetermined optimization for
regulated image restoration is given by:

1
f, (X) = E”BX _y”§

f, (x) =9(x)
G=1 ie v=Gx

(10)
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Original
s

Figure 4. Degraded Cir and Peppers: A) Original Image
and B) degraded image with losing 40% of pixels and
Gaussian noise.

The formulation of the determined optimization
using variable splitting is given by:

. 1 2
objective fun = min E”BX =y, + o (v) 11)

subject to x =v

|objective fun (k +1) — objective fun (k)|

In order to solve the determined optimization
problem, it is better to use the Lagrangian
augmented method, which is given by:

1 2 2
(xk+1,vk+1)earg—IIBx—yII2 +r¢(v)+£||x—v—dk||2
X,V 2 2
(12)
Oan = A = (CXg ~Vieyn)
where, pis a positive value that is given by the

user. It has been shown that the performance of the
least-squares penalty is better than the Lagrangian
method. In addition, the Lagrangian augmented
method is converged under more principle
conditions. Therefore, we propose a new method in
order to solve the optimization problem, as follows:

First, k is set to zero, and p >0, d,, and v, are set

to the initial values that are zero, and then it requires
to solve the optimization problem given by:

X, =arg min||BX—y||§ +“”X_Vk —dk”z 13

Here, X,,,is a strictly convex function, which has

to be minimized. This corresponds to a linear
system that is given by:

X(o=(B'B+ul) (BYy+p(v, +d,))  (14)

By obtaining x,,, from the previous step, it is

inserted in (15), and therefore, it requires solving
the optimization problem as:

V,,, =argmin r¢(v)+%||xk+l—v—dk||§ (15)

This can be solved using (7). Then d, _, is obtained

by X,.,, and v, , inthe previous step:
d., =d, _(Xk+l _Vk+1) (16)

Next, one is added to k (k = k + 1), and the stop
criterion is measured, which is given by:

A7)

< tolerance

|objective fun (k)|

This criterion is equal to the changes of the
objective function. If the stop criterion is satisfied,
the procedure is stopped; otherwise the previous
steps are repeated until the stop criterion is satisfied.

3.21. Variable splitting:  Consider  the
undetermined optimization problem, which contains
two terms:

minf, (x)+f,(9(x)), (18)
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where, the g:R" — R" variable splitting includes

construction of a new variable as g(x) =V that
corresponds to a new optimization problem, given
by:

min f,(x)+f,(Vv) (19)

stig(x)=v

This is equal to the optimization problem in (18).
We use the variable splitting method reported in [7]
to provide a fast restoration image. In [4, 10], the
optimization problem in (19) is changed to (20)
with consideration of the second order penalty and
the periodical minimization with respect to x and v.

min £+, (v)+ o () -vi;

The function of variable splitting is as the one
reported by Bregman [18, 19]. This directly solves
the determined optimization problem. It has been
shown that when g is a linear function, i.e.

g(x) = GX, the Bregman’s method is similar to the
Lagrangian augmented method.

3.2.2. Lagrangian augmented: Consider the
optimization problem with constraint as follows:

minE(z)

zeR" (21)
sStHz-b=0
X
where, b =0, Z:[V} and H=[G -I].
In this case, the Lagrangian function is given by:
2
L) =EG) T (ot ¥ oy (22)

where, A is a value for the Lagrangian coefficient,
and y > 0 is called the penalty parameter. In this

method, L, (A1) is minimized with respect to z
and maintaining A as a constant value, and then A
is updated and the minimization of LA(Z,k,u) Is

repeated. This procedure continues until the
convergence criterion is satisfied [20].

3.2.3. Variable splitting using Lagrangian
augmented method: Consider the variable splitting
problem given by:

min R(X) +td(v) st v=Gx. (23)
where, R(.) is the fidelity term that guarantees that x
is compatible with the observed y.

In this case, the Lagrangian augmented method is
given by:

(20)

Lﬂ (X,V,u)= R (X)+r¢)(v)+uT (Gx—v)+%||V—Gx||z

20

(24)

where, [ is the Lagrangian coefficients vector and is
a constant that is selected by a user [21]. We use the
Gauss—Seidel method for minimization. Therefore,
the minimization problem is formulated as:

X, =argmin L (X,.v,.1,), (25)
Vi, =arg min L (X,.v,.0 ), (26)
Fi = P (GXy Vi) - (27)

3.2.4. Total variation regularizer: Total variation
regularizers, due to having the ability for noise
cancellation and maintaining image edges, are
widely used in the image restoration methods [7].
These regularizers have improved under this
assumption that the image has bounded variations.
If the variations of the image inside are bounded,
then the sum of the absolute variations of the image
inside will be limited.

Therefore, the total variation regularizers are
designed to restrict the variations of the image
inside. The variation is defined by:

6(06) = 37,0, 7,00,

where, V,(x,) and V,(X

vertical and horizontal difference in the i pixel,
respectively. On the other hand, the sparsity
regularizer causes the transform coefficients of the
restored images to be scattered. These regularizers
reduce the noise without any destructive effect on
the edges.

(28)

) are the first-order

w

3.2.5. Calculation of X, ,: In (14), the initial vales
for x,,d,, and v, are set to zero. Thus in (28),
¢(V,)that is related to the total variation
regularizer can be solved and [[Bx, Y|, can be
calculated using (3). The initial objective function is
then calculated using ¢(v,) and [Bx,~y[.. In

what follows, calculation of X

explained for the
inpainting problems.

IS distinctly
deblurring/denoising  and

A) Calculation of X, , for deblurring/denoising:
First, the absolute of Fourier transform of blur
matrix, B, is obtained and each element is squared
and added with
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-1 29
(B"B+pul) (29)
The matrix elements obtained are then inversed.
Next, the Fourier transform of B"y+p(v, +d,)

is obtained and multiplied by (20). x,,, is the
inverse Fourier transform of the resulting matrix.

B) Calculation of x,,, for inpainting: In order to

obtain the inverse of (B"B+pl), the Sherman-

Morrison-Woodbury equation is used, which is
given by:

a1 1
(BHB+MI)1=—(I——B“B) (30)
pl  u+l
where, BHB is a number of zeros in the main

diagonal. These zeros indicate the lost positions in
the image.

Thus  X,,,

B"y +u(v, +d,) with (30).

is obtained by multiplication of

3.2.6. Calculation of v, ,: v, , can be calculated

by the Moreau proximal mapping for x,,,—d,.
This means that:

Vi :W(Xkﬂ_dk)’ (31)
where, y is given by equation (9). If this mapping
is accurately calculated in the closed form, then it is
guaranteed that the proposed method is converged.

4. Results

All experiments were executed using the
MATLAB software, applied on a personal
computer containing a microprocessor of Intel
(R) i5CPU:2.53 GHz and 4 GB RAM. The value
for p in (13) was selected as 10% of the

regularizer parameter or t/10.

The number of iterations, the processing time
(CPU time), ISNR, and MSE were used as the
evaluation measures. We used various images
such as cameraman, Lena, moon, lifting-body,
tire, coins, and peppers. For blurring, we used a
uniform blur with a size of 9*9 and white normal
Gaussian noise with different variances, and for
inpainting, 30%, 40%, and 50% of the original
pixels were lost.

4.1. Evaluation measures

In order to compare the performance of the
different image restoration methods, the
quantitative measures that evaluate the quality of

the restored image are very important. These
measures include Improvement in SNR, ISNR, and
Mean Square Error (MSE), which are calculated by

[2,9]:
2
X —
ISNR =10log,, Lyk”z (32)
ZK HX — Xk
’ (33)

MSE =ﬁ§”x—§<k

where, M and N are the image dimensions, X is the
original image, and y, and X« are the observed and

the estimated image in the k™ iteration. In this
work, in addition to these two measures, the
processing time was also considered, which
indicates the speed of convergence for capability of
the methods.

4.2. Indexing results

4.2.1. Results obtained for deblurring

Table 1 shows the evaluation measures for the
aforementioned images. The results obtained
show that the proposed method improves ISNR,
decreases MSE, and reduces the processing time
considerably compared to the TwolST and
SpaRSA methods.

Table 1. Results of deblurring images degraded by
Gaussian noise with ¢ = 0.3080 and Uniform blur 9*9 in

size.
CPU
Image Method Iterations time ISNR MSE
o @8
TwoIST 69 162 763 941
Cameraman  SPARSA 123 257 786 892
Proposed
20 367 843 782
method
TwolST 46 511 656 374
Lena SpaRSA 56 52 636 391
Eﬁg’ﬁed 16 131 759 295
TwolST 4 453 864 123
- SpaRSA 53 495 888 116
Hfting-body fnrgt%‘c’fded 24 203 104 814
TwolST 61 138 887 544
Coins SpaRSA 115 231 871 565
:gtﬂcc’)sded 22 406 975 445
TwoIST 25 131 386 628
Moon SpaRSA 22 914 373 702
Proposed 618 391 674
method ’ ) ’
TwolST 51 555 793 318
SpaRSA 78 734 797 301
Peppers Proposed g 148 845 27
method ) )
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As observed in table 1, for instance, for the Lena
image, ISNR was improved by the proposed
method 1.03 dB and 1.23 dB compared to the
TwolST and SpaRSA methods, respectively, and



Farsi et al./ Journal of Al and Data Mining, Vol 6, No 1, 2018.

the processing time was nearly 25% of the one
provided by the TwolIST and SpaRSA methods.
In addition, MSE obtained by the proposed
method decreased 10 units. For the Lifting-body
image, the processing time required by the
proposed method was less than half of the ones
resulted by the other two methods and ISNR
improved around 1.5 dB. In addition, MSE
decreased to 3.46 and 4.16 compared to the
SpaRSA and TwolST methods, respectively.

Figure 5 shows the objective function indicated in
(8) for the aforementioned images. As observed,
the objective function compared to the SpaRSA
and TwolST methods is faster converged. For

Objective fnction 0, S\V—Ax\ﬁﬂ, T i)

——TwelST

"

instance, for the cameraman image, the objective
function is converged to the final value in less
than 4 s, whereas 30 s is required for the other
two methods at least. For the Lena image, the
proposed method is converged in 3 s, whereas the
SpaRSA and TwolST methods require 30 s and
50 s, respectively, for convergence. The same
results can be observed for the other images. As
an example, figures 6-9 show the restored image
by the proposed method. As observed, the blurred
effect has been highly removed in the restored
image by the proposed method.

Objective function 0.5[y- A+ 1, (=1
T T T T

10 == SpaRSA
———Propesed method

Objective function 0.5y~ + & _ (<)

T T
—TwoIST

— TwolST T

== -SpaRSA 5
~ = ~Proposed method 10 — = -SpaRSA -

~~~Proposed method

(d)

(©)

L L L L |
o 1m0 20 30 40 20 60

——TwolST

——-SpaRSA
Proposed method

Figure 5. Output of deblurring for objective function related to equation (8) obtained by TwolST, SpaRSA, and proposed
method for images: A) Cameraman, B) Lena, C) Lifting-body, D) Coins, E) Moon, and F) Peppers.
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Figure 7. Deblurring results for Cameraman, Coins, Lena, and Peppers: A) Original Image, B) degraded image, and C)
restored image by proposed method.

In the next experiment, the effect of different
blurs with additive Gaussian noise (o = 0.3080)
was investigated. The results obtained are shown
in table 2. As observed, the processing time (CPU
time), ISNR, and MSE were improved compared
to the other methods. It was also observed that the
best results with respect to ISNR and MSE were
achieved by uniform blur with a size of 9*9. In
addition, the results obtained for the case of
Gaussian blur with o =1.41 were better than the
one withco =2.83 . In the case of blur matrix in

which h,=U(@+?+) forij=7..7  the results

obtained provided higher ISNR and lower MSE
and CPU time compared to the other cases.

In another experiment, the effect of different
additive noises with uniform blur with a size of
9*9 was examined. As expected, the results
obtained show that when the variance of
Gaussian noise increases, ISNR decreases, MSE
increases, and the quality of the restored image
degrades. As an example, tables 3-7 show the
results obtained for different images using
different blurs and Gaussian noise with o=
0.3080, o = 0.5,and o = 2.0.

In tables 5 and 7, the values for Peak Signal for
the restored images by the proposed method and
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other methods are shown. The PSNR values by
the proposed method are higher than the results
obtained by the TwolST, SpaRSA, Genetic
Algorithm, Wavelet Frame Truncated, NCSR,
and SSC-GSM methods. As shown, the results
obtained by the proposed method are better in
terms of the Peak Signal to Noise Ratio.

In tables 5 and 6, the MSE values for the restored
images by different images are shown. The MSE
values by the proposed method are less than the
results obtained by the TwolST, SpaRSA,
Genetic Algorithm, Wavelet Frame Truncated,
NCSR, and SSC-GSM methods.

Similar results were obtained for the other
images, which seem to be unnecessary to be
shown.

4.2.2. Results obtained for inpainting

In the inpainting problem, the aim is the
restoration of the degraded image in which a
percentage of the pixels has been lost and noise
has been added. In this experiment, 40% of the
image pixels were lost and a normal white
Gaussian noise was added to the image. For
evaluation, the aforementioned images were used
and the proposed method was compared to the
TwolIST and FISTA methods. The results
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obtained were shown in table 8. As observed, the
proposed method resulted in a higher ISNR, a
lower MSE, and also a shorter processing time
compared to the TwolST and FISTA methods.
For instance, for the Lena image, the processing
time was almost 10% of the one provided by the
other two methods and improved ISNR and MSE
at least 0.3 dB and 1.2, respectively. For the
lifting-body image, the processing time was
around 1000 s and 845 s less the ones obtained
for the TwolST and FISTA methods,
respectively. Also ISNR obtained by the
proposed method was 0.64 dB and 0.97 dB higher
than the ones resulted by the TwolST and FISTA
methods, respectively. In this case, the proposed
method provided 0.4 and 0.5 reduction in MSE

ariginal

compared to the FISTA and TwolST methods,
respectively. The same results could also be
concluded for other images.

Figure 10 shows the objective function resulted
by inpainting for the aforementioned images. As
observed, the resulting objective function by the
proposed method can converge to the final value
in a shorter time compared to the TwolST and
FISTA methods. For instance, in figure 10(a),
which is related to the cameraman image, the
objective function converges in 50 s, 200 s, and
300 s for the proposed method, TwolST, and the
FISTA method, respectively. The same results
can be observed for the other images. Therefore,
the objective function by the proposed method
converges faster than the other two methods.

original

Blurred and noisy

Blurred and noisy

Estimated using Proposed method

Figure 8. Deblurring results for Lifting-body: A)
Original Image, B) degraded image, and C) restored
image by proposed method.

Estimated using Proposed method

Figure 9. Deblurring results for Moon: A) Original
Image, B) degraded image, and C) restored image by
proposed method.
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Table 2. Results of restored images degraded by Gaussian noise with ¢ = 0.3080 and different blurs.

Uniform blur with size of 9*9

Gaussian blur with ¢ =1.41

mage Method CPUtime(s) __ ISNR (dB) MSE CPUtime(s) __ ISNR (dB) MSE
TwolST 62.45 5.24 94,1 26.59 3.65 113.27
Cameraman SpaRSA 64.5 5.92 89,1 22.73 3.71 107.78
Proposed method 11.01 8,43 78,2 1.45 4.19 92.76
TwolST 51,1 6,56 374 25.4 2.87 99.1
Lena SpaRSA 52 6,36 39,1 26.7 2.34 63.7
Proposed method 13,1 7,59 29,5 3.9 3.42 49.8
TwoIST 45,3 8,64 12,3 19.9 4.52 34.1
Lifting-body SpaRSA 49,5 8,88 11,6 21.4 4.69 28.9
Proposed method 20,3 10,4 8,14 11.9 5.73 22.7
TwolST 13,8 8,87 54,4 16.2 4.95 67.7
Coins SpaRSA 23,1 8,71 56,5 29.5 4.99 65.4
Proposed method 4,06 9,75 44,5 1.36 5.74 50.2
TwolST 13,1 3,86 68,2 17.7 1.27 79.4
Moon SpaRSA 9,14 3,73 70,2 24.01 1.31 90.7
Proposed method 6,18 3,91 67,4 1.47 2.07 70.9
TwoIST 55,5 7,73 31,8 29.78 3.75 44.8
Peppers SpaRSA 73,4 7,97 30,1 36.6 3.81 42.9
Proposed method 14,8 8,45 27 4.39 4.49 37.7
Gaussian blur with o = 2.83 Blur matrix h,=1/(1++{) forij=-7...7
CPU time(s) ISNR (dB) MSE CPU time(s) ISNR (dB) MSE
TwolST 24.21 2.57 79.7 19.25 4.64 100.6
Cameraman SpaRSA 23.18 2.69 69.8 17.45 4.61 98.2
Proposed method 2.67 3.35 58.98 1.41 6.05 81.3
TwolST 23.64 1.36 110 19.47 3.45 453
Lena SpaRSA 25.01 1.70 75 24.88 3.49 43.7
Proposed method 4.12 3.29 50.45 3.25 6.21 35.4
TwolST 15.89 3.44 59.2 14.35 5.41 38.3
Lifting-body SpaRSA 19.46 3.55 54.3 15.18 5.56 321
Proposed method 12.10 5.41 43.9 9.42 8.35 21.6
TwolST 14.75 3.81 79.1 13.89 4.99 60.7
Coins SpaRSA 23.40 3.86 63.7 22.70 5.01 62.9
Proposed method 2.41 5.24 46.7 1.32 8.31 55.4
TwolST 15.14 0.904 95.1 12.36 2.35 71.3
Moon SpaRSA 18.95 0.915 91.35 16.87 2.47 84.7
Proposed method 2.56 1.86 79.4 1.48 4.95 61.6
TwolST 21.27 2.62 76 21.12 4.26 39.4
Peppers SpaRSA 30.49 2.76 75.2 28.64 4.95 40.8
Proposed method 5.17 4.24 60.9 3.39 7.12 30.7

Table 3. Results of restored cameraman image degraded by uniform blur with size of 9*9 and different noises.

MSE ISNR
. . . . . . 1an
variance 2 variance 1 0.308033 variance 2 variance 1 0.308033
TwolST 1.07" 10* 166 148 94,1 -10.6 5.17 5.21 7.63
SpaRSA 2.86x10° 141 138 89,1 -4.83 5.87 5.95 7.86
Wiener filter 1.11x10*  8.93x10°  8.93x10° 8.93x10° -10.7 0.629 0.633 1.28
Inverse filter 1.06x10°  2.5x10° 5.5x10° 2.4x10° —-60.5 -35.8 -30 -14.6
Proposed method 1.99x10° 134 132 78,2 -3.27 6.08 6.14 8.43

Table 4. Results of restored Lena image degraded by uniform blur with size of 9*9 and different noises.

MSE ISNR
Method Poisson Gaussian Gaussian Gaussian noise Poisson Gaussian Gaussian Gaussian noise
noise noise with noise with with variance noise noise with noise with with variance
variance 2 variance 1 0.308033 variance 2 variance 1 0.308033
TwolIST 7.14x10° 101 100 37,4 -10.6 5.42 5.45 6,56
SpaRSA 1.79x10° 100 99.6 39,1 -4.83 5.45 5.48 6,36
Wiener filter 9.41x10° 3.94x10° 3.94x10° 3.94x10° -10.7 0.435 0.438 0.891
Inverse filter 447x10°  1.22x10°  7.23x10° 4.91x10* —60.5 -35.4 -30.31 -15.01
Proposed method  1.27 x10° 95 80.2 29,5 -3.27 5.92 6.08 7,59
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Table 5. Results of MSE and PSNR restored images degraded by Gaussian noise with ¢ = 2 and different blurs.

Genetic Wavelet Frame SSC- Proposed
Image Blur TwoIST ~ SpaRSA Algorithm Truncated NCSR GSM method
PSNR
9 x 9 uniform blur 25.45 25.97 27.94 27.97 28.62 28.82 28.89
Gaussian blur: (c =1.6) 26.27 26.35 27.48 27.78 28.33 28.39 28.53
Cameraman . ) )
Motion blur: fspecial 27.78 27.87 29.54 29.77 29.80 29.86 29.93
(‘motion’, 15, 30)
9 x 9 uniform blur 27.09 27.63 29 29.04 29.87 29.94 30.10
Lena Gaussian blur: (o =1.6) 26.62 26.76 30.87 30.93 30.90 31.04 31.29
Motion blur: fspecial 28.81 28.91 31.17 31.20 3141 31.79 32.91
(‘motion’, 15, 30)
MSE
9 x 9 uniform blur 185.39 164.468 104.49 103.77 89.35 85.33 83.96
Gaussian blur: (o = 1.6) 153.49 150.68 116.16 108.41 95.52 94.21 91.21
Cameraman Motion blur: fspecial
. o 110.17 106.19 72.30 68.56 68.09 67.15 66.08
(‘motion’, 15, 30)
9 x 9 uniform blur 129.74 112.22 81.86 81.1 67.00 65.93 66.84
Lena Gaussian blur: (¢ =1.6) 141.60 137.1 53.22 52.49 52.85 51.19 48.31
Motion blur: fspecial 86.12 83.57 49.67 49.33 46.99 43.06 33.27
(‘motion’,15,30)
105 Objective function 0‘5||y-Ax{|g+;\L ¢w(x) = 105 Objective function D.Siry»Ax||§+§t ¢'"rv(x)
x
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o] 50 100 150 200 250 300 seconds
seconds
s  Objective function 0.5[ly-Ax|>+A ©__ (x) 5  Objective function 0.5ly-Ax|>+A &_ (x)
,x10 & fini 4x10 2 W,
—TwWIST —TwWIST
6 FISTA H 3.5 FISTA [
] — — — propose N — —— propose
5 g
i 2.5 i
afy 4 d
: (c) 2 (d) 1
3 -il B 1.5 i
H
2 i 1 1 1
1y 1 osp __ A
l\ = L " " N n
% 200 400 600 800 1000 1200 % 50 100 150 200 250
seconds seconds
10> Objective function 0.5||y—Ax||§+7L D XD 107 Objective function 0.5||‘y-AxH§+J. D (XD
x x
14 —TwWIST = I ——TwolIST
FISTA H FISTA 4
— — — propose — — —proposed
(e) 1 (f)
% ) 100 150 200 250 300 350 400 40 60 80 100 120
seconds seconds

Figure 10. Output of inpainting for objective function related to equation (8) obtained by TwolST, FISTA, and proposed
methods for images: A) Cameraman, B) Lena, C) Lifting-body, D) Coins, E) Moon, F)Tire, and G) Peppers.
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Table 6. Results of MSE restored images degraded by Gaussian noise with ¢ = 0.5 and different blurs.

image Cameraman Lena Butterfly Foreman House Leaves moon baboon  Barbara  Peppers
9 x 9 uniform blur, ¢ = 0.5
TwoIST 100.71 48.32 89.94 32.89 27.73 86.51 84.74  306.96 99.10 42.18
SpaRSA 96.40 43.56 87.04 31.99 26.55 81.86 82.05  305.25 94.86 41.50
Genetic 65.48 41.50 61.46 25.83 18.15 7570 7710 272.95 77.28 39.27
Algorithm
Wavelet
Frame 64.58 42.27 59.13 22.97 18.36 75.00 76.75  275.47 76.93 40.18
Truncated
NCSR 64.72 41.69 52.13 22.14 18.48 65.17 78.00 24850 81.67 4131
SSC-GSM 63.39 41.41 51.66 22.03 18.01 52.37 7483  266.73 79.26 41.12
Pr:]"e"t’ﬁzzd 52.49 32.33 50.38 15.00 1059 4365 6951  224.95 53.10 3175
Gaussian blur: (¢ =1.6), Gaussian noise with ¢ = 0.5
TwolST 87.92 110.05 74.99 39.09 27.87 61.96 8752  327.40 105.70 66.85
SpaRSA 85.92 68.53 67.91 38.46 26.42 60.82 98.42  325.15 101.41 66.37
Genetic 82.24 56.03 49.14 33.27 25.30 5560 8873  300.66 83.96 59.30
Algorithm
Wavelet
Frame 81.68 53.78 50.86 26.48 23.34 54.46 9227  293.14 85.52 58.89
Truncated
NCSR 82.61 51.77 52.25 26.98 21.63 46.46 96.18  299.97 95.08 59.99
SSC-GSM 81.67 49.90 48.87 21.88 20.28 39.54 9421 30275 86.91 57.29
Prﬁﬁzgd 61.96 45.32 46.35 19.81 1355 3873 7483 24270 77.64 41.79
Motion blur: fspecial (‘motion’, 20, 45), ¢ =0.5
TwolST 87.51 51.40 73.69 65.62 32.14 76.22 8167  318.48 92.70 43.16
SpaRSA 85.92 49.78 69.87 30.34 30.34 71.96 7728 32515 87.72 41.22
Genetic 76.75 39.86 53.76 22.28 21.29 59.44 7113 263.08 75.52 44.47
Algorithm
Wavelet
Frame 75.35 39.54 52.41 21.38 20.66 58.89 68.72  260.66 79.13 34.84
Truncated
NCSR 79.63 36.99 52.73 22.70 21.09 51.53 7113 266.73 72.29 36.23
SSC-GSM 75.52 34.28 51.53 20.61 20.00 46.57 67.46  260.06 78.40 34.84
Prgt’gzzd 52.73 30.21 30.18 1154 1178 2589 6224  227.03 51.77 24.84
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Table 7. Results of PSNR restored images degraded by Gaussian noise with ¢ = 0.5 and different blurs.

image Cameraman Lena Butterfly Foreman House Leaves moon baboon  Barbara  Peppers
9 x 9 uniform blur, ¢ = 0.5
TwolST 28.10 31.38 28.59 32.96 33.70 28.76 28.85 23.26 28.17 31.88
SpaRSA 28.29 31.74 28.73 33.08 33.89 29.00 28.99 23.27 28.36 31.95
Genetic 29.97 31.95 30.25 34.01 35.54 2034  29.26 23.77 29.25 32.19
Algorithm
Wavelet
Frame 30.03 31.87 30.41 34,52 35.49 29.38 29.28 23.73 29.27 32.09
Truncated
NCSR 30.02 31.93 30.96 34.68 35.48 29.99 29.21 23.59 29.01 31.97
SSC-GSM 30.11 31.96 30.999 34.70 35.59 30.94  29.39 23.87 29.14 31.99
Proposed 30.93 33.05 3111 36.37 37.88 3173 2971 2461 30.88 33.11
method
Gaussian blur: (¢ = 1.6), Gaussian noise with ¢ = 0.5
TwolST 28.69 27.71 29.38 32.21 33.68 30.21 28.71 22.98 27.89 29.88
SpaRSA 28.79 29.77 29.81 32.28 33.91 30.29 28.29 23.01 28.07 29.91
Genetic
Algorithm 28.98 30.65 31.22 32.91 34.10 30.68 28.65 23.35 28.89 30.40
Wavelet
Frame 29.01 30.82 31.07 33.90 34.45 30.77 28.48 23.46 28.81 30.43
Truncated
NCSR 28.96 30.99 30.95 33.82 34.78 31.46 28.30 23.36 28.35 30.35
SSC-GSM 29.01 31.15 31.24 34.73 35.06 32.16 28.39 23.32 28.74 30.56
Proposed 30.21 3157 31.47 35.16 3681 3225 2039 2428 29.23 31.92
method
Motion blur: fspecial (‘motion’, 20, 45), 6 = 0.5
TwolST 28.71 31.02 29.47 29.96 33.06 29.31 29.01 23.10 28.46 31.78
SpaRSA 28.79 31.16 29.68 33.31 33.31 29.56 29.25 23.01 28.70 31.98
Genetic 29.28 32.13 30.83 34.65 34.85 30.39 29.61 23.93 29.35 32.65
Algorithm
Wavelet
Frame 29.36 32.16 30.94 34.83 34.98 30.43 29.76 23.97 29.49 32.71
Truncated
NCSR 29.12 32.45 30.91 34,57 34.89 31.01 29.61 23.82 29.54 32.54
SSC-GSM 29.35 32.78 31.01 34.99 35.12 31.45 29.84 23.99 29.78 32.71
Prmﬁzzd 3091 33.33 33.34 37.51 3742 3400 3019 2457 30.99 34.18

As an example for inpainting, figures 11-14 show
the restored image by the proposed method. As
observed, the restored image is highly similar to
the original one.
In the next experiment, the effect of different

percentages of

losing pixels with additive

Gaussian noise with o =0.308033and ¢ =1.0
was investigated. As expected, as the percentage

of losing the pixels increases, ISNR decreases,
and MSE and CPU time increases. As an
example, tables 9-11 show the results obtained
for the Cameraman, Lena, and Lifting-body
images, respectively. The same results were
obtained for the other images, which seem to be
unnecessary to be presented.
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B

Figure 11. Results of inpainting: A) Original Image, B) degraded image, and C) restored image by proposed method.

Table 8. Results of inpainting images degraded by Gaussian noise with ¢ = 0.3080 and Losing 40% of pixels.

Image Method Iterations CPU time(s) ISNR (dB) MSE
TwolST 502 313 18.8 95.6
Cameraman SpaRSA 500 194 19 90.7
Proposed method 73 27.5 19.2 85.7
TwolST 502 1340 24.9 22.7
Lena SpaRSA 500 915 25.2 21
Proposed method 55 100 255 19.8
TwolST 502 1080 7.96 30.2
Lifting-body SpaRSA 500 925 7.64 30.3
Proposed method 44 79.7 8.61 29.8
TwolST 502 214 17.4 112
Coins SpaRSA 500 184 18.1 95.6
Proposed method 78 25.9 18.3 90.9
TwolST 502 1059 21.7 37
Moon SpaRSA 500 1499 21.9 35.3
Proposed method 127 256 23.1 335
TwolST 502 105 15.3 85.1
Tire SpaRSA 500 89 16 715
Proposed method 63 11.3 16.7 61.9
TwolST 502 803 24.1 26.3
Peppers SpaRSA 500 559 24.3 25.7
Proposed method 61 72.6 24.9 22.6
TwolST 502 294 19.3 36.8
Cir SpaRSA 500 204 19.4 36.2
Proposed method 6.57 6.57 19.5 35.4
Table 9. Results of inpainting for cameraman image with different degradations.
Losing 30% of pixels Losing 40% of pixels Losing 50% of pixels
) Method CPU ISNR CPU ISNR CPU ISNR
Gaussian times)  (@B) M times)  (dB) MSE  times)  (dB) MSE
variance TwoIST 374 66.5 19.2 313 95.6 18.8 404 144 17.9
0.308033 FISTA 274 62.7 19.5 194 90.7 19 274 135 18.2
Froposed 223 60.7 227 215 85.7 19.2 336 129 184
Losing 30% of pixels Losing 40% of pixels Losing 50% of pixels
. Method CPU ISNR CPU ISNR CPU ISNR
Gaussian times)  (@B)  MSE  time)  (@B) MSE " times)  (dB) MSE
variance TwolIST 315 68 19 476 101 18.5 532 143 18
1 FISTA 291 64 19.3 274 93.2 18.6 288 139 18.1
Proposed
method 38.6 488 205 39.4 80.4 19.1 39.5 114 183
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Table 10. Results of inpainting for Lena image with different degradations.

Losing 30% of pixels Losing 40% of pixels Losing 50% of pixels
) Method CPU ISNR CPU ISNR CPU ISNR
Gaussian time(s) (dB) MSE " fime(s) (dB) MSE  fime(s) (dB) MSE
n\(/);famteh TwolST 134 61.3 19.3 273 93 18.8 158 122 185
0.308033 FISTA 115 60.8 19.3 175 89 19 119 115 18.6
' Proposed
method 10.2 59.2 19.4 10.9 85.7 19.2 11 113 18.7
Losing 30% of pixels Losing 40% of pixels Losing 50% of pixels
Method CPU ISNR CPU ISNR CPU ISNR
Gaussian time(s) (dB) MSE " fime(s) (dB) MSE " time(s) (dB) MSE
noise with TwolST 233 62.4 18.95 141 92.3 183 159 119 17.9
varanee FISTA 157 57.9 19.0 167 84.8 185 157 112 18.1
Proposed
method 24.1 50.1 19.2 234 74.8 18.9 24.9 95.4 18.6
Table 11. Results of inpainting for Lifting-body image with different degradations.
Losing 30% of pixels Losing 40% of pixels Losing 50% of pixels
) Method CPU ISNR CPU ISNR CPU ISNR
Gaussian time(s) (dB) MSE  fime(s) (dB) MSE  fime(s) (dB) MSE
”\‘/’;fa‘r’lvéteh TwolST 973 4.65 31.3 808 8.34 29.9 807 12 29.1
0.308033 FISTA 871 4.81 31.1 822 7.74 30.3 820 125 29.3
’ Proposed 114
method 38.7 4.28 34.05 46.3 7.44 30.4 57.7 . 29.4
Losing 30% of pixels Losing 40% of pixels Losing 50% of pixels
Method CPU ISNR CPU ISNR CPU ISNR
Gaussian time(s) (dB) MSE " fime(s) (dB) MSE  fime(s) (dB) MSE
noise with TwolST 888 6.17 30 923 8.35 288 908 143 27.8
vartance FISTA 815 5.83 30.3 817 7.49 29 1150 12 28.2
Proposed
method 193 4.68 33.2 222 5.89 29.2 219 9.43 28.9

C B A

Figure 12. Results of inpainting for Coins, Lena, Moon, and Peppers: A) Original Image, B) degraded image, and C) restored
image by proposed method.
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Original

it

Figure 13. Results of inpainting for Cir: A) Original
Image, B) degraded image, and C) restored image by
proposed method.

5. Conclusions

In this paper, a new image restoration method
was proposed. It used variable splitting based
upon the total variant regularizer to solve the
optimization problem more rapidly. In the
optimization problem, since the objective
function includes two terms, one term being
second-order and the other one being non-linear
regularizer, the variable splitting was used. This
caused the argument of each term to include an
individual variable. For the new optimization
problem to be equal with the initial one, the

Original

Missing Samples - 40%

Figure 14. Results of inpainting for Tire: A) Original Image,

B) degraded image, and C) restored image by proposed
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method.

undetermined  optimization  problem  was
converted to the determined one, and then the
new problem was solved using the Lagrangian
augmented method. Since image piecewise
smoothed, traditional regularizers such as L2-
norm affected restoration of edge sharpness and
smooth the edges. Therefore, the total variant
regularizer, due to maintaining the sharpness of
the edges and removing the additive noise, was
used. The image restoration was applied on two
cases; deblurring/denoising and inpainting. In
case of deblurring, different additive noises with
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altered blurs, and for inpainting, different types of
noises with different percentage of losing the
pixels were used. The performance of the
proposed method was compared with the TwoIST
and SpaRSA methods for deblurring/denoising,
and also it was compared with the FISTA and
TwolST methods for inpainting. The evaluation
measures included required time for convergence
(speed), ISNR, and MSE. The experimental
results showed that the proposed method
provided a higher ISNR, a lower MSE, and
consequently, a higher quality of the restored
image with higher speed of convergence
compared to the TwolST, SpaRSA, and FISTA
methods for both the deblurring/denoising and
inpainting cases.
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